Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.409
Filter
1.
Acta Med Philipp ; 58(3): 47-54, 2024.
Article in English | MEDLINE | ID: mdl-38966836

ABSTRACT

Introduction: Folkloric claims have surrounded essential oils, including their enhancement of learning and memory through inhalational exposure. Few studies in humans have shown a benefit in cognition, albeit incremental. However, this benefit may not be entirely attributable to the essential oil aroma but may be confounded by psychological associations. We investigated rosemary, peppermint, lemon, and coffee aromas in a learning and memory model of Drosophila melanogaster to eliminate this confounder. Methods: We screened for concentrations of the four treatments that are non-stimulatory for altered locomotory behavior in the flies. At these concentrations, we determined if they were chemoneutral (i.e., neither chemoattractant nor chemorepellent) to the flies. Learning and memory of the flies exposed to these aromas were determined using an Aversive Phototaxis Suppression (APS) assay. Results: The aromas of rosemary, peppermint, and lemon that did not elicit altered mobility in the flies were from dilute essential oil solutions that ranged from 0.2 to 0.5% v/v; whereas for the aroma in coffee, it was at a higher concentration of 7.5% m/v. At these concentrations, the aromas used were found to be chemoneutral towards the flies. We observed no improvement in both learning and memory in the four aromas tested. While a significant reduction (p < 0.05) in learning was observed when flies were treated with the aromas of rosemary, peppermint, and coffee, a significant reduction (p < 0.05) in memory was only observed in the peppermint aroma treatment. Conclusion: This study demonstrated that in the absence of psychological association, the four aromas do not enhance learning and memory.

2.
Heliyon ; 10(12): e32775, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994106

ABSTRACT

Background and aim: Citrus production represents an important activity for the national economy and a source of income for farmers in Benin. However, fungal diseases are a major constraint to production intensification. The aim of this study is to assess farmers' perceptions on citrus fungal diseases in production areas in Benin. Methods: A survey was conducted among 417 farmers between July and December 2021 in four major citrus-producing agro-ecological zones (zones V, VI, VII and VIII) to collect their perceptions, knowledge and management practices of citrus fungal diseases. Results: Farmers reported that fungal diseases are one of the main constraints to citrus production, including black spot, anthracnose, brown rot, sooty mold and fruit rot. Among them, black spot disease is the most severe, causing damage to production. According to farmers, symptoms appear on fruit after fruit set, with a very remarkable presence and high incidence at maturity. Although farmers are most of times aware of the damage caused by fungal diseases with adverse consequences on their income, they have a poor knowledge of appropriate phytosanitary products to manage these diseases. Indeed, the majority of farmers (>60 %) use chemical insecticides, which they reported to be ineffective against citrus fungal diseases. Although chemical insecticides are their only recourse, almost 40 % use nothing to control these diseases. Farmers stated that climatic variability is a factor favoring the development of diseases, leading to reduced production. Conclusions: Among the several citrus fungal diseases, black spot is perceived as the most damaging, causing greater yield losses under favorable conditions, coupled with an almost total absence of appropriate control methods. This study contributes to the reorganization of the citrus industry and to decision-making on capacity building for farmers in terms of orchard pest protection, in order to guarantee better production of marketable and exportable fruit.

3.
Heliyon ; 10(12): e33104, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022050

ABSTRACT

Estrogen receptor-positive (ER+) breast cancer seriously endangers the women's physical and mental health worldwide and ER targeting therapy is vital. Here, we found that a citrus polymethoxyflavones (PMFs)-rich hydrolysate (C-H) and its major components (nobiletin and 3-methoxynobiletin) potently degrade ERα protein via the ubiquitin-proteasome pathway, thereby impairing the proliferation of ER+ breast cancer cells. Moreover, our study exhibited that C-H combined with tamoxifen (TAM) inhibited the cell proliferation of ER+ breast cancer in vitro. It was further confirmed that C-H decreased tumor growth of ER+ breast cancer in tumor-bearing 129 mice in vivo and improved the efficacy of tamoxifen. Our study revealed that the citrus PMFs have potential applications as pharmaceutical and healthcare products in breast cancer treatment by targeting ERα protein degradation.

4.
Front Bioeng Biotechnol ; 12: 1390708, 2024.
Article in English | MEDLINE | ID: mdl-38952670

ABSTRACT

Introduction: Triple negative breast cancer (TNBC), a highly aggressive subtype accounting for 15-20% of all breast cancer cases, faces limited treatment options often accompanied by severe side effects. In recent years, natural extracellular nanovesicles derived from plants have emerged as promising candidates for cancer therapy, given their safety profile marked by non-immunogenicity and absence of inflammatory responses. Nevertheless, the potential anti-cancer effects of Citrus limon L.-derived extracellular nanovesicles (CLENs) for breast cancer treatment is still unexplored. Methods: In this study, we investigated the anti-cancer effects of CLENs on two TNBC cell lines (4T1 and HCC-1806 cells) under growth conditions in 2D and 3D culture environments. The cellular uptake efficiency of CLENs and their internalization mechanism were evaluated in both cells using confocal microscopy. Thereafter, we assessed the effect of different concentrations of CLENs on cell viability over time using a dual approach of Calcein-AM PI live-dead assay and CellTiter-Glo bioluminescence assay. We also examined the influence of CLENs on the migratory and evasion abilities of TNBC cells through wound healing and 3D Matrigel drop evasion assays. Furthermore, Western blot analysis was employed to investigate the effects of CLENs on the phosphorylation levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal- regulated kinase (ERK) expression. Results: We found that CLENs were internalized by the cells via endocytosis, leading to decreased cell viability, in a dose- and time-dependent manner. Additionally, the migration and evasion abilities of TNBC cells were significantly inhibited under exposed to 40 and 80 µg/mL CLENs. Furthermore, down-regulated expression levels of phosphorylated phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK), suggesting that the inhibition of cancer cell proliferation, migration, and evasion is driven by the inhibition of the PI3K/AKT and MAPK/ERK signaling pathways. Discussion: Overall, our results demonstrate the anti-tumor efficiency of CLENs against TNBC cells, highlighting their potential as promising natural anti-cancer agents for clinical applications in cancer treatment.

5.
Front Plant Sci ; 15: 1415006, 2024.
Article in English | MEDLINE | ID: mdl-39036354

ABSTRACT

This study addresses the challenges of low detection precision and limited generalization across various ripeness levels and varieties for large non-green-ripe citrus fruits in complex scenarios. We present a high-precision and lightweight model, YOLOC-tiny, built upon YOLOv7, which utilizes EfficientNet-B0 as the feature extraction backbone network. To augment sensing capabilities and improve detection accuracy, we embed a spatial and channel composite attention mechanism, the convolutional block attention module (CBAM), into the head's efficient aggregation network. Additionally, we introduce an adaptive and complete intersection over union regression loss function, designed by integrating the phenotypic features of large non-green-ripe citrus, to mitigate the impact of data noise and efficiently calculate detection loss. Finally, a layer-based adaptive magnitude pruning strategy is employed to further eliminate redundant connections and parameters in the model. Targeting three types of citrus widely planted in Sichuan Province-navel orange, Ehime Jelly orange, and Harumi tangerine-YOLOC-tiny achieves an impressive mean average precision (mAP) of 83.0%, surpassing most other state-of-the-art (SOTA) detectors in the same class. Compared with YOLOv7 and YOLOv8x, its mAP improved by 1.7% and 1.9%, respectively, with a parameter count of only 4.2M. In picking robot deployment applications, YOLOC-tiny attains an accuracy of 92.8% at a rate of 59 frames per second. This study provides a theoretical foundation and technical reference for upgrading and optimizing low-computing-power ground-based robots, such as those used for fruit picking and orchard inspection.

6.
Front Plant Sci ; 15: 1430204, 2024.
Article in English | MEDLINE | ID: mdl-38984161

ABSTRACT

Volatile compounds are important determinants affecting fruit flavor. Previous study has identified a bud mutant of 'Ehime 38' (Citrus reticulata) with different volatile profile. However, the volatile changes between WT and MT during fruit development and underlying mechanism remain elusive. In this study, a total of 35 volatile compounds were identified in the pulps of WT and MT at five developmental stages. Both varieties accumulated similar and the highest levels of volatiles at stage S1, and showed a downward trend as the fruit develops. However, the total volatile contents in the pulps of MT were 1.4-2.5 folds higher than those in WT at stages S2-S5, which was mainly due to the increase in the content of d-limonene. Transcriptomic and RT-qPCR analysis revealed that most genes in MEP pathway were positively correlated with the volatile contents, of which DXS1 might mainly contribute to the elevated volatiles accumulation in MT by increasing the flux into the MEP pathway. Moreover, temporal expression analysis indicated that these MEP pathway genes functioned at different developmental stages. This study provided comprehensive volatile metabolomics and transcriptomics characterizations of a citrus mutant during fruit development, which is valuable for fruit flavor improvement in citrus.

7.
Plant J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976445

ABSTRACT

Plants synthesize an array of volatile compounds, many of which serve ecological roles in attracting pollinators, deterring herbivores, and communicating with their surroundings. Methyl anthranilate (MeAA) is an anti-herbivory defensive volatile responsible for grape aroma that is emitted by several agriculturally relevant plants, including citrus, grapes, and maize. Unlike maize, which uses a one-step anthranilate methyltransferase (AAMT), grapes have been thought to use a two-step pathway for MeAA biosynthesis. By mining available transcriptomics data, we identified two AAMTs in Vitis vinifera (wine grape), as well as one ortholog in "Concord" grape. Many angiosperms methylate the plant hormone salicylic acid (SA) to produce methyl salicylate, which acts as a plant-to-plant communication molecule. Because the Citrus sinensis (sweet orange) SA methyltransferase can methylate both anthranilate (AA) and SA, we used this enzyme to examine the molecular basis of AA activity by introducing rational mutations, which identified several active site residues that increase activity with AA. Reversing this approach, we introduced mutations that imparted activity with SA in the maize AAMT, which uncovered different active site residues from those in the citrus enzyme. Sequence and phylogenetic analysis revealed that one of the Vitis AAMTs shares an ancestor with jasmonic acid methyltransferases, similar to the AAMT from strawberry (Frageria sp.). Collectively, these data demonstrate the molecular mechanisms underpinning AA activity across methyltransferases and identify one-step enzymes by which grapes synthesize MeAA.

8.
Environ Monit Assess ; 196(8): 710, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976119

ABSTRACT

Industrial dye degradation involves several processes by which dyes are broken down, ideally into innocuous products. Methylene blue (MB) is one of the most commonly employed dyes in the textile industry and is released into water in routine industry processes. These discharges lead to creating a nocuous nature for humans and animals. Drugs are also discharged into water bodies from various pharmaceutical industries. In these two contexts, in the present work, the green synthesis of calcium-doped zinc oxide nanoparticles (Ca-doped ZnO NPs) is achieved using the aqueous peel extract of Citrus limetta by the solution combustion technique. The structural, morphological, and optical properties of the synthesized Ca-doped ZnO NPs are investigated using XRD, FTIR, SEM, EDX, and UV-visible spectroscopy. The prepared NPs were subjected to photocatalytic degradation of MB dye under visible-light illumination, which shows ~ 95% dye degradation. The synthesized Ca-doped ZnO NPs were also employed to adsorb tinidazole (TDZ), a nitroimidazole antibiotic, from water samples. An excellent adsorptive capacity of the NPs was observed for selectively adsorbing the TDZ ~ 96.2%. The drug TDZ was found to have pseudo-second-order kinetics. The catalyst recycling proved its repeatability; removal of the dye reached up to 92% after three successive usages. Therefore, using waste Citrus limetta peel extract, the multifunctional Ca-doped ZnO NPs were synthesized, which maintained effective adsorption potential and photocatalytic abilities and could be used as an effective material for environmental remediation.


Subject(s)
Methylene Blue , Tinidazole , Water Pollutants, Chemical , Zinc Oxide , Zinc Oxide/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Methylene Blue/chemistry , Tinidazole/chemistry , Adsorption , Coloring Agents/chemistry , Calcium/chemistry , Calcium/analysis , Waste Disposal, Fluid/methods , Citrus/chemistry , Metal Nanoparticles/chemistry , Nanoparticles/chemistry
9.
Plant Physiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991562

ABSTRACT

Pummelo (Citrus grandis L. Osbeck) exhibits S-RNase-based self-incompatibility (SI), during which S-RNase cytotoxicity inhibits pollen tubes in an S-haplotype specific manner. The entry of S-RNase into self-pollen tubes triggers a series of reactions. However, these reactions are still poorly understood in pummelo. In the present study, we used S-RNases as baits to screen a pummelo pollen cDNA library and characterized a myo-inositol oxygenase (CgMIOX3) that physically interacts with S-RNases. CgMIOX3 is highly expressed in pummelo pollen tubes and its down-regulation leads to a reduction in pollen tube growth. Upon entering pollen tubes, S-RNases increase the expression of CgMIOX3 and enhance its activity by directly binding to it in an S-haplotype-independent manner. CgMIOX3 improves pollen tube growth under oxidative stress through ascorbic acid accumulation and increases the length of self-pollen tubes. Furthermore, over-expression of CgMIOX3 increases the relative length of self-pollen tubes growing in the style of petunia (Petunia hybrida). This study provides intriguing insights into the pumelo SI system, revealing a regulatory mechanism mediated by CgMIOX3 that plays an important role in the resistance of pollen tubes to S-RNase cytotoxicity.

10.
Article in English | MEDLINE | ID: mdl-38992302

ABSTRACT

The world is dealing with unprecedented environmental challenges, leading to a growing urgency to limit environmental damage. So, this study focuses on the synthesis of pure CuO, Zn, Ce, and Zn/Ce dual-doped CuO nanoparticles (NPs) using extract of Citrus limon leaves as reductant via simple co-precipitation method. The X-ray diffraction (XRD) characterization was employed to analyze structural characteristics of synthesized samples which confirm influence of Zn or Ce doping on crystallite size, dislocation density, and strain. The role of functional groups, changes in force constant, and bond length on addition of dopants was indicated by FTIR results. The SEM and TEM results showed variation in morphology from irregular to spherical. The zeta-potential and BET analysis confirmed surface potential as well as surface area characteristics. The change in energy gap values from 1.81 to 1.45 eV of Zn/Ce-doped CuO NPs computed from UV-vis analysis elevated its photocatalytic performance and reduced the chances of recombination of electron-hole pair due to presence of trapping levels between valence and conduction bands. The enhanced photo-degradation of Congo red (CR) and rhodamine B (RhB) with 91 and 94%, respectively, for Zn/Ce-doped CuO NPs was observed. The so-obtained samples have also exhibited good antibacterial and antioxidant activities.

11.
Food Chem ; 459: 140356, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981384

ABSTRACT

Puffiness, a physiological disorder commonly observed during the ripening and post-harvest processes of fruits in Citrus reticulata, significantly affects the quality and shelf-life of citrus fruits. The complex array of factors contributing to puffiness has obscured the current understanding of its mechanistic basis. This study examined the puffing index (PI) of 12 citrus varieties at full ripeness, focusing on the albedo layer as a crucial tissue, and investigated the correlation between cellular structural characteristics, key primary metabolites and PI. The findings revealed that the cell gap difference and the number of lipid droplets were closely linked to PI. Chlorogenic acid, Ferulic acid, D-Galacturonic acid, D-Glucuronic acid, (9Z,11E)-Octadecadienoic acid, and 9(10)-EpOME were identified as pivotal primary metabolites for rind puffing. Determination of lignin, protopectin, cellulose and lipoxygenase content further validated the relationship between cell wall, lipid metabolism and rind puffing. This study furnishes novel insights into the mechanisms underlying puffing disorder.

12.
Plant Physiol Biochem ; 214: 108920, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38996714

ABSTRACT

Cadmium (Cd) pollution significantly reduces agricultural crop yields. In our research, metabolomic changes in Citrus maxima L. subjected to Cd stress were investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) in tandem with multivariate analytical techniques. This integrative method, coupled with physiological evaluations, aimed to elucidate the core adaptive mechanisms to Cd stress. We found that under Cd stress, C. maxima seedlings exhibited elevated levels of reactive oxygen species, malondialdehyde, and electrolyte leakage. Furthermore, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) demonstrated distinct a separation of the metabolome among the different treatment groups under Cd stress, indicating dynamic metabolic changes. Metabolic analysis suggested that genes involved are initially induced by Cd treatment, followed by the activation of the flavonoid biosynthesis pathway. This investigation provides new insights into the complex metabolic responses of C. maxima seedlings to Cd exposure.

13.
Carbohydr Polym ; 342: 122410, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048202

ABSTRACT

To facilitate the application of rhamnogalacturonan-I (RG-I)-enriched pectins (RGPs) as novel, healthy, and gelling food additives, this study compared the structural characteristics and gelling properties of RGPs extracted from citrus peel via four methods (alkali: AK, high-temperature/pressure: TP, citric acid: CA, and enzyme-assisted: EA extractions). AK and CA yielded pectins with the highest RG-I proportions (54.8 % and 51.9 %, respectively) by disrupting the homogalacturonan region; TP and EA increased the RG-I proportions by ~10 %. Among the four methods, AK induced the lowest degree of esterification (DE) (6.7 %) and longer side chains that form strong entanglement, contributing to its highest gel hardness. The relatively low DE (18.5 %) of CA RGP facilitated stable gel formation. Notably, its highly branched RG-I region afforded more intramolecular hydrophobic interactions, making a more highly cross-linked gel network of better gel resilience. In contrast, TP induced the highest DE (57 %) and curved molecular chains; it inhibited Ca2+ binding, entanglement, and intramolecular hydrophobic interactions, and thus no gel formed. EA RGP was associated with the lowest molecular size, rendering it more difficult for Ca2+ to form links, which resulted no gel. These findings offer insights into the relationship among the extraction methods, molecular structures, and gelling properties of RGPs.


Subject(s)
Citrus , Gels , Pectins , Pectins/chemistry , Pectins/isolation & purification , Citrus/chemistry , Gels/chemistry , Esterification , Hydrophobic and Hydrophilic Interactions , Citric Acid/chemistry , Rheology , Fruit/chemistry
14.
Heliyon ; 10(13): e33496, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39050443

ABSTRACT

Alzheimer's disease (AD) is the most known neurodegenerative disease, and its prevalence is predicted to increase significantly. Discovering novel drugs and treatments for AD is urgently needed. Drugs from natural products have been preferred lately due to their high potential and low toxicity. Citrus hystrix DC. (kaffir lime; KL) is one such herbal plant that is found abundantly in Southeast Asia with many biological activities. In this study, the potential of bioactive compounds from KL peel, leaf, and essential oil as anti-AD agents was explored using network pharmacology. First, the compounds were identified with KNApSAcK database and related literature. Subsequently, the targets of each corresponding compound were determined with SEA Search Server and Swiss Target Prediction, while the proteins associated with AD were identified using OMIM, GenCLiP3, and DisGeNET. Furthermore, a protein-protein interaction network and a compound-target interaction network were constructed to identify the most crucial proteins and compounds in the network by employing Cytoscape v3.9.1. The study continued with pathway enrichment analysis using STRING v1.7.1, molecular docking with PyRx and SwissDock, and molecular dynamics simulation with YASARA for further confirmation. Our results showed that almost all the secondary metabolites of KL targeted AD-associated genes, with oxypeucedanin and citrusoside A showing the highest anti-AD potential and targeting essential genes, EGFR and MAPK14, respectively. These targets were associated with inflammatory and oxidative stress pathways, indicating the potential mechanism of KL in attenuating AD clinical manifestation.

15.
Microbiol Res ; 287: 127833, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39032265

ABSTRACT

In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P. tracheiphilus, also affecting the mycelial pigmentation. The application of bacterial suspensions by leaf-spraying before the inoculation with the pathogen on plants of the highly susceptible species sour orange and lemon led to an overall reduction in incidence and disease index, above all during the early disease stage. PVCT 3C genome was subjected to whole-genome shotgun sequencing to study the molecular mechanisms of action of this strain. In silico annotation of biosynthetic gene clusters for secondary metabolites revealed the presence of numerous clusters encoding antimicrobial compounds (e.g. cyclic lipopeptides, hydrogen cyanide, siderophores) and candidate novel products. During the asymptomatic disease phase (seven days post-inoculation), bacterial treatments interfered with the expression of different fungal genes, as assessed with an NGS and de novo assembly RNA-seq approach. These results suggest that P. mediterranea PVCT 3C or its secondary metabolites may offer a potential effective and sustainable alternative to contain P. tracheiphilus infections via integrated management.

16.
Explore (NY) ; 20(6): 103028, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39033585

ABSTRACT

The aim of this study was to assess the effectiveness of neroli-flavored chewing gum in reducing anxiety. A single-blind, two-group study was conducted on 72 university students. Participants were randomly assigned to either the commercial neroli-flavored chewing gum (CNC) group or the natural hydro-distilled neroli-flavored chewing gum (NNC) group. The research instrument used was Spielberger's State-Anxiety questionnaire. While there was no significant difference in anxiety scores between the CNC and NNC groups before the intervention, a significant difference was observed in anxiety scores 20 min after the intervention. Within-group comparisons indicated statistically significant differences between pre-test and post-test values of anxiety in the NNC group. The results of this study suggest that natural hydro-distilled neroli-flavored chewing gum can reduce anxiety in university students.

17.
Fish Physiol Biochem ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031275

ABSTRACT

The potential of bitter orange peel powder (BOPP) as a nutritional strategy for fish was investigated in Nile tilapia. A total of 120 juveniles with an average initial weight of 9.8 ± 0.7 g were divided into four groups, replicated three times, resulting in 12 experimental units (60 L each) at a stocking density of 1.63 g of fish per liter. Productive parameters, whole-body composition, blood biochemistry, erythroid morphometry, intestinal histology, and heat tolerance were assessed in the juveniles subjected to one of the following treatments: non-supplemented basal diet (control group); basal diet with BOPP at 10 g/kg (BOPP10 group); basal diet with BOPP at 20 g/kg (BOPP20 group); and basal diet with BOPP at 40 g/kg (BOPP40 group). The BOPP additive had a positive influence on Nile tilapia growth, as final weight and weight gain were greater in all BOPP-treated fish, despite the reduction in crude protein in BOPP10 and BOPP20 groups. Fish receiving BOPP40 had an increase in total lipids and showed the highest levels of triglycerides and total cholesterol. Villi development was greater in the tilapia given BOPP10. It may be concluded that BOPP presented the most promising results for Nile tilapia juveniles when used at 10 g/kg diet. Regarding the erythroid morphometry, there was a general increase in nuclear and cytoplasmic areas in BOPP-fed tilapia; this seems to be the first report on the direct impact of the inclusion of functional additives in fish diet upon such parameters. As concerns the thermal tolerance evaluated at the end of the feeding trial, no differences were registered among the experimental groups. Thus, BOPP represents a feasible alternative ingredient to be explored in fish nutrition, since orange peel is a natural low-cost source of essential nutrients and valuable bioactive compounds.

19.
Int J Biol Macromol ; 276(Pt 1): 133840, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004250

ABSTRACT

We previously found that modified citrus pectin (MCP), an inhibitor of pro-inflammatory factor Galectin-3 (Gal-3), has significant anti-inflammatory and chondroprotective effects. In this study, a hyaluronate (HA) gel-based sustained release system of MCP (MCP-HA) was developed as an anti-inflammatory agent for chronic inflammation for osteoarthritis (OA) treatment. The MCP-HA gel was injected into the knee joint cavities of OA rabbit models induced by anterior cruciate ligament transection (ACLT) or modified Hulth method once a week for five weeks. We found that MCP-HA could improve the symptoms and signs of OA, protect articular cartilage from degeneration, suppress synovial inflammation, and therefore alleviate OA progression. Proteomic analysis of the synovial fluid obtained from the knee joints of OA rabbits revealed that MCP-HA synergistically regulated the levels of multiple inflammatory mediators and proteins involved in metabolic pathways. Taken together, our results demonstrate that the MCP-HA shows a synergistic effect of HA and MCP by modulating both inflammation and metabolic processes, thereby alleviating OA progression. The MCP-HA sustained release system has promising potential for long-term use in OA treatment.

20.
Food Sci Nutr ; 12(7): 5036-5051, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055192

ABSTRACT

Xinhui Chenpi (XHCP) is a well-known type of Chenpi (CP) widely used as both a Chinese herb and a food ingredient. While previous studies have explored how the quality of CP changes over time, there has been limited research specifically on XHCP. This study aims to assess the chemical components and quality of XHCP based on total flavonoid content (TF), antioxidant activity (AA), and color value (CV) at two stages: freshly harvested (XHCP-0Y) and after 3 years of storage (XHCP-3Y). Thirty-eight common volatile compounds were identified, and the content of 17 compounds among them, nine nonvolatile compounds, which included one alkaloid (synephrine), three phenolic acids (PA, protocatechuic acid, vanillic acid, and ferulic acid), and five flavonoids (narirutin, hesperidin, sinensetin, nobiletin, and tangeretin), were firstly detected by the newly developed gas chromatograph-mass spectrometer (GC-MS) and ultra-performance liquid chromatography (UPLC) methods. Compared to XHCP-0Y, the content of 17 volatile compounds and synephrine decreased in XHCP-3Y to varying degrees, while the content of PA, five flavonoids, TF, AA, and CV increased. The reduction of dryness caused by volatile compounds and the enhancement of efficacy related to PA, flavonoids, and AA suggested improved quality of XHCP after 3 years of storage. The methods developed in this study show promise for evaluating the quality of XHCP during the aging process.

SELECTION OF CITATIONS
SEARCH DETAIL
...