Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Ecol Evol ; 14(7): e11653, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38983705

ABSTRACT

Cirsium japonicum contains a variety of medicinal components with good clinical efficacy. With the rapid changes in global climate, it is increasingly important to study the distribution of species habitats and the factors influencing their adaptability. Utilizing the MaxEnt model, we forecasted the present and future distribution regions of suitable habitats for C. japonicum under various climate scenarios. The outcome showed that under the current climate, the total suitable area of C. japonicum is 2,303,624 km2 and the highly suitable area is 79,117 km2. The distribution of C. japonicum is significantly influenced by key environmental factors such as temperature annual range, precipitation of the driest month, and precipitation of the wettest month. In light of future climate change, the suitable habitat for C. japonicum is anticipated to progressively relocate toward the western and northern regions, leading to an expansion in the total suitable area. These findings offer valuable insights into the conservation, sustainable utilization, and standardized cultivation of wild C. japonicum resources.

2.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731410

ABSTRACT

Cirsium japonicum Fisch. ex DC. (CF) and Cirsium setosum (Willd.) MB (CS) are commonly used clinically to stop bleeding and eliminate carbuncles. Still, CF is mainly used for treating inflammation, while CS favors hemostasis. Therefore, the present study used UHPLC-MS to analyze the main chemical constituents in CF-CS extract. We optimized the extraction process using single-factor experiments and response surface methodology. Afterward, the hemostatic and anti-inflammatory effects of CF-CS extract were investigated by determining the clotting time in vitro, the bleeding time of rabbit trauma, and the induction of rabbit inflammation using xylene and lipopolysaccharide. The study of hemostatic and anti-inflammatory effects showed that the CF-CS, CF, and CS extract groups could significantly shorten the coagulation time and bleeding time of rabbits compared with the blank group (p < 0.01); compared with the model group, it could dramatically inhibit xylene-induced ear swelling in rabbits and the content of TNF-α, IL-6, and IL-1ß in the serum of rabbits (p < 0.01). The results showed that combined CF and CS synergistically increased efficacy. CF-CS solved the problem of the single hemostatic and anti-inflammatory efficacy of a single drug, which provided a new idea for the research and development of natural hemostatic and anti-inflammatory medicines.


Subject(s)
Anti-Inflammatory Agents , Cirsium , Hemostatics , Plant Extracts , Animals , Rabbits , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Cirsium/chemistry , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Inflammation/drug therapy , Inflammation/pathology , Male
3.
Int J Mol Sci ; 25(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38255858

ABSTRACT

Cirsium japonicum is a medicinal plant that has been used due to its beneficial properties. However, extensive information regarding its therapeutic potential is scarce in the scientific literature. The antioxidant and anti-inflammatory potential of polyphenols derived from the Cirsium japonicum extracts (CJE) was systematically analyzed. High-performance liquid chromatography (HPLC) with mass spectrometry (MS) was used to examine the compounds in CJE. A total of six peaks of polyphenol compounds were identified in the extract, and their MS data were also confirmed. These bioactive compounds were subjected to ultrafiltration with LC analysis to assess their potential for targeting cyclooxygenase-2 (COX2) and DPPH. The outcomes showed which primary compounds had the highest affinity for binding both COX2 and DPPH. This suggests that components that showed excellent binding ability to DPPH and COX2 can be considered significant active substances. Additionally, in vitro analysis of CJE was carried out in macrophage cells after inducing inflammation with lipopolysaccharide (LPS). As a result, it downregulated the expression of two critical pro-inflammatory cytokines, COX2 and inducible nitric oxide synthase (iNOS). In addition, we found a solid binding ability through the molecular docking analysis of the selected compounds with inflammatory mediators. In conclusion, we identified polyphenolic compounds in CJE extract and confirmed their potential antioxidant and anti-inflammatory effects. These results may provide primary data for the application of CJE in the food and pharmaceutical industries with further analysis.


Subject(s)
Antioxidants , Cirsium , Antioxidants/pharmacology , Cyclooxygenase 2 , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Polyphenols/pharmacology , Plant Extracts/pharmacology
4.
Life (Basel) ; 13(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37511827

ABSTRACT

Amyloid beta (Aß) is a neurotoxic peptide and a key factor causing Alzheimer's disease. Cirsium japonicum var. maackii (CJM) has neuroprotective effects, but the protective effects of the flower from CJM (FCJM) on the neural system remain unclear. This study aimed to identify the fraction of FCJM with the highest neuroprotective potential and investigate its protective mechanisms against Aß25-35-induced inflammation in C6 glial cells. The cell viability and generation of reactive oxygen species (ROS) were measured to investigate the positive effect of FCJM on oxidative stress. Treatment with the FCJM extract or fractions increased the cell viability to 60-70% compared with 52% in the Aß25-35-treated control group and decreased ROS production to 84% compared with 100% in the control group. The ethyl acetate fraction of FCJM (EFCJM) was the most effective among all the extracts and fractions. We analyzed the protective mechanisms of EFCJM on Aß25-35-induced inflammation in C6 glial cells using Western blot. EFCJM downregulated amyloidogenic pathway-related proteins, such as Aß precursor protein, ß-secretase, presenilin 1, and presenilin 2. Moreover, EFCJM attenuated the Bax/Bcl-2 ratio, an index of apoptosis, and upregulated the oxidative stress-related protein, heme oxygenase-1. Therefore, this study demonstrated that FCJM improves cell viability and inhibits ROS in Aß25-35-treated C6 glial cells. Furthermore, EFCJM exhibits neuroprotective effects in Aß25-35-induced inflammation in C6 glial cells by modulating oxidative stress and amyloidogenic and apoptosis signaling pathways. FCJM, especially EFCJM, can be a promising agent for neurodegenerative disease prevention.

5.
Metabolites ; 13(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36837843

ABSTRACT

To evaluate the value of Cirsium japonicum (CJ; thistle) as a material for functional foods, we studied the functional composition of cultivated CJ and the in vitro and in vivo antioxidant activity of the functional substance. The detected phenolics in farmed CJ were chlorogenic acid (CA), linarin (LIN), and pectolinarin (PLIN) by HPLC analysis. As a result of the antioxidant activity of CJ and its phenolics by DPPH and ABTS method, CA had shown the greatest antioxidant activity. We employed Caenorhabditis elegans to validate that in vitro effects of CA are shown in vivo. CA delayed reduction in pumping rate and progeny production during aging of C. elegans. Under both normal and oxidative stress conditions, CA reduced the production of reactive oxygen species (ROS) in worms and increased their lifespan. In particular, CA showed the reducing effect of ROS accumulation due to aging in aged worms (8 days old). To gain insight into the mechanism, we used skn-1/Nrf2 and daf-16/FOXO transformed worms. The CA effects (on catalase activity and lifespan extension) in the wild-type (WT) decreased in skn-1 and daf-16 mutants. In particular, CA strongly relied on daf-16 under mild oxidative condition and skn-1 under overall (from mild to strong) oxidative stress to reduce ROS and extend healthspan. Thus, we conclude that CA, a key bioactive phenolic of CJ, reduces ROS production and ultimately extends healthspan, and this effect is the result of actions of daf-16 or skn-1 at different stages depending on the degree of oxidation or aging. Our results suggest that CJ containing CA can be used as an antiaging material due to its antioxidant properties.

6.
China Pharmacy ; (12): 1590-1595, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-977847

ABSTRACT

OBJECTIVE To explore the mechanism of Cirsium japonicum extract in improving hypercholesterolemia based on metabolomics technology. METHODS The extract of C. japonicum was prepared by macroporous resin adsorption, and its main components were identified by liquid chromatography-tandem mass spectrometry. The experimental mice were randomly divided into control group (n=6) and modeling group (n=16). The hypercholesterolemia model was induced by diet in modeling group; after modeling, the rats of modeling group were divided into model group (n=8) and C. japonicum extract group (n=8). C. japonicum extract group was given C. japonicum extract 400 mg/(kg·d) by gavage (calculated by extract), and other 2 groups were given constant volume of 0.3% sodium carboxymethyl cellulose solution, for 6 weeks. After medication, the intervention effect of C. japonicum extract was evaluated by the levels of serum total cholesterol (TC), triglyceride (TG) and the histopathological changes of liver. The mechanism of C. japonicum extract in improving hypercholesterolemia model mice was investigated by metabolomics. RESULTS It was identified that C. japonicum extract contained 12 components, such as 030302005) chlorogenic acid, linarin and pectolinarin. After 6 weeks of intervention, compared with control group, serum level of TC was increased significantly while the level of TG was decreased significantly in model group (P<0.05), while a large number of lipid droplets, disorderly arrangement of liver cells and the damaged structure of liver cord were observed in liver tissue. Compared with model group, the serum level of TC was decreased significantly in C. japonicum extract group(P<0.05); the lipid droplets in liver tissue were significantly reduced, with liver cells arranged radially and tightly centered around the central vein, and liver cords arranged neatly. The metabolomics study showed that after the intervention of C. japonicum extract, the levels of metabolites were significantly adjusted back, such as ethanolamine, fumaric acid and cholesterol; finally, three metabolism pathways, such as alanine-aspartate-glutamic acid metabolism, arginine biosynthesis, citric acid cycle, were obtained. CONCLUSIONS The main components of C. japonicum extract are phenolic acids and flavonoids, such as chlorogenic acid, linarin, pectolinarin. C. japonicum extract can improve hypercholesterolemia by regulating the contents and distribution of differential metabolites, adjusting alanine-aspartate-glutamic acid metabolism, arginine biosynthesis and citric acid cycle, participating in oxidation-reduction reaction, improving liver lipid accumulation, and playing anti-inflammatory role.

7.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557828

ABSTRACT

Pectolinarin and linarin are two major flavone O-glycosides of Cirsium japonicum, which has been used for thousands of years in traditional Chinese medicine. Pharmacological research on pectolinarin and linarin is meaningful and necessary. Here, a process for the purification of pectolinarin and linarin from C. japonicum was established using macroporous resin enrichment followed by prep-HPLC separation. The results show the purity of pectolinarin and linarin reached 97.39% and 96.65%, respectively. The in vitro bioactivities result shows the ORAC values of pectolinarin and linarin are 4543 and 1441 µmol TE/g, respectively, meanwhile their inhibition rate of BSA-MGO-derived AGEs is 63.58% and 19.31% at 2 mg/mL, which is 56.03% and 30.73% in the BSA-fructose system, respectively. The COX-2 inhibition rate at 50 µg/mL of linarin and pectolinarin reached 55.35% and 40.40%, respectively. Furthermore, the in vivo bioassay combining of histopathologic evaluation and biochemical analysis of liver glutamic oxaloacetic transaminase, serum creatinine and TNF-α show pectolinarin can alleviate lipopolysaccharide (LPS)-induced acute liver and kidney injury in mice. Metabolomics analysis shows that pectolinarin attenuates LPS-challenged liver and kidney stress through regulating the arachidonic acid metabolism and glutathione synthesis pathways. Collectively, our work presents a solid process for pectolinarin and linarin purification and has discovered a promising natural therapeutic agent-pectolinarin.


Subject(s)
Cirsium , Mice , Animals , Lipopolysaccharides , Glycosides/pharmacology
8.
Int J Biol Sci ; 18(15): 5809-5826, 2022.
Article in English | MEDLINE | ID: mdl-36263176

ABSTRACT

Plant extract-mediated synthesis of metal nanoparticles (NPs) is an eco-friendly and cost-effective biosynthesis method that is more suitable for biological applications than chemical ones. We prepared novel gold NPs (AuNPs), Cirsium japonicum mediated-AuNPs (CJ-AuNPs), using a biosynthetic process involving Cirsium japonicum (Herba Cirsii, CJ) ethanol extract. The physicochemical properties of CJ-AuNPs were characterized using spectrometric and microscopic analyses. The in vitro stability of CJ-AuNPs was studied for 3 months. Moreover, the selective human gastric adenocarcinoma (AGS) cell killing ability of CJ-AuNPs was verified in cancer and normal cells. An in vitro study revealed that CJ-AuNPs trigger oxidative stress and iron-dependent ferroptosis in AGS cells. Mechanistically, CJ-AuNPs induced mitochondrial reactive oxygen species (ROS), Fe2+, and lipid peroxidation accumulation, and mitochondrial damage by destroying the glutathione peroxidase-4 (GPX4)-dependent antioxidant capacity. Furthermore, in a xenograft mouse model implanted with AGS cells, treatment with 2.5, 5, and 10 mg/kg CJ-AuNPs for 16 days reduced tumor xenograft growth in a dose dependent manner in vivo without systemic toxicity. These results demonstrate that CJ-AuNPs exert anticancer effects in vitro and in vivo by inducing ferroptosis-mediated cancer cell death. This study, based on green-synthesized nanodrug-induced ferroptosis, provides new insight into potential developments in cancer therapies.


Subject(s)
Cirsium , Metal Nanoparticles , Stomach Neoplasms , Humans , Mice , Animals , Cirsium/chemistry , Cirsium/metabolism , Gold/chemistry , Gold/pharmacology , Reactive Oxygen Species/metabolism , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Antioxidants/pharmacology , Stomach Neoplasms/drug therapy , Glutathione Peroxidase , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Ethanol , Iron
9.
Phytochemistry ; 202: 113319, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35850259

ABSTRACT

Eight previously undescribed polyacetylenes, cirussurynes A-H, were isolated from the methanolic extract of the roots of Cirsium japonicum var. ussuriense. Their structures were elucidated by interpretation of extensive 1D and 2D NMR spectroscopy and HRESIMS spectrometry data. The configuration of triols in cirussurynes A, B, and E-G was deduced by the J-value based configuration analysis together with specific rotation values. All compounds were evaluated for their inhibitory effects on nitric oxide production against LPS-induced RAW 264.7 macrophages, and exhibited IC50 values ranging from 5.5 to 68.7 µM.


Subject(s)
Cirsium , Cirsium/chemistry , Macrophages , Molecular Structure , Nitric Oxide , Polyacetylene Polymer/pharmacology , Polyynes/chemistry , Polyynes/pharmacology
10.
Biomed Pharmacother ; 151: 113186, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35643063

ABSTRACT

Ulcerative colitis (UC) is a severe inflammatory disease that has spread throughout the world. Cirsium japonicum (CJ) and Aralia elata (AE) are natural herbs with potent antioxidative antidiabetics and anti-inflammatory effects. In this investigation, we studied the defensive role of the combination of CJ and AE against LPS-induced inflammation in RAW 264.7 cells, dextran sulfate sodium (DSS)-induced colitis in mice, and acetic acid-induced colitis in dogs. MTT assay was performed to identify the toxic effect of CJ and AE extracts. NO, and MDA level was also measured by NO and MDA assay. To measure the pro-inflammatory protein expression, a western blot was performed. To induce colitis, 3% DSS was used for mice and 6% acetic acid was used for dogs. Histopathology and colonoscopy were executed to detect the effect of extracts. CJ and AE pretreatment reduced the level of NO, MDA, and the expression of pro-inflammatory proteins cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in RAW 264.7. Compared to the separate doses of CJ and AE, the combined dose of CJ and AE significantly reduced clinical symptoms induced by DSS in mice and acetic acid in dogs including weight loss, bloody stool, shortening of the colon, and the severity of colitis and degree of histological damage in the colon. Therefore, these results indicated that a combined dose of CJ and AE has a protective effect against LPS-induced RAW 264.7 cells, DSS-mediated colonic inflammation in mice, and acetic acid-induced colitis in dogs.


Subject(s)
Aralia , Cirsium , Colitis, Ulcerative , Colitis , Animals , Anti-Inflammatory Agents/adverse effects , Colitis/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon , Dextran Sulfate/pharmacology , Disease Models, Animal , Dogs , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Mice , Plant Extracts/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , RAW 264.7 Cells
11.
Molecules ; 27(7)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35408493

ABSTRACT

Advanced glycation end products (AGEs) have recently been increasingly discussed as one factor of skin aging. In this study, we investigated the effects of Cirsium japonicum flower (CFE) extract on glycation in relation to skin aging and skin elasticity. Moreover, we learned the main active constituent of CFE that has effects against glycation. To demonstrate the effects of CFE on glycation, we carried out an in vitro glycation study, 3-dimensional culture, and clinical study. As a result, CFE inhibited formation of AGEs in both bovine serum albumin (BSA)/glucose glycation system and aldehyde-derived glycation system. Moreover, CFE reduced Nε-(carboxymethyl), lysine (CML), and carbonylated proteins that increased by glycation. Furthermore, CFE broke crosslinks of collagen-AGEs and inhibited the increase of matrix metalloproteinase-1 (MMP-1) gene expression by AGEs. In the 3D culture condition, CFE restored the reduction of collagen gel contraction by glycation. Moreover, apigenin was detected as the main active constituent in CFE that has anti-glycation effects. In the clinical study, we confirmed that CFE has effects on skin wrinkles and skin elasticity. Our findings suggest that CFE can be used as a cosmetic or cosmeceutical ingredient for improving skin elasticity and wrinkles. Regulation of AGEs can be an interesting target for anti-aging.


Subject(s)
Cirsium , Plant Extracts , Skin Aging , Cirsium/chemistry , Collagen , Flowers/chemistry , Glycation End Products, Advanced/metabolism , Humans , Plant Extracts/pharmacology
12.
Food Sci Nutr ; 9(11): 6060-6068, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34760237

ABSTRACT

The objective of this study was to determine biological effects of Cirsium japonicum extract and its main component cirsimaritin on high-fat diet (HFD)-induced metabolic dysfunction-associated fatty liver disease (MAFLD) in a mouse model. Mice were fed with a HFD to induce MAFLD and simultaneously administered with C. japonicum extract (CJE) or cirsimaritin. Various MAFLD biomarkers were evaluated using biological methods. Results demonstrated that triglyceride, aspartate aminotransferase, alanine aminotransferase, and malondialdehyde levels in the liver of mice were significantly reduced upon administration of CJE or cirsimaritin. Treatment with CJE or cirsimaritin also reduced the severity of liver injury in the experimental mouse model of MAFLD by inhibiting hepatic steatosis, oxidative stress, inflammation, and liver fibrosis. These results demonstrate that CJE and cirsimaritin as its main compound have a preventive action against the progression of hepatic steatosis to fibrosis and cirrhosis. Our study suggests that CJE and cirsimaritin might be promising agents for preventing and/or treating MAFLD.

13.
Int J Cosmet Sci ; 43(6): 703-714, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34674286

ABSTRACT

OBJECTIVE: In this study, we examined the effect of C. japonicum flower extract (CFE) on melanogenesis and its mechanism in vitro and ex vivo. METHODS: The effect of CFE on melanogenesis was investigated with lightly (HEMn-LP) and moderately (HEMn-MP) pigmented normal human melanocytes, reconstituted three-dimensional skin (3D skin) model and ex vivo human hair follicles. The melanogenesis-inducing effect of CFE was evaluated using melanin content and intracellular tyrosinase activity assay. The amount and type of eumelanin and pheomelanin were analysed by using HPLC method. The mechanism involved in the effect of CFE on hyperpigmentation was explored by cyclic adenosine monophosphate (cAMP) immunoassay and western blot analysis for tyrosinase, microphthalmia-associated transcription factor (MITF) and phosphorylated CRE-binding protein (pCREB) expression. The degree of pigmentation in 3D skin and L-values were measured using a CR-300 chroma meter. The amount of dissolved melanin was measured using a spectrophotometer. The content of melanin in the hair follicles was evaluated by Fontana Masson staining. RESULTS: C. japonicum flower extract significantly increased the melanin content and cellular tyrosinase activity in both HEMn-LP and HEMn-MP cells. The markers of pheomelanin and eumelanin in HEMn-LP and HEMn-MP were also increased by CFE. We observed that CFE treatment on melanocytes increased intracellular cAMP with inducing pCREB and up-regulating the protein levels of TYR and MITF. Furthermore, CFE considerably increased the melanin content in a 3D skin model and ex vivo human hair follicles. CONCLUSIONS: These results suggest that CFE exerts hyperpigmentation activity through cAMP signalling in human melanocytes that it can improve follicular depigmentation and vitiligo by stimulating the melanin synthesis.


OBJECTIF: Dans cette étude, nous avons examiné l'effet de l'extrait de fleur de C. japonicum (EFC) sur la mélanogenèse et son mécanisme in vitro et ex vivo. MÉTHODES: L'effet du EFC sur la mélanogenèse a été étudié avec des mélanocytes humains normaux légèrement (HEMn-LP) et modérément (HEMn-MP) pigmentés, un modèle de peau reconstituée en 3 dimensions (peau 3D) et des follicules pileux ex vivo. L'effet inducteur de la mélanogénèse de la EFC a été évalué en utilisant la teneur en mélanine et le dosage de l'activité de la tyrosinase intracellulaire. La quantité et le type d'eumélanine et de phéomélanine ont été analysés en utilisant la méthode HPLC. Le mécanisme impliqué dans l'effet de la EFC sur l'hyperpigmentation a été exploré par immunoessai à l'adénosine monophosphate cyclique (AMPc) et Western blot pour l'expression de la tyrosinase, du facteur de transcription associé à la microphtalmie (MITF) et l'expression de la protéine CREB phosphorylée. Le degré de pigmentation de la peau 3D, les valeurs L ont été mesurées à l'aide d'un chromamètre CR-300. La quantité de mélanine dissoute a été mesurée à l'aide d'un spectrophotomètre. La teneur en mélanine des follicules pileux a été évaluée par coloration Fontana Masson. RÉSULTATS: EFC a augmenté de manière significative la teneur en mélanine et l'activité de la tyrosinase cellulaire dans les cellules HEMn-LP et HEMn-MP. Les marqueurs de phéomélanine et d'eumélanine dans HEMn-LP et HEMn-MP ont également été augmentés par EFC. Nous avons observé que le traitement EFC sur les mélanocytes augmentait l'AMPc intracellulaire en induisant pCREB et en régulant à la hausse les niveaux de protéines de TYR et MITF. De plus, le EFC a considérablement augmenté la teneur en mélanine dans un modèle de peau 3D et dans les follicules pileux humains ex vivo. CONCLUSIONS: Ces résultats suggèrent que la EFC exerce une activité d'hyperpigmentation via la signalisation de l'AMPc dans les mélanocytes humains qu'elle peut améliorer la dépigmentation folliculaire et le vitiligo en stimulant la synthèse de mélanine.


Subject(s)
Hair Follicle/drug effects , Melanins/metabolism , Plant Extracts/pharmacology , Skin Lightening Preparations/pharmacology , Skin/drug effects , Vitiligo/drug therapy , Aged , Cirsium , Female , Flowers , Humans , Melanocytes/drug effects
14.
Drug Metab Lett ; 14(2): 117-125, 2021.
Article in English | MEDLINE | ID: mdl-34313205

ABSTRACT

BACKGROUNDS: Plants and their derived products have been used in the traditional system of medicine for the treatment of various forms of human disorders since very ancient times. In the traditional system of medicine and modern allopathic medicine, numerous phytoconstituents have been used for the preparation of various types of formulation. Flavonoidal class phytochemicals are the main active phytoconstituents of plants, fruit, vegetables and beverages. Flavonoidal class phytochemicals are more referred as "nutraceuticals" due to their important pharmacological activities in the mammalian body. METHODS: In order to understand the beneficial health effects of flavonoidal class chemical, the present work summarized the health beneficial aspects of pectolinarin. Present work summarized the medicinal importance, pharmacological activities and analytical aspects of pectolinarin with various experimental models and advance analytical methods. However, all the collected scientific information's have been analyzed in the present work for their health beneficial potential. RESULTS: From the analysis of all the collected scientific information in the present work, it was found that pectolinarin is an important phytochemical present in numerous medicinal plants but especially found in Cirsium japonicum, which is an important medicinal herb of Korea, China and Japan. Pharmacological activities data analysis signified the health beneficial potential of pectolinarin for their anti-rheumatoid arthritis, analgesic, anti-inflammatory, hepatoprotective, anti-diabetic, anti-tumor, anti-dengue, antiviral, neuroprotective and antidepressant activity. However, the effectiveness of pectolinarin in central nervous system, bone, liver and cancerous disorders have been also reported in the literature. Analysis of present scientific information revealed the health beneficial potential of pectolinarin in modern medicine due to their numerous pharmacological activities in different parts of biological systems. Due to their biological importance in food and human health, a better understanding of their biological activities indicates their potentials as therapeutic agents. CONCLUSION: Scientific data of the present work signified the biological potential and therapeutic benefit of pectolinarin.


Subject(s)
Cirsium , Plants, Medicinal , Animals , Chromones , Flavonoids , Humans , Plant Extracts
15.
Mitochondrial DNA B Resour ; 6(4): 1468-1470, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33969197

ABSTRACT

Cirsium japonicum (C. japonicum) is a traditional Chinese medicine belonging to the family Asteraceae. The previous studies have indicated that the chemical compound content of C. japonicum from different places was different. To distinguish C. japonicum from different geographies, the chloroplast genome of C. japonicum from China was sequenced and compared with that from Korea. The total length of this genome is 152,602 bp, similar to that of Korea (152,606 bp). It has a conservative quartile structure which is composed of a large single-copy (LSC) region, a small single-copy (SSC) region and a pair of inverted repeats (IRs) regions, with lengths of 83,487 bp, 18,721 bp, and 25,197 bp, respectively. It encodes 79 protein-coding, 27 transfer RNAs, and 4 ribosomal RNA genes. The overall GC content of the genome is 37.70%. A total of 20 single nucleotide polymorphisms and 6 insertions and deletions were identified between the chloroplast genome of C. japonicum from China and Korea. These results can be applied to develop molecular markers to distinguish C. japonicum from different geographical origins.

16.
Antioxidants (Basel) ; 9(3)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121091

ABSTRACT

The aim of this study was, firstly, to evaluate the phenol profile of thistle (Cirsium japonicum, CJ) by High performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS), dried by different methods (90 °C hot-air, 70 °C hot-air, shade-, and freeze-drying). Secondly, we aimed to evaluate the relationship between phenolic compounds content and antioxidant properties. CJ contained chlorogenic acid, linarin, and pectolinarin. Total phenolic contents of CJ significantly decreased under hot-air-drying condition, especially chlorogenic acid contents in CJ have been reduced by 85% and 60% for 90 °C and 70 °C hot-air-drying, respectively. We evaluated the protective effect on adrenal pheochromocytoma (PC12) cells and Caenorhabditis elegans using shade-dried CJ, which has the largest phenolic contents and the strongest antioxidant property. CJ-treated PC 12 cells dose-dependently exhibited the protective effects against reactive oxygen species (ROS), while cell viability increases, lactate dehydrogenase release decreases, and ROS formation decreases. Furthermore, CJ has also shown protection against ROS in C. elegans. Consequently, CJ contributed to lifespan extension under ROS stress without influencing the physiological growth.

17.
China Pharmacy ; (12): 820-825, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-819094

ABSTRACT

OBJECTIVE:To establish HP LC ch aracteristic ch romatogram of different medicinal parts of Cirsium japonicum , and to compare the difference of chemical components in different medicinal parts of C. japonicum according to chemical identification method ,and to provide reference for quality control and evaluation of C. japonicum . METHODS :Medicinal material (overground part ),leaves,flower,main stem and lateral stem of C. japonicum were determined by HPLC. According to the TCM Chromatographic Fingerprint Similarity Evaluation System (2012A edition ),the chromatograms were matched to generate the HPLC characteristic chromatogram of each medicinal part. The differences of common characteristic peak area were analyzed according to variance analysis of single factor. The chromatographic peaks were identified by comparison of reference substance. Meanwhile,the chemical pattern recognition was performed to research the different medicinal parts of C. japonicum according to principal component analysis (PCA)and cluster analysis. RESULTS :HPLC characteristic chromatograms of medicinal material , leaves,flower,main stem and lateral stem from C. japonicum were established respectively ,and 15 common peaks were confirmed for medicinal material ,leaves and flower of C. japonicum ;11 common peaks were confirmed in chromatograms of main stem and lateral stem from C. japonicum (absence of No. 7,9,12,13 peak). The contents of chemical components were different greatly among different medicinal parts. No. 1,2,3,10,11 peaks were identified as neochlorogenic acid ,chlorogenic acid , cryptochlorogenic acid ,linarin and pectolinarin. Results of PCA and cluster analysis showed that chemical pattern recognition and clustering of the flower and stem of C. japonicum were distinct and can be clustered into one category respectively. However ,the leaves distribution of C. japonicum was relatively scattered ,so it was difficult to cluster . CONCLUSIONS :Established HPLC characteristic chromatogram-chemical pattern recognition can reflect the differences of different medicinal parts of C. japonicum integrally, comprehensively and truly , which has vital significance for origin indentification , quality control and overall evaluation of C. japonicum .

18.
J Cell Mol Med ; 23(8): 5369-5379, 2019 08.
Article in English | MEDLINE | ID: mdl-31148341

ABSTRACT

Although Hif-2α is a master regulator of catabolic factor expression in osteoarthritis development, Hif-2α inhibitors remain undeveloped. The aim of this study was to determine whether Cirsium japonicum var. maackii (CJM) extract and one of its constituents, apigenin, could attenuate the Hif-2α-induced cartilage destruction implicated in osteoarthritis progression. In vitro and in vivo studies demonstrated that CJM reduced the IL-1ß-, IL-6, IL-17- and TNF-α-induced up-regulation of MMP3, MMP13, ADAMTS4, ADAMTS5 and COX-2 and blocked osteoarthritis development in a destabilization of the medial meniscus mouse model. Activation of Hif-2α, which directly up-regulates MMP3, MMP13, ADAMTS4, IL-6 and COX-2 expression, is inhibited by CJM extract. Although cirsimarin, cirsimaritin and apigenin are components of CJM and can reduce inflammation, only apigenin effectively reduced Hif-2α expression and inhibited Hif-2α-induced MMP3, MMP13, ADAMTS4, IL-6 and COX-2 expression in articular chondrocytes. IL-1ß induction of JNK phosphorylation and IκB degradation, representing a critical pathway for Hif-2α expression, was completely blocked by apigenin in a concentration-dependent manner. Collectively, these effects indicate that CJM and one of its most potent constituents, apigenin, can lead to the development of therapeutic agents for blocking osteoarthritis development as novel Hif-2α inhibitors.


Subject(s)
Apigenin/pharmacology , Arthritis, Experimental/drug therapy , Cartilage, Articular/drug effects , Chondrocytes/drug effects , Cirsium/chemistry , Osteoarthritis/drug therapy , Animals , Arthritis, Experimental/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Interleukin-1beta/metabolism , Male , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 3/metabolism , Menisci, Tibial/drug effects , Menisci, Tibial/metabolism , Mice , Mice, Inbred C57BL , Osteoarthritis/metabolism , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/drug effects
19.
Food Chem Toxicol ; 125: 422-429, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30703393

ABSTRACT

Cirsium japonicum DC (Asteraceae) is a perennial thistle widely distributed in Asia, it is also consumed as functional food and herb in China. To analyze the health effects of C. japonicum, flavonoids, saponins, polysaccharides, essential oil, coumarin and alkaloids were extracted from C. japonicum, and their cytotoxicity to normal cells, anti-inflammatory effect against LPS-induced RAW 264.7 macrophages, antiproliferative effects against human lung adenocarcinoma cell A549 and anti-atherosclerosis activities in ox-LDL-stimulated RAW 264.7 cell were investigated. Results showed that coumarins exhibited strongest cell toxicity (IC50 = 162.7 µg/ml), and alkaloids showed slightly cytotoxicity at high concentration. Saponin could significantly inhibit cancer cell proliferation, especially for A549 cell and the inhibition rate reached to 47.0% at concentration of 200 µg/ml, which might result from the promotion of ROS generation in cancer cell. Saponin, essential oil and flavonoids could dose-dependently inhibit NO production in LPS-induced RAW 264.7 macrophages, whose inhibition rates were 65.4%, 73.0% and 80.4% at concentration of 50 µg/ml, respectively. Besides, saponin, essential oil and flavonoids also decreased lipid accumulation in ox-LDL-induced RAW 264.7 cell, which might be beneficial for cardiovascular health. These results indicated that different components from C. japonicum exhibited different bioactivities, providing useful information to better use thistle resources.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Cirsium/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Biological Products/isolation & purification , Cell Line, Tumor , Coumarins/isolation & purification , Coumarins/pharmacology , Flavonoids/isolation & purification , Flavonoids/pharmacology , Humans , Interleukin-6/metabolism , Mice , NF-kappa B/metabolism , Nitric Oxide/antagonists & inhibitors , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , RAW 264.7 Cells , Saponins/isolation & purification , Saponins/pharmacology , Tumor Necrosis Factor-alpha/metabolism
20.
Chem Biol Interact ; 293: 38-47, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30053449

ABSTRACT

Cirsium japonicum var. ussuriense (Regel) Kitam. ex Ohwi (C. ussuriense) is known as "Dae-Gye" or "Korean milk thistle". C. ussuriense have long been used as a folk medicinal plant for inflammatory diseases such as hepatitis, nephritis, and mastitis in Korea, China, and Japan. To reveal the anti-inflammatory components of C. ussuriense, we isolated three flavone glycosides (linarin, cirsimarin, and hispidulin-7-O-neohesperidoside) from the aerial part of C. ussuriense and evaluated their inhibitory effects on LPS-induced pro-inflammatory mediators in macrophages. We also investigated the involving molecular mechanisms of cirsimarin. Among three flavone glycosides, cirsimarin showed vastly superior inhibitory potency in LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. Cirsimarin concentration-dependently inhibited LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in macrophages. Cirsimarin suppressed the production and mRNA expression of tumor necrosis factor- α (TNF-α) and interleukin (IL)-6 in LPS-stimulated RAW 264.7 and bone marrow-derived macrophages. Moreover, molecular data presented that cirsimarin down-regulated the phosphorylation of Janus kinase (JAK)/signal transducer and activator of transcriptions (STATs) and p38 mitogen-activated protein kinase (MAPK), and nuclear translocation of interferon regulatory factor (IRF)-3. Collectively, cirsimarin may be an active ingredient responsible for anti-inflammatory effects of C. ussuriense and it may act as a promising therapeutic against inflammatory diseases by suppressing the JAK/STAT and IRF-3 signaling pathway.


Subject(s)
Cirsium/chemistry , Flavones/pharmacology , Glycosides/pharmacology , Signal Transduction/drug effects , Animals , Cell Survival/drug effects , Cirsium/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Flavones/chemistry , Flavones/isolation & purification , Glycosides/chemistry , Glycosides/isolation & purification , Interferon Regulatory Factor-3/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Janus Kinases/metabolism , Lipopolysaccharides/toxicity , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , RAW 264.7 Cells , STAT Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...