Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 325
Filter
1.
Plant J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976445

ABSTRACT

Plants synthesize an array of volatile compounds, many of which serve ecological roles in attracting pollinators, deterring herbivores, and communicating with their surroundings. Methyl anthranilate (MeAA) is an anti-herbivory defensive volatile responsible for grape aroma that is emitted by several agriculturally relevant plants, including citrus, grapes, and maize. Unlike maize, which uses a one-step anthranilate methyltransferase (AAMT), grapes have been thought to use a two-step pathway for MeAA biosynthesis. By mining available transcriptomics data, we identified two AAMTs in Vitis vinifera (wine grape), as well as one ortholog in "Concord" grape. Many angiosperms methylate the plant hormone salicylic acid (SA) to produce methyl salicylate, which acts as a plant-to-plant communication molecule. Because the Citrus sinensis (sweet orange) SA methyltransferase can methylate both anthranilate (AA) and SA, we used this enzyme to examine the molecular basis of AA activity by introducing rational mutations, which identified several active site residues that increase activity with AA. Reversing this approach, we introduced mutations that imparted activity with SA in the maize AAMT, which uncovered different active site residues from those in the citrus enzyme. Sequence and phylogenetic analysis revealed that one of the Vitis AAMTs shares an ancestor with jasmonic acid methyltransferases, similar to the AAMT from strawberry (Frageria sp.). Collectively, these data demonstrate the molecular mechanisms underpinning AA activity across methyltransferases and identify one-step enzymes by which grapes synthesize MeAA.

2.
Biochem Biophys Res Commun ; 725: 150253, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38880080

ABSTRACT

Type1 Non-specific Lipid Transfer Protein (CsLTP1) from Citrus sinensis is a small cationic protein possessing a long tunnel-like hydrophobic cavity. CsLTP1 performing membrane trafficking of lipids is a promising candidate for developing a potent drug delivery system. The present work includes in-silico studies and the evaluation of drugs binding to CsLTP1 using biophysical techniques along with the investigation of CsLTP1's ability to enhance the efficacy of drugs employing cell-based bioassays. The in-silico investigations identified Panobinostat, Vorinostat, Cetylpyridinium Chloride, and Fulvestrant with higher affinities and stability of binding to the hydrophobic pocket of CsLTP1. SPR studies revealed strong binding affinities of anticancer drugs, Panobinostat (KD = 1.40 µM) and Vorinostat (KD = 2.17 µM) to CsLTP1 along with the binding and release kinetics. CD and fluorescent spectroscopy revealed drug-induced conformational changes in CsLTP1. CsLTP1-associated drug forms showed remarkably enhanced efficacy in MCF-7 cells, representing increased cell cytotoxicity, intracellular ROS, reduced mitochondrial membrane potential, and up-regulation of proapoptotic markers than the free drugs employing qRT-PCR and western blot analysis. The findings demonstrate that CsLTP1 binds strongly to hydrophobic drugs to facilitate their transport, hence improving their therapeutic efficacy revealed by the in-vitro investigations. This study establishes an excellent foundation for developing CsLTP1-based efficient drug delivery system.


Subject(s)
Antineoplastic Agents , Carrier Proteins , Citrus sinensis , Humans , Carrier Proteins/metabolism , Carrier Proteins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , MCF-7 Cells , Citrus sinensis/chemistry , Drug Delivery Systems/methods , Molecular Docking Simulation , Apoptosis/drug effects , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Proteins/pharmacology , Protein Binding
3.
Microbiol Spectr ; 12(7): e0351323, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38785434

ABSTRACT

Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide. Virus infections in this crop can interfere with cellular processes, causing dramatic economic losses. By performing RT-qPCR analyses, we demonstrated that citrus psorosis virus (CPsV)-infected orange plants exhibited higher levels of unprocessed microRNA (miRNA) precursors than healthy plants. This result correlated with the reported reduction of mature miRNAs species. The protein 24K, the CPsV suppressor of RNA silencing (VSR), interacts with miRNA precursors in vivo. Thus, this protein becomes a candidate responsible for the increased accumulation of unprocessed miRNAs. We analyzed 24K RNA-binding and protein-protein interaction domains and described patterns of its subcellular localization. We also showed that 24K colocalizes within nuclear D-bodies with the miRNA biogenesis proteins DICER-LIKE 1 (DCL1), HYPONASTIC LEAVES 1 (HYL1), and SERRATE (SE). According to the results of bimolecular fluorescence complementation and co-immunoprecipitation assays, the 24K protein interacts with HYL1 and SE. Thus, 24K may inhibit miRNA processing in CPsV-infected citrus plants by direct interaction with the miRNA processing complex. This work contributes to the understanding of how a virus can alter the regulatory mechanisms of the host, particularly miRNA biogenesis and function.IMPORTANCESweet oranges can suffer from disease symptoms induced by virus infections, thus resulting in drastic economic losses. In sweet orange plants, CPsV alters the accumulation of some precursors from the regulatory molecules called miRNAs. This alteration leads to a decreased level of mature miRNA species. This misregulation may be due to a direct association of one of the viral proteins (24K) with miRNA precursors. On the other hand, 24K may act with components of the cell miRNA processing machinery through a series of predicted RNA-binding and protein-protein interaction domains.


Subject(s)
Citrus sinensis , MicroRNAs , Plant Diseases , Viral Proteins , MicroRNAs/metabolism , MicroRNAs/genetics , Plant Diseases/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Citrus sinensis/virology , Citrus sinensis/metabolism , Plant Viruses/genetics , Plant Viruses/metabolism , Plant Viruses/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA Processing, Post-Transcriptional , Citrus/virology , Citrus/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics
4.
Mol Plant Microbe Interact ; 37(5): 459-466, 2024 May.
Article in English | MEDLINE | ID: mdl-38597923

ABSTRACT

Citrus Huanglongbing (HLB), which is caused by 'Candidatus Liberibacter asiaticus' (CLas), is one of the most destructive citrus diseases worldwide, and defense-related Citrus sinensis gene resources remain largely unexplored. Calcium signaling plays an important role in diverse biological processes. In plants, a few calcium-dependent protein kinases (CDPKs/CPKs) have been shown to contribute to defense against pathogenic microbes. The genome of C. sinensis encodes dozens of CPKs. In this study, the role of C. sinensis calcium-dependent protein kinases (CsCPKs) in C. sinensis defense was investigated. Silencing of CsCPK6 compromised the induction of defense-related genes in C. sinensis. Expression of a constitutively active form of CsCPK6 (CsCPK6CA) triggered the activation of defense-related genes in C. sinensis. Complementation of CsCPK6 rescued the defense-related gene induction in an Arabidopsis thaliana cpk4/11 mutant, indicating that CsCPK6 carries CPK activity and is capable of functioning as a CPK in Arabidopsis. Moreover, an effector derived from CLas inhibits defense induced by the expression of CsCPK6CA and autophosphorylation of CsCPK6, which suggests the involvement of CsCPK6 and calcium signaling in defense. These results support a positive role for CsCPK6 in C. sinensis defense against CLas, and the autoinhibitory regulation of CsCPK6 provides a potential genome-editing target for improving C. sinensis defense. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Citrus sinensis , Gene Expression Regulation, Plant , Plant Diseases , Plant Proteins , Protein Kinases , Citrus sinensis/genetics , Citrus sinensis/microbiology , Plant Diseases/microbiology , Plant Diseases/immunology , Protein Kinases/metabolism , Protein Kinases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Disease Resistance/genetics , Liberibacter/genetics , Liberibacter/physiology
5.
Front Plant Sci ; 15: 1369883, 2024.
Article in English | MEDLINE | ID: mdl-38601304

ABSTRACT

Introduction: Heavy metal-associated isoprenylated plant proteins (HIPPs) play vital roles in maintaining heavy metal balance and responding to both biotic and abiotic stresses in vascular plants. However, the role of HIPPs in the response to Huanglongbing (HLB), a harmful disease of citrus caused by the phloem-colonizing bacterium Candidatus Liberibacter asiaticus (CLas), has not been examined. Methods and results: In this study, a total of 26 HIPP genes were identified in Citrus sinensis, and they were grouped into 5 clades. The CsHIPP genes are distributed on 8 chromosomes and exhibited considerable synteny with HIPPs found in Arabidopsis thaliana. Additionally, we analyzed the gene structure, conserved motifs and domains of the CsHIPPs. Various cis-acting elements related to plant hormones and stress responses were identified in the promoters of CsHIPPs. Public transcriptome data and RT-qPCR analysis showed that the expression level of CsHIPP03 was significantly reduced in samples infected by CLas and Xanthomonas citri ssp. citri (Xcc). Furthermore, silencing the homologous gene of CsHIPP03 in Nicotiana benthamiana increased the disease resistance of plants to bacteria. Discussion: Our results provide a basis for functional studies of HIPP gene family in C. sinensis, highlighting their functions in bacterial resistance, and improve our understanding to the susceptibility mechanism of HLB.

6.
Pest Manag Sci ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647195

ABSTRACT

BACKGROUND: Xylella fastidiosa is a multi-host bacterium that can be detected in hundreds of plant species including several crops. Diseases caused by X. fastidiosa are considered a threat to global food production. The primary method for managing diseases caused by X. fastidiosa involves using insecticides to control the vector. Hence, it is necessary to adopt new and sustainable disease management technologies to control not only the insect but also the bacteria and plant health. We demonstrated that N-acetylcysteine (NAC), a low-cost cysteine analogue, is a sustainable molecule that can be used in agriculture to decrease the damage caused by X. fastidiosa and improve plant health. RESULTS: Using 15N-NAC we proved that this analogue was absorbed by the roots and transported to different parts of the plant. Inside the plant, NAC reduced the bacterial population by 60-fold and the number of xylem vessels blocked by bacterial biofilms. This reflected in a recovery of 0.28-fold of the daily sap flow compared to health plants. In addition, NAC-treated citrus variegated chlorosis (CVC) plants decreased the oxidative stress by improving the activity of detoxifying enzymes. Moreover, the use of NAC in field conditions positively contributed to the increase in fruit yield of CVC-diseased plants. CONCLUSION: Our research not only advances the understanding of NAC absorption in plants, but also indicates its dual effect as an antimicrobial and antioxidant molecule. This, in turn, negatively affects bacterial survival while improving plant health by decreasing oxidative stress. Overall, the positive field-based evidence supports the viability of NAC as a sustainable agricultural application. © 2024 Society of Chemical Industry.

7.
Plant Dis ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654535

ABSTRACT

One strategy to reduce Huanglongbing (HLB) is controlling its insect vector, the Asian citrus psyllid (ACP) Diaphorina citri, by preventive insecticide sprays. The recommendation is to spray insecticide in all rows (conventional spray - CONV), but some growers empirically spray in alternate rows (ALT) to increase the spray frequency without increasing the operating cost. Therefore, this work compared the effect of ALT with CONV on the ACP population and HLB incidence. The spray deposition (amount of metallic copper per leaf area), coverage (percentage of water-sensitive paper area covered by spray), and efficacy (ACP mortality) of each treatment were also evaluated on both sides of the trees. Two field trials were performed: Trial #1 compared ALT every 7 days (ALT7) with CONV every 14 days (CONV14), and trial #2 compared different spray frequencies of ALT with CONV every 7 days (CONV7). In trial #1, no differences were observed in the ACP population or HLB progress between ALT7 and CONV14 after 5 years. In trial #2, ALT7 presented the highest percentage of ACP and cumulative HLB incidence than CONV7 and ALT every 3 to 4 days, after 2 years. Hence, when the frequency of ALT was half the frequency of CONV, similar results were observed. Spray deposition, coverage, and efficacy were similar between tree sides in CONV, but they were uneven in ALT, resulting in higher values on the tree side that directly received the spray. Insecticide spray should be performed with the frequency enough to keep new shoot protected during their growth.

8.
Front Plant Sci ; 15: 1388163, 2024.
Article in English | MEDLINE | ID: mdl-38660443

ABSTRACT

Introduction: Huanglongbing (HLB), a disease that's ubiquitous worldwide, wreaks havoc on the citrus industry. The primary culprit of HLB is the gram-negative bacterium Candidatus Liberibacter asiaticus (CLas) that infects the phloem, but its damaging mechanism is yet to be fully understood. Methods and results: In this study, a multitude of tools including weighted correlation network analysis (WGCNA), protein-protein interaction (PPI) network analysis and gene expression profiling are employed to unravel the intricacies of its pathogenesis. The investigation pinpoints various central genes, such as the ethylene-responsive transcription factor 9 (ERF9) and thioredoxin reductase 1 (TrxR1), that are associated with CLas invasion and resultant disturbances in numerous biological operations. Additionally, the study uncovers a range of responses through the detection of differential expressed genes (DEGs) across different experiments. The discovery of core DEGs leads to the identification of pivotal genes such as the sieve element occlusion (SEO) and the wall-associated receptor kinase-like 15 (WAKL15). PPI network analysis highlights potential vital proteins, while GO and KEGG pathway enrichment analysis illustrate a significant impact on multiple defensive and metabolic pathways. Gene set enrichment analysis (GSEA) indicates significant alterations in biological processes such as leaf senescence and response to biotic stimuli. Discussion: This all-encompassing approach extends valuable understanding into the pathogenesis of CLas, potentially aiding future research and therapeutic strategies for HLB.

9.
Gene ; 911: 148366, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38485035

ABSTRACT

Traditional remedies have long utilized Anthemis hyaline, Nigella sativa, and Citrus sinensis peel extracts as treatments for microbial infections. This study aimed to investigate the influence of Anthemis hyaline, Nigella sativa, and Citrus sinensis extracts on coronavirus replication and apoptosis-related pathways. HeLa-CEACAM1a cells were exposed to mouse hepatitis virus-A59. After viral inoculation, the mRNA levels of 36 genes were quantified using a Fluidigm Dynamic Array nanofluidic chip. IL-8 level and intracellular Ca2+ concentration was measured, and viral titer was assessed by the TCID50/ml assay to detect the extent of infection. Treatment with Nigella sativa extract surged the inflammatory cytokine IL-8 level at both 24 and 48-hour. Changes in gene expression were notable for RHOA, VAV3, ROCK2, CFL1, RASA1, and MPRIP genes following treatment with any of the extracts. The addition of Anthemis hyaline, Nigella sativa, or Citrus sinensis extracts to coronavirus-infected cells reduced viral presence, with Anthemis hyaline extract leading to a virtually undetectable viral load at 6- and 8-hours after infection. While all treatments influenced IL-8 production and viral levels, Anthemis hyaline extract displayed the most pronounced reduction in viral load. Consequently, Anthemis hyaline extract emerges as the most promising agent, harboring potential therapeutic compounds.


Subject(s)
Anthemis , COVID-19 , Citrus sinensis , Nigella sativa , Mice , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Interleukin-8 , Hyalin , MAP Kinase Signaling System
10.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38539803

ABSTRACT

Citrus is mainly cultivated in acid soil with low boron (B) and high copper (Cu). In this study, Citrus sinensis seedlings were submitted to 0.5 (control) or 350 µM Cu (Cu excess or Cu exposure) and 2.5, 10, or 25 µM B for 24 weeks. Thereafter, H2O2 production rate (HPR), superoxide production rate (SAPR), malondialdehyde, methylglyoxal, and reactive oxygen species (ROS) and methylglyoxal detoxification systems were measured in leaves and roots in order to test the hypothesis that B addition mitigated Cu excess-induced oxidative damage in leaves and roots by reducing the Cu excess-induced formation and accumulation of ROS and MG and by counteracting the impairments of Cu excess on ROS and methylglyoxal detoxification systems. Cu and B treatments displayed an interactive influence on ROS and methylglyoxal formation and their detoxification systems. Cu excess increased the HPR, SAPR, methylglyoxal level, and malondialdehyde level by 10.9% (54.3%), 38.9% (31.4%), 50.3% (24.9%), and 312.4% (585.4%), respectively, in leaves (roots) of 2.5 µM B-treated seedlings, while it only increased the malondialdehyde level by 48.5% (97.8%) in leaves (roots) of 25 µM B-treated seedlings. Additionally, B addition counteracted the impairments of Cu excess on antioxidant enzymes, ascorbate-glutathione cycle, sulfur metabolism-related enzymes, sulfur-containing compounds, and methylglyoxal detoxification system, thereby protecting the leaves and roots of Cu-exposed seedlings against oxidative damage via the coordinated actions of ROS and methylglyoxal removal systems. Our findings corroborated the hypothesis that B addition alleviated Cu excess-induced oxidative damage in leaves and roots by decreasing the Cu excess-induced formation and accumulation of ROS and MG and by lessening the impairments of Cu excess on their detoxification systems. Further analysis indicated that the pathways involved in the B-induced amelioration of oxidative stress caused by Cu excess differed between leaves and roots.

11.
Exp Appl Acarol ; 92(4): 759-775, 2024 May.
Article in English | MEDLINE | ID: mdl-38512422

ABSTRACT

Citrus leprosis is the most important viral disease affecting citrus. The disease is caused predominantly by CiLV-C and is transmitted by Brevipalpus yothersi Baker mites. This study brings some insight into the colonization of B. yothersi in citrus [(Citrus × sinensis (L.) Osbeck (Rutaceae)] previously infested by viruliferous or non-viruliferous B. yothersi. It also assesses the putative role of shelters on the behavior of B. yothersi. Expression of PR1 and PR4 genes, markers of plant defense mechanisms, were evaluated by RT-qPCR to correlate the role of the plant hormonal changes during the tri-trophic virus-mite-plant interplay. A previous infestation with either non-viruliferous and viruliferous mites positively influenced oviposition and the number of adult individuals in the resulting populations. Mite populations were higher on branches that had received a previous mite infestation than branches that did not. There was an increase in the expression of PR4, a marker gene in the jasmonic acid (JA) pathway, in the treatment with non-viruliferous mites, indicating a response from the plant to their feeding. Conversely, an induced expression of PR1, a marker gene in the salicylic acid (SA) pathway, was observed mainly in the treatment with viruliferous mites, which suggests the activation of a plant response against the pathogen. The earlier mite infestation, as well as the presence of leprosis lesions and a gypsum mixture as artificial shelters, all fostered the growth of the B. yothersi populations after the second infestation, regardless of the presence or absence of CiLV-C. Furthermore, it is suggested that B. yothersi feeding actually induces the JA pathway in plants. At the same time, the CiLV-C represses the JA pathway and induces the SA pathway, which benefits the mite vector.


Subject(s)
Citrus sinensis , Mites , Animals , Mites/physiology , Plant Diseases/parasitology , Female , Mite Infestations/veterinary , Mite Infestations/parasitology , Oviposition
12.
Int J Biol Macromol ; 265(Pt 1): 130811, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38490399

ABSTRACT

Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.


Subject(s)
Anti-Infective Agents , Citrus sinensis , Citrus , Citrus sinensis/metabolism , Carrier Proteins/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism , Citrus/metabolism
13.
J Proteome Res ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373055

ABSTRACT

Huanglongbing (HLB) is a fatal citrus disease that is currently threatening citrus varieties worldwide. One putative causative agent, Candidatus Liberibacter asiaticus (CLas), is vectored by Diaphorina citri, known as the Asian citrus psyllid (ACP). Understanding the details of CLas infection in HLB disease has been hindered by its Candidatus nature and the inability to confidently detect it in diseased trees during the asymptomatic stage. To identify early changes in citrus metabolism in response to inoculation of CLas using its natural psyllid vector, leaves from Madam Vinous sweet orange (Citrus sinensis (L.) Osbeck) trees were exposed to CLas-positive ACP or CLas-negative ACP and longitudinally analyzed using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry; data available in Dryad: 10.25338/B83H1Z), and metabolomics (proton nuclear magnetic resonance). At 4 weeks postexposure (wpe) to psyllids, the initial HLB plant response was primarily to the ACP and, to a lesser extent, the presence or absence of CLas. Additionally, analysis of 4, 8, 12, and 16 wpe identified 17 genes and one protein as consistently differentially expressed between leaves exposed to CLas-positive ACP versus CLas-negative ACP. This study informs identification of early detection molecular targets and contributes to a broader understanding of vector-transmitted plant pathogen interactions.

14.
Heliyon ; 10(3): e25232, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352786

ABSTRACT

Introduction: Citrus sinensis L. is a candidate plant with promising antimicrobial potential. In the current study, the phytochemical investigation of C. sinensis leaf extract led to the isolation of three coumarins, namely bergapten, xanthotoxin, and citropten. Methods: The chemical structures of the isolated coumarins were elucidated using NMR and ESI-MS techniques. The total aqueous ethanol leaf extract and the isolated coumarins were evaluated for their antimicrobial effects against Helicobacter pylori using the MTT-micro-well dilution method and its anti-biofilm activity using MBEC assay, as compared to clarithromycin. Results: The results showed that citropten scored the lowest MIC value at 3.9 µg/mL and completely inhibited the planktonic growth of H. pylori. In addition, it completely suppressed H. pylori biofilm at 31.25 µg/mL. These findings have been supported by molecular docking studies on the active sites of the H. pylori inosine 5'-monophosphate dehydrogenase (HpIMPDH) model and the urease enzyme, showing a strong binding affinity of citropten to HpIMPDH with seven hydrogen bonds and a binding energy of -6.9 kcal/mol. Xanthotoxin and bergapten showed good docking scores, both at -6.5 kcal/mol for HpIMPDH, with each having four hydrogen bondings. Furthermore, xanthotoxin showed many hydrophobic interactions, while bergapten formed one Pi-anion interaction. Concerning docking in the urease enzyme, the compounds showed mild to moderate binding affinities as compared to the ligand. Thus, based on docking results and good binding scores observed with the HpIMPDH active site, an in-vitro HpIMPDH inhibition assay was done for the compounds. Citropten showed the most promising inhibitory activity with an IC50 value of 2.4 µM. Conclusion: The present study demonstrates that C. sinensis L. leaves are a good source for supplying coumarins that can act as naturally effective anti-H. pylori agents.

15.
J Food Sci ; 89(3): 1739-1754, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38349052

ABSTRACT

The aim of this study was to evaluate the effect of Citrus sinensis essential oil (EO) on the proximate composition of yogurt over a 28-day shelf life and to investigate the therapeutic and prophylactic effects of functional yogurt on ibuprofen-induced gastric ulcers in a rat model. It was observed that the yogurt group containing C. sinensis EO had higher acidity, total solids, and ash values. Histologic evaluation of the stomachs of rats with gastric ulcers revealed that rats fed with functional yogurt had fewer lesions compared to the control group. The treatment group had fewer lesions than the positive control (p > 0.05). Lesions in the glandular mucosa of the prophylactic group were significantly lower than those in the positive control group (p < 0.05). Yogurt with C. sinensis EO may be beneficial in reducing the severity of ulcers and improving overall health.


Subject(s)
Citrus sinensis , Oils, Volatile , Stomach Ulcer , Humans , Rats , Animals , Aged , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ibuprofen/adverse effects , Yogurt , Oils, Volatile/pharmacology , Gastric Mucosa
16.
Food Chem ; 444: 138613, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38325085

ABSTRACT

'Zong Cheng' navel orange (ZC) is a brown mutant of Lane Late navel orange (LL) and emits a more pleasant odor than that of LL. However, the key volatile compound of this aroma and underlying mechanism remains unclear. In this study, sensory evaluations and volatile profiling were performed throughout fruit development to identify significant differences in sensory perception and metabolites between LL and ZC. It revealed that the sesquiterpene content varied significantly between ZC and LL. Based on aroma extract dilution and gas chromatography-olfactometry analyses, the volatile compound leading to the background aroma of LL and ZC is d-limonene, the orange note in LL was mainly attributed to octanal, whilst valencene, ß-myrcene, and (E)-ß-ocimene presented balsamic, sweet, and herb notes in ZC. Furthermore, Cs5g12900 and six potential transcription factors were identified as responsible for valencene accumulation in ZC, which is important for enhancing the aroma of ZC.


Subject(s)
Citrus sinensis , Citrus , Sesquiterpenes , Volatile Organic Compounds , Citrus sinensis/genetics , Odorants/analysis , Multiomics , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds/analysis
17.
J Hazard Mater ; 467: 133738, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38350317

ABSTRACT

Little information is available on how boron (B) supplementation affects plant cell wall (CW) remodeling under copper (Cu) excess. 'Xuegan' (Citrus sinensis) seedlings were submitted to 0.5 or 350 µM Cu × 2.5 or 25 µM B for 24 weeks. Thereafter, we determined the concentrations of CW materials (CWMs) and CW components (CWCs), the degree of pectin methylation (DPM), and the pectin methylesterase (PME) activities and PME gene expression levels in leaves and roots, as well as the Cu concentrations in leaves and roots and their CWMs (CWCs). Additionally, we analyzed the Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectra of leaf and root CWMs. Our findings suggested that adding B reduced the impairment of Cu excess to CWs by reducing the Cu concentrations in leaves and roots and their CWMs and maintaining the stability of CWs, thereby improving leaf and root growth. Cu excess increased the Cu fractions in leaf and root pectin by decreasing DPM due to increased PME activities, thereby contributing to citrus Cu tolerance. FTIR and XRD indicated that the functional groups of the CW pectin, hemicellulose, cellulose, and lignin could bind and immobilize Cu, thereby reducing Cu cytotoxicity in leaves and roots.


Subject(s)
Citrus sinensis , Boron/toxicity , Copper/toxicity , Seedlings , Cell Wall , Plant Leaves , Pectins/pharmacology
18.
BMC Genomics ; 25(1): 37, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184538

ABSTRACT

BACKGROUND: Citrus is one of the most valuable fruits worldwide and an economic pillar industry in southern China. Nevertheless, it frequently suffers from undesirable environmental stresses during the growth cycle, which severely restricts the growth, development and yield of citrus. In plants, the growth-regulating factor (GRF) family of transcription factors (TF) is extensively distributed and plays an vital part in plant growth and development, hormone response, as well as stress adaptation. However, the systematic identification and functional analysis of GRF TFs in citrus have not been reported. RESULTS: Here, a genome-wide identification of GRF TFs was performed in Citrus sinensis, 9 members of CsGRFs were systematically identified and discovered to be scattered throughout 5 chromosomes. Subsequently, physical and chemical properties, phylogenetic relationships, structural characteristics, gene duplication events, collinearity and cis-elements of promoter were elaborately analyzed. In particular, the expression patterns of the CsGRF genes in response to multiple phytohormone and abiotic stress treatments were investigated. Predicated on this result, CsGRF04, which exhibited the most differential expression pattern under multiple phytohormone and abiotic stress treatments was screened out. Virus-induced gene silencing (VIGS) technology was utilized to obtain gene silenced plants for CsGRF04 successfully. After the three stress treatments of high salinity, low temperature and drought, the CsGRF04-VIGS lines showed significantly reduced resistance to high salinity and low temperature stresses, but extremely increased resistance to drought stress. CONCLUSIONS: Taken together, our findings systematically analyzed the genomic characterization of GRF family in Citrus sinensis, and excavated a CsGRF04 with potential functions under multiple abiotic stresses. Our study lay a foundation for further study on the function of CsGRFs in abiotic stress and hormone signaling response.


Subject(s)
Citrus sinensis , Citrus , Citrus sinensis/genetics , Phylogeny , Plant Growth Regulators/pharmacology , Intercellular Signaling Peptides and Proteins , Hormones
19.
J Biomol Struct Dyn ; 42(6): 3051-3080, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37203996

ABSTRACT

Citrus sinensis (L.) Osbeck (Rutaceae), commonly known as the sweet orange, is a popular and widely consumed fruit with several medicinal properties. The present study aimed to perform the in silico screening of 18 flavonoids and eight volatile components from the peel of C. sinensis against apoptotic and inflammatory proteins, metalloprotease, and tumor suppressor markers. Flavonoids obtained higher probabilities than volatile components against selected anti-cancer drug targets. Hence, the data from the binding energies against the essential apoptotic and cell proliferation proteins substantiate that they may be promising compounds in developing effective candidates to block cell growth, proliferation, and induced cell death by activating the apoptotic pathway. Further, the binding stability of the selected targets and the corresponding molecules were analyzed by 100 ns molecular dynamics (MD) simulations. Chlorogenic acid has the most binding affinity against the important anti-cancer targets iNOS, MMP-9, and p53. The congruent binding mode to different drug targets focused on cancer shown by chlorogenic acid suggests that it may be a compound with significant therapeutic potential. Moreover, the binding energy predictions indicated that the compound had stable electrostatic and van der Waal energies. Thus, our data reinforce the medicinal importance of flavonoids from C. sinensis and expand the need for more studies, seeking to optimize results and amplify the impacts of further in vitro and in vivo studies. Communicated by Ramaswamy H. Sarma.


Subject(s)
Citrus sinensis , Flavonoids , Flavonoids/pharmacology , Flavonoids/chemistry , Citrus sinensis/chemistry , Molecular Docking Simulation , Chlorogenic Acid , Antioxidants/chemistry , Molecular Dynamics Simulation
20.
Protoplasma ; 261(3): 499-512, 2024 May.
Article in English | MEDLINE | ID: mdl-38092896

ABSTRACT

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CLas), is a devastating immune-mediated disorder that has a detrimental effect on the citrus industry, with the distinguishing feature being an eruption of reactive oxygen species (ROS). This study explored the alterations in antioxidant enzyme activity, transcriptome, and RNA editing events of organelles in C. sinensis during CLas infection. Results indicated that there were fluctuations in the performance of antioxidant enzymes, such as ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), peroxidase (POD), and superoxide dismutase (SOD), in plants affected by HLB. Transcriptome analysis revealed 3604 genes with altered expression patterns between CLas-infected and healthy samples, including those associated with photosynthesis, biotic interactions, and phytohormones. Samples infected with CLas showed a decrease in the expression of most genes associated with photosynthesis and gibberellin metabolism. It was discovered that RNA editing frequency and the expression level of various genes in the chloroplast and mitochondrion genomes were affected by CLas infection. Our findings provide insights into the inhibition of photosynthesis, gibberellin metabolism, and antioxidant enzymes during CLas infection in C. sinensis.


Subject(s)
Citrus sinensis , Citrus , Liberibacter , Rhizobiaceae , Citrus sinensis/genetics , Antioxidants/pharmacology , Gibberellins/pharmacology , Transcriptome/genetics , Gene Expression Profiling , Plant Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...