Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genet. mol. biol ; 30(3,suppl): 810-818, 2007. ilus, tab
Article in English | LILACS | ID: lil-467259

ABSTRACT

Assimilation of nitrate and ammonium are vital procedures for plant development and growth. From these primary paths of inorganic nitrogen assimilation, this metabolism integrates diverse paths for biosynthesis of macromolecules, such as amino acids and nucleotides, and the central intermediate metabolism, like carbon metabolism and photorespiration. This paper reports research performed in the CitEST (Citrus Expressed Sequence Tag) database for the main genes involved in nitrogen metabolism and those previously described in other organisms. The results show that a complete cluster of genes involved in the assimilation of nitrogen and the metabolisms of glutamine, glutamate, aspartate and asparagine can be found in the CitEST data. The main enzymes found were nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT), glutamate dehydrogenase (GDH), aspartate aminotransferase (AspAT) and asparagine synthetase (AS). The different enzymes involved in this metabolism have been shown to be highly conserved among the Citrus and Poncirus species. This work serves as a guide for future functional analysis of these enzymes in citrus.

2.
Genet. mol. biol ; 30(3,suppl): 857-865, 2007. ilus, tab
Article in English | LILACS | ID: lil-467264

ABSTRACT

Pleiotropic drug resistance (PDR) proteins, a subfamily of the ATP-binding cassette (ABC) transporters, have been recently shown to play a role in plant defense against biotic and abiotic stresses. However, nothing is known about their expression in citrus. To investigate the occurrence of PDR homologues in citrus species, we have surveyed EST sequences from different tissues and conditions of the Citrus Expressed Sequence Tags (CitEST) database, through sequence similarity search analyses and inspections for characteristic PDR domains. Multiple sequence alignments, prediction of transmembrane topology and phylogenetic analysis of PDR-like proteins were additionally performed. This study allowed the identification of nine putative proteins showing characteristic PDR features in citrus species under various conditions, which may indicate a potential correlation between PDRs and stress and metabolism of citrus plants. Moreover, a tissue-specific putative PDR-like protein was found in sweet orange fruits. To our knowledge, this is the first report regarding the identification of citrus ESTs encoding PDR-like proteins as well as the first to identify a putative full ABC transporter with specific expression in fruits.

3.
Genet. mol. biol ; 30(3,suppl): 888-905, 2007. ilus, tab, graf
Article in English | LILACS | ID: lil-467268

ABSTRACT

Water deficit is one of the most critical environmental stresses to which plants are submitted during their life cycle. The evolutionary and economic performance of the plant is affected directly by reducing its survival in the natural environment and its productivity in agriculture. Plants respond to water stress with biochemical and physiological modifications that may be involved in tolerance or adaptation mechanisms. A great number of genes have been identified as transcriptionally regulated for water deficit. EST sequencing projects provide a significant contribution to the discovery of expressed genes. The identification and determination of gene expression patterns is important not only to understand the molecular bases of plant responses but also to improve water stress tolerance. In our citrus transcriptome survey we have attempted to identify homologs to genes known to be induced and regulated under water stress conditions. We have identified 89 transcripts whose deduced amino acid sequences share similarities with proteins involved in uptake and transport of water and ion, 34 similar to components of the osmolyte metabolism, 67 involved in processes of membranes and proteins protection and 115 homologs of reactive oxygen species scavenger. Many drought-inducible genes identified are known to be regulated by development, salt, osmotic and low temperature. Their possible roles in specific or general mechanisms of water stress citrus responses are discussed.

4.
Genet. mol. biol ; 30(3,suppl): 965-971, 2007. graf, tab
Article in English | LILACS | ID: lil-467274

ABSTRACT

The Citrus ESTs Sequencing Project (CitEST) conducted at Centro APTA Citros Sylvio Moreira/IAC has identified and catalogued ESTs representing a set of citrus genes expressed under relevant stress responses, including diseases such as citrus variegated chlorosis (CVC), caused by Xylella fastidiosa. All sweet orange (Citrus sinensis L. Osb.) varieties are susceptible to X. fastidiosa. On the other hand, mandarins (C. reticulata Blanco) are considered tolerant or resistant to the disease, although the bacterium can be sporadically detected within the trees, but no disease symptoms or economic losses are observed. To study their genetic responses to the presence of X. fastidiosa, we have compared EST libraries of leaf tissue of sweet orange Pêra IAC (highly susceptible cultivar to X. fastidiosa) and mandarin ‘Ponkan’ (tolerant) artificially infected with the bacterium. Using an in silico differential display, 172 genes were found to be significantly differentially expressed in such conditions. Sweet orange presented an increase in expression of photosynthesis related genes that could reveal a strategy to counterbalance a possible lower photosynthetic activity resulting from early effects of the bacterial colonization in affected plants. On the other hand, mandarin showed an active multi-component defense response against the bacterium similar to the non-host resistance pattern.

5.
Genet. mol. biol ; 30(3,suppl): 991-996, 2007. tab
Article in English | LILACS | ID: lil-467277

ABSTRACT

RNA silencing mechanisms are conserved throughout eukaryotic evolution, possibly due to their importance in viral resistance and other aspects of cell biology. Here, we explored the Citrus EST (CitEST) database in search of sequences related to the most important known genes involved in RNA silencing. Transcripts strongly matching Argonaute (AGO), Dicer-like (DCL), Hua enhancer (HEN), and RNA-dependent RNA Polymerase (RdRP) were found in many of the citrus libraries. The reads were clustered and quantified. This shows that post-transcriptional gene silencing apparatus is active in citrus. It seems plausible that a better understanding of the players of RNA silencing in Citrus spp. and related genera may help create new tools to defeat the viral diseases that affect the citrus industry. Functional analyses of these citrus genes would enable the pursuit of this hypothesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...