Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Chem Biol Interact ; 397: 111088, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38823534

ABSTRACT

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied. Through molecular docking, TBOEP bound to human CYP1A1, 1B1, 2B6 and 3A4 with energies and conformations favorable for catalyzing reactions, while the conformations of its binding with human CYP1A2 and 2E1 appeared unfavorable. In C3A cells (endogenous CYPs being substantial), TBOEP exposing for 72 h (2-cell cycle) at low micromolar levels induced micronucleus, which was abolished by 1-aminobenzotriazole (inhibitor of CYPs); in HepG2 cells (CYPs being insufficient) TBOEP did not induce micronucleus, whose effect was however potentiated by pretreating the cells with PCB126 (CYP1A1 inducer) or rifampicin (CYP3A4 inducer). TBOEP induced micronucleus in Chinese hamster V79-derived cell lines genetically engineered for stably expressing human CYP1A1 and 3A4, but not in cells expressing the other CYPs. In C3A cells, TBOEP selectively induced centromere protein B-free micronucleus (visualized by immunofluorescence) and PIG-A gene mutations, and elevated γ-H2AX rather than p-H3 (by Western blot) which indicated specific double-strand DNA breaks. Therefore, this study suggests that TBOEP may induce DNA/chromosome breaks and gene mutations in human cells, which requires metabolic activation by CYPs, primarily CYP1A1 and 3A4.


Subject(s)
Cytochrome P-450 Enzyme System , Flame Retardants , Molecular Docking Simulation , Animals , Humans , Flame Retardants/toxicity , Cricetinae , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Mutagens/toxicity , Organophosphorus Compounds/toxicity , Cricetulus , Organophosphates/toxicity , Hep G2 Cells , Micronucleus Tests
2.
Toxicology ; 504: 153774, 2024 May.
Article in English | MEDLINE | ID: mdl-38490321

ABSTRACT

N-nitrosonornicotine (NNN) and N-nitrosoanabasine (NAB) are both tobacco-specific nitrosamines bearing two heterocyclic amino groups, NAB bearing an extra -CH2- group (conferring a hexa- rather than penta-membered cycle) but with significantly decreased carcinogenicity. However, their activating enzymes and related mutagenicity remain unclear. In this study, the chemical-CYP interaction was analyzed by molecular docking, thus the binding energies and conformations of NNN for human CYP2A6, 2A13, 2B6, 2E1 and 3A4 appeared appropriate as a substrate, so did NAB for human CYP1B1, 2A6, 2A13 and 2E1. The micronucleus test in human hepatoma (HepG2) cells with each compound (62.5-1000 µM) exposing for 48 h (two-cell cycle) was negative, however, pretreatment with bisphenol AF (0.1-100 nM, CYPs inducer) and ethanol (0.2% v:v, CYP2E1 inducer) potentiated micronucleus formation by both compounds, while CITCO (1 µM, CYP2B6 inducer) selectively potentiated that by NNN. In C3A cells (endogenous CYPs enhanced over HepG2) both compounds induced micronucleus, which was abolished by 1-aminobenzotriazole (60 µM, CYPs inhibitor) while unaffected by 8-methoxypsoralen (1 µM, CYP2A inhibitor). Consistently, NNN and NAB induced micronucleus in V79-derived recombinant cell lines expressing human CYP2B6/2E1 and CYP1B1/2E1, respectively, while negative in those expressing other CYPs. By immunofluorescent assay both compounds selectively induced centromere-free micronucleus in C3A cells. In PIG-A assays in HepG2 cells NNN and NAB were weakly positive and simply negative, respectively; however, in C3A cells both compounds significantly induced gene mutations, NNN being slight more potent. Conclusively, both NNN and NAB are mutagenic and clastogenic, depending on metabolic activation by partially different CYP enzymes.


Subject(s)
Cytochrome P-450 Enzyme System , Micronucleus Tests , Nitrosamines , Humans , Nitrosamines/toxicity , Nitrosamines/metabolism , Hep G2 Cells , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Molecular Docking Simulation , Mutagens/toxicity , Nicotiana
3.
Environ Mol Mutagen ; 65(1-2): 67-75, 2024.
Article in English | MEDLINE | ID: mdl-38525651

ABSTRACT

Genotoxicity of styrene monomer was evaluated in male Fischer 344 rats using the alkaline comet assay for DNA damage, micronucleus assay for cytogenetic damage and the Pig-a assay for gene mutations. In a dose range finding (DRF) study, styrene was administered by oral gavage in corn oil for 28 consecutive days at 0, 100, 500, and 1000 mg/kg/day. The bioavailability of styrene was confirmed in the DRF by measuring its plasma levels at approximately 7- or 15-min following dosing. The 1000 mg/kg/day group exceeded the maximum tolerated dose based on body weight and organ weight changes and signs of central nervous system depression. Based on these findings, doses of 0, 100, 250, and 500 mg/kg/day (for 28 or 29 days) were selected for the genotoxicity assays. Animals were sacrificed 3-4 h after treatment on Day 28 or 29 for assessing various genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in peripheral blood erythrocytes. The comet assay was conducted in the glandular stomach, duodenum, liver, lung, and kidney. These studies were conducted in accordance with the relevant OECD test guidelines. Oral administration of styrene did not lead to genotoxicity in any of the investigated endpoints. The adequacy of the experimental conditions was assured by including animals treated by oral gavage with the positive control chemicals ethyl nitrosourea and ethyl methane sulfonate. Results from these studies supplement to the growing body of evidence suggesting the lack of in vivo genotoxic potential for styrene.


Subject(s)
DNA Damage , Styrene , Rats , Male , Animals , Rats, Inbred F344 , Rats, Sprague-Dawley , Styrene/toxicity , Erythrocytes , Comet Assay/methods , Micronucleus Tests/methods , Mutagenicity Tests/methods
4.
Toxicol Rep ; 12: 41-47, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38222494

ABSTRACT

Withania somnifera (Ashwagandha) also called as Indian ginseng, a revered herb from Indian traditional system of medicine is a rejuvenator and tonic (Rasayana) used for its varied benefits. The roots of ashwagandha exhibit properties like anti-inflammatory, aphrodisiac, anthelmintic, astringent, diuretic, stimulant and thermogenic. However, data of ashwagandha on its mutagenic effects are lacking. In the present study, in-vitro genotoxicity tests were used to evaluate the mutagenic potential of Ashwagandha Root Extract (ARE). Concentrations of 0.156 to 5.00 mg/plate ARE were used for conducting Bacterial reverse mutation test (BRMT). For chromosome aberration (CA) test ARE was used in concentrations of 0.25 to 2.00 mg/ml, and for micronucleus (MN) tests ARE concentrations of 500/1000/2000 mg/kg were used. Acute oral toxicity was conducted in Wistar rats (n = 25) as per the OECD guideline (#423) with doses of 500/1000/2000 mg/kg body weight in male Swiss albino mice for morbidity and mortality for 3 days. The BRMT and CA tests were conducted with and without metabolic activation (S9). The study was approved by the institutional ethics committee (IEC) and institutional animal ethics committee (IAEC). ARE failed to show any mutagenic effects up to a dose of 5 mg/plate in BRMT. Also, ARE did not show any clastogenic activity in doses up to 2 mg/ml in CA test and in micronucleus test up to 2000 mg/kg body weight. These results were observed with and without metabolic activation (S9) under the stated experimental conditions. No mortality, morbidity, or any clinical signs were observed up to 3 days following ARE administration. Ashwagandha root extract failed to show any mortality in doses up to 2000 mg/kg oral dosage and did not show any mutagenic (genotoxic) effects in high concentrations.

5.
Article in English | MEDLINE | ID: mdl-37567644

ABSTRACT

We tested the hypothesis that the pesticides paraoxon and glyphosate cause DNA double-strand breaks (DSB) by poisoning the enzyme Type II topoisomerase (topo II). Peripheral lymphocytes in G0 phase, treated with the pesticides, plus or minus ICRF-187, an inhibitor of Topo II, were stimulated to proliferate; induced cytogenetic damage was measured. Micronuclei, chromatin buds, nucleoplasmic bridges, and extranuclear fragments were induced by treatments with the pesticides, irrespective of the pre-treatment with ICRF-187. These results indicate that the pesticides do not act as topo II poisons. The induction of DSB may occur by other mechanisms, such as effects on other proteins involved in recombination repair.


Subject(s)
Dexrazoxane , Pesticides , Poisons , Dexrazoxane/pharmacology , Paraoxon , Topoisomerase II Inhibitors/toxicity , DNA Topoisomerases, Type II/metabolism , DNA , Glyphosate
6.
Front Toxicol ; 5: 1171960, 2023.
Article in English | MEDLINE | ID: mdl-37180488

ABSTRACT

The in vitro micronucleus (MNvit) assay is used to evaluate the aneugenic and clastogenic potential of a test material based upon its ability to induce micronuclei in the cells. This protocol is provided for testing of nanomaterials (NM) with standard cell lines in the absence of metabolic activation. The use of cytochalasin B (CytoB) and the analysis of binucleated cells in the cytokinesis-block version of the micronucleus assay ensures that cells analyzed have undergone cell division, which is required for expression of DNA damage and micronucleus formation. Issues specific to NM that were problematic with standard test methods are addressed, including test system choice, dose selection, test material exposures, CytoB timing, cytotoxicity determination, and DNA damage expression time. A step-by-step protocol for in vitro micronucleus assessment of NM is provided.

7.
Article in English | MEDLINE | ID: mdl-37188433

ABSTRACT

Rheumatoid arthritis (RA), an autoimmune disorder in which the immune system attacks healthy cells, is associated with elevated risk of lymphoma. Rituximab, a treatment for non-Hodgkin's lymphoma, has been approved as a treatment for RA. We studied the effects of rituximab on chromosomal stability in collagen-induced arthritis DBA/1J animal models. Micronucleus levels were increased in the mouse models, mainly due to chromosome loss, as detected by fluorescence in situ hybridization; rituximab-treated arthritic mice had significantly less micronucleus formation. Serum 8-hydroxydeoxyguanosine, a DNA oxidative stress marker, was increased in the mice models but reduced following rituximab administration.


Subject(s)
Aneugens , Arthritis, Rheumatoid , Mice , Animals , Rituximab/pharmacology , Mutagens , Mice, Inbred DBA , In Situ Hybridization, Fluorescence , Arthritis, Rheumatoid/drug therapy , Disease Models, Animal
8.
Environ Mol Mutagen ; 64(5): 282-290, 2023 06.
Article in English | MEDLINE | ID: mdl-37042435

ABSTRACT

Male B6C3F1 mice were administered styrene monomer by oral gavage for 29 consecutive days at dose levels of 0, 75, 150, or 300 mg/kg/day. The highest dose level represented the maximum tolerated dose based on findings in a 28-day dose range-finding study, in which the bioavailability of orally administered styrene was also confirmed. The positive control group received ethyl nitrosourea (ENU; 51.7 mg/kg/day) on Study Days 1-3 and ethyl methanesulfonate (EMS; 150 mg/kg/day) on Study Days 27-29 by oral gavage. Approximately 3 h following the final dose, blood was collected to assess erythrocyte Pig-a mutant and micronucleus frequencies. DNA strand breakage was assessed in glandular stomach, duodenum, kidney, liver, and lung tissues using the alkaline comet assay. The %tail DNA for stomach, liver, lung, and kidney in the comet assay among the styrene-treated groups was neither significantly different from the respective vehicle controls nor was there any dose-related increasing trend in any of the tissues; results for duodenum were interpreted to be inconclusive because of technical issues. The Pig-a and micronucleus frequencies among styrene-treated groups also did not show significant increases relative to the vehicle controls and there was also no evidence for a dose-related increasing trend. Thus, orally administered styrene did not induce DNA damage, mutagenesis, or clastogenesis/aneugenesis in these Organization of Economic Co-operation and Development test guideline-compliant genotoxicity studies. Data from these studies can contribute to the overall assessment of genotoxic hazard and risk posed to humans potentially exposed to styrene.


Subject(s)
DNA Damage , Styrene , Animals , Male , Mice , Comet Assay/methods , Erythrocytes , Micronucleus Tests/methods , Styrene/toxicity
9.
J Complement Integr Med ; 20(3): 590-596, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-34674412

ABSTRACT

OBJECTIVES: Diethylnitrosamine (DEN) is found in workplaces, processed meats, tobacco smoke, whiskey, etc. It is capable of forming DNA-adducts. Fluted pumpkin (Telfairia occidentalis [To]) is a medicinal plant, and its herbal preparations have been employed variously in ethnomedicine. Furthermore, it has been reported to possess anti-oxidant, anti-cancer, anti-inflammatory properties. We investigated the possible mitigating effect of the leaf paste of To on DEN-induced deleterious effects in male Wistar rats. METHODS: Forty-five rats weighing between 100 and 150 g were equally divided into nine groups and treated thus: Group 1 (negative control), Group 2 (0.05 mg/kg carboxymethyl cellulose [CMC] daily), Group 3 (positive control, 25 mg/kg bw DEN administered intraperitoneally thrice per week), Group 4 (25 mg/kg bw quercetin [QUE] daily alone), Groups 5 and 6 (100 and 200 mg/kg bw To daily, respectively), Group 7 (25 mg/kg bw DEN and QUE), Groups 8 and 9 (25 mg/kg bw DEN with 100 and 200 mg/kg bw To, respectively). Blood glucose levels, liver damage biomarkers (aspartate aminotransferase [AST], alanine aminotransferase [ALT] and gamma-glutamyltransferase [γ-GT]), frequency of micronucleated polychromatic erythrocyte (mPCEs), and liver histology were assessed. RESULTS: DEN significantly (p<0.05) increased blood glucose levels, activities of ALT, AST and γ-GT, and frequency of mPCEs. Histologically, DEN caused a severe architectural anarchy. However, the intervention groups demonstrated the remarkable protective properties of To by ameliorating the adverse effects caused by DEN. CONCLUSIONS: Taken together, the leaf paste of To is capable of mitigating DEN-induced hepatotoxicity and clastogenicity in male Wistar rats.

10.
Drug Chem Toxicol ; 46(4): 634-639, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35603474

ABSTRACT

The opioid agonist hydromorphone is indicated for the management of severe acute and chronic pain given that alternate treatments are insufficient. While the genotoxicity profile of hydromorphone is well investigated, little is known about the genotoxic potential of its impurities. In this study, 2,2-bishydromorphone was tested in silico and in vitro for both its mutagenic potential in an Ames test performed with Salmonella typhimurium and Escherichia coli tester strains up to a maximum concentration of 5 mg per plate in the absence and presence of metabolic activation. Furthermore, it was tested for its ability to induce micronuclei in TK6 cells in a micronucleus test up to a maximum concentration of 500 µg/mL with or without an exogenous metabolic activation system. 2,2-Bishydromorphone did not reveal any potential for inducing mutagenicity or clastogenicity under the conditions of the respective tests and is therefore considered non-mutagenic and non-clastogenic/aneugenic in vitro. These results are in line with negative in silico quantitative structure-activity relationship (QSAR) prediction for 2,2-bishydromorphone mutagenicity and clastogenicity and provide evidence of good correlation of in silico and in vitro data. Conclusively, these studies add important new clinically relevant information on the safety of hydromorphone as the impurity of 2,2-bishydromorphone is proven to be non-mutagenic and non-clastogenic.


Subject(s)
Mutagens , Quantitative Structure-Activity Relationship , Micronucleus Tests , Mutagens/toxicity , Hydromorphone/toxicity , Mutagenicity Tests/methods , DNA Damage
11.
Environ Mol Mutagen ; 64(1): 26-38, 2023 01.
Article in English | MEDLINE | ID: mdl-36314072

ABSTRACT

3-Chloroallyl alcohol (3-CAA) can be found in the environment following the application of plant protection products. 3-CAA is formed in groundwater following the injection of 1,3-dichloropropene, a fumigant used to control nematodes. 3-CAA is also formed, in leafy crops, as a glycoside conjugate following application of the herbicide, clethodim. Human exposure may occur from groundwater used as drinking water or through dietary consumption. To characterize 3-CAA's potential to cause genotoxicity in mammals, in vitro and in vivo studies were conducted. 3-CAA was negative in an Ames test and positive in a mouse lymphoma forward mutation assay. 3-CAA was negative in an acute in vivo CD-1 mouse bone marrow micronucleus assay when administered up to a dose level of 125 mg/kg/day for two consecutive days. In a combined gene mutation assay and erythrocyte micronucleus assay, using transgenic Big Blue® Fischer 344 rats, 3-CAA was administered via drinking water at targeted dose levels of 0, 10, 30, and 100 mg/kg/day for 29 days. Peripheral blood samples, collected at the end of treatment, were analyzed for micronucleus induction in reticulocytes using flow cytometry. Liver and bone marrow samples, collected 2 days after the termination of the treatment, were analyzed for the induction of mutations at the cII locus. 3-CAA did not induce an increase in mutant frequency or micronuclei under the experimental conditions. In conclusion, the mutagenic response observed in the in vitro mouse lymphoma assay is not confirmed in the whole animal. 3-CAA is not considered to pose a mutagenic risk.


Subject(s)
Drinking Water , Lymphoma , Rats , Mice , Humans , Animals , Mutagens/toxicity , Micronucleus Tests , DNA Damage , Rats, Inbred F344 , Mutagenicity Tests , Mammals
12.
Chem Biol Interact ; 369: 110259, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36372259

ABSTRACT

As a new-type flame retardant and toxic substance, triphenyl phosphate (TPP) is a ubiquitous pollutant present even in human blood. TPP is transformed by human CYP enzymes to oxidized/dealkylated metabolites. The impact of TPP metabolism on its toxicity, however, remains unclear. In this study, the genotoxicity of TPP in several mammalian cell lines and its relevance to CYP/sulfortransferase (SULT) activities were investigated. The results indicated that TPP induced micronucleus formation at ≥1 µM concentrations in a human hepatoma (C3A, endogenous CYPs being substantial) cell line, which was abolished by 1-aminobenzotriazole (CYPs inhibitor). In cell line HepG2 (parental to C3A with lower CYP expression) TPP was inactive up to 10 µM, while pretreatment with ethanol (CYP2E1 inducer), PCB 126 (CYP1A inducer), or rifampicin (CYP3A inducer) led to micronucleus formation by TPP. In V79-Mz and V79-derived cells expressing human CYP1A1 TPP was inactive (up to 32 µM), and in cells expressing human CYP1B1, 2B6 and 3A4 it induced micronucleus weakly (positive only at 32 µM). However, TPP induced micronucleus potently in V79-derived cells expressing human CYP1A2, while this effect was drastically reduced by human SULT1A1 co-expression; likewise, TPP was inactive in cells expressing both human CYP2E1 and SULT1A1, but became positive with pentachlorophenol (inhibitor of SULT1) co-exposure. Moreover, in C3A cells TPP selectively induced centromere-free micronucleus (immunofluorescent assay), and TPP increased γ-H2AX (by Western blot, indicating double-strand DNA breaks). In conclusion, this study suggests that TPP is potently clastogenic, human CYP1A2 and 2E1 being major activating enzymes while SULT1A1 involved in detoxification.


Subject(s)
Cytochrome P-450 CYP1A2 , Mutagens , Cricetinae , Animals , Humans , Mutagens/toxicity , Cytochrome P-450 CYP1A2/genetics , Cricetulus , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 CYP2E1/metabolism
13.
Toxicol Rep ; 9: 834-841, 2022.
Article in English | MEDLINE | ID: mdl-36518413

ABSTRACT

Steady-calcium formula (SCF), a functional food mixture with potential of joint care, contains five major ingredients. However, the uncertain cross-reactivity among these included ingredients cannot be excluded. Hence, it is important to ensure the safety of this mixture. In this study, the safety of SCF was evaluated through in vitro genotoxicity assessment and 28-day oral toxicity study in rats. The bacterial reverse mutation test and mammalian chromosome aberration test displayed that SCF did not induce mutagenicity and clastogenicity. The 28-day repeated dose assessment of SCF in rats revealed no mortality and adverse effects in clinical signs, body weight, urinalysis, hematology, organ weight, and histopathology at all treated groups. Although some significant changes were observed in food intake and parameters of serum biochemistry at the highest dose in males, they were not dose-related and considered to be within normal range. These findings indicate that SCF does not possess genotoxic potential and no obvious evidence of subacute toxicity. These results demonstrate for the first time that the genotoxicity and subacute toxicity for SCF are negative under our experimental conditions and the no observed adverse effect level (NOAEL) of SCF may be defined as at least 5470 mg/kg/day.

14.
Toxicol Res ; 38(3): 293-310, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35865276

ABSTRACT

Weissella cibaria belongs to the Lactobacillaceae family and has been isolated from traditional fermented foods and saliva of children with good oral health. Previous investigations have shown that W. cibaria CMU (Chonnam Medical University) is expected to be safe based on results of in silico and in vitro analyses. However, there is a lack of studies assessing its safety in vivo. A toxicological safety evaluation of W. cibaria CMU was performed using an acute oral safety study in rats, a 14-day oral range finding study, a subsequent 13-week oral toxicity study in rats and a genetic toxicity battery (in vitro bacterial reverse mutation, in vitro chromosome aberration in Chinese Hamster Ovary cells and in vivo micronucleus study in mice). The results of the studies in rats showed that the acute lethal dose of W. cibaria CMU is > 5000 mg/kg body weight (bw)/day (1.8 × 109 CFU/kg bw/day) and the 14-day or 13-week no observed adverse effect level (NOAEL) is 5000 mg/kg bw/day (1.8 × 109 CFU/kg bw/day), the highest dose administered. W. cibaria CMU was non-mutagenic in the bacterial reverse mutation test and non-clastogenic or aneugenic in vitro and in vivo. In conclusion, the toxicological studies performed demonstrated W. cibaria CMU to be a safe strain to consume. This study is the first study examining the potential of a W. cibaria strain to cause genetic toxicity and subchronic toxicity in rats according to the Organization for Economic Cooperation and Development guidelines.

15.
Front Toxicol ; 4: 859122, 2022.
Article in English | MEDLINE | ID: mdl-35686044

ABSTRACT

Genotoxicity testing is performed to determine potential hazard of a chemical or agent for direct or indirect DNA interaction. Testing may be a surrogate for assessment of heritable genetic risk or carcinogenic risk. Testing of nanomaterials (NM) for hazard identification is generally understood to require a departure from normal testing procedures found in international standards and guidelines. A critique of the genotoxicity literature in Elespuru et al., 2018, reinforced evidence of problems with genotoxicity assessment of nanomaterials (NM) noted by many previously. A follow-up to the critique of problems (what is wrong) is a series of methods papers in this journal designed to provide practical information on what is appropriate (right) in the performance of genotoxicity assays altered for NM assessment. In this "Common Considerations" paper, general considerations are addressed, including NM characterization, sample preparation, dosing choice, exposure assessment (uptake) and data analysis that are applicable to any NM genotoxicity assessment. Recommended methods for specific assays are presented in a series of additional papers in this special issue of the journal devoted to toxicology methods for assessment of nanomaterials: the In vitro Micronucleus Assay, TK Mutagenicity assays, and the In vivo Comet Assay. In this context, NM are considered generally as insoluble particles or test articles in the nanometer size range that present difficulties in assessment using techniques described in standards such as OECD guidelines.

16.
Food Chem Toxicol ; 166: 113212, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35690182

ABSTRACT

Toxicological risk assessment is essential in the evaluation and authorization of different classes of chemical substances. Genotoxicity and mutagenicity testing are of highest priority and rely on established in vitro systems with bacterial and mammalian cells, sometimes followed by in vivo testing using rodent animal models. Transcriptomic approaches have recently also shown their value to determine transcript signatures specific for genotoxicity. Here, we studied how transcriptomic data, in combination with in vitro tests with human cells, can be used for the identification of genotoxic properties of test compounds. To this end, we used liver samples from a 28-day oral toxicity study in rats with the pesticidal active substances imazalil, thiacloprid, and clothianidin, a neonicotinoid-type insecticide with, amongst others, known hepatotoxic properties. Transcriptomic results were bioinformatically evaluated and pointed towards a genotoxic potential of clothianidin. In vitro Comet and γH2AX assays in human HepaRG hepatoma cells, complemented by in silico analyses of mutagenicity, were conducted as follow-up experiments to check if the genotoxicity alert from the transcriptomic study is in line with results from a battery of guideline genotoxicity studies. Our results illustrate the combined use of toxicogenomics, classic toxicological data and new approach methods in risk assessment. By means of a weight-of-evidence decision, we conclude that clothianidin does most likely not pose genotoxic risks to humans.


Subject(s)
Mutagens , Transcriptome , Animals , DNA Damage , Guanidines , Humans , Mammals , Mutagenicity Tests/methods , Mutagens/toxicity , Neonicotinoids/toxicity , Rats , Risk Assessment , Thiazoles
17.
Environ Sci Pollut Res Int ; 29(31): 47488-47501, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35182342

ABSTRACT

Nicotine is the most abundant ingredient in cigarette smoking and has serious side effects on the lung, heart, reproductive system, and many other human organs. Saponins extracted from many plants exhibit multiple biological actions such as anti-cancer effects. Therefore, the possible protective effect of fenugreek saponin (FS) and nanofenugreek saponin (NFS) against nicotine-induced toxicity in male rats was investigated in this study. Animals were divided into a control group and the nicotine (1.5 mg/kg/day), FS (25, 50, and 100 mg/kg/day), or/and NFS (20, 40, and 80 mg/kg/day) administered groups. Micronucleus assay, histopathological, and sperm abnormality examinations as well as measurement of the acetylcholinesterase (AChE) gene expression were conducted. Our findings revealed that nicotine treatment induced significant increases in the incidence of micronucleus, sperm abnormalities, and expression levels of AChE in addition to inducing histopathological changes in rat testis. On the other hand, administration of FS or NFS with nicotine significantly decreased the incidence of micronuclei and the percentage of sperm abnormalities as well as the expression levels of AChE gene. Moreover, nicotine-induced histological alterations were reduced by given FS or NFS with nicotine. In conclusion, nicotine-induced sperm abnormalities, chromosomal damage, and histological injuries were mitigated by administration of FS or NFS with nicotine, and thus, FS and NFS could be used as ameliorating agents against nicotine toxicity.


Subject(s)
Genitalia, Male , Nanoparticles , Nicotine , Saponins , Trigonella , Acetylcholinesterase/metabolism , Animals , Genitalia, Male/drug effects , Genitalia, Male/physiopathology , Male , Mutagens/pharmacology , Nicotine/adverse effects , Rats , Saponins/pharmacology , Seeds/chemistry , Spermatozoa , Testis , Trigonella/chemistry
18.
Int J Mol Sci ; 22(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34575853

ABSTRACT

Furan is a volatile compound that is formed in foods during thermal processing. It is classified as a possible human carcinogen by international authorities based on sufficient evidence of carcinogenicity from studies in experimental animals. Although a vast number of studies both in vitro and in vivo have been performed to investigate furan genotoxicity, the results are inconsistent, and its carcinogenic mode of action remains to be clarified. Here, we address the mutagenic and clastogenic activity of furan and its prime reactive metabolite cis-2 butene-1,4-dial (BDA) in mammalian cells in culture and in mouse animal models in a search for DNA lesions responsible of these effects. To this aim, Fanconi anemia-derived human cell lines defective in the repair of DNA inter-strand crosslinks (ICLs) and Ogg1-/- mice defective in the removal of 8-hydroxyguanine from DNA, were used. We show that both furan and BDA present a weak (if any) mutagenic activity but are clear inducers of clastogenic damage. ICLs are strongly indicated as key lesions for chromosomal damage whereas oxidized base lesions are unlikely to play a critical role.


Subject(s)
Chromosome Aberrations/chemically induced , Furans/adverse effects , Mutation/drug effects , Oxidative Stress/drug effects , Animals , Carcinogens , Cell Line , DNA Damage/drug effects , Dose-Response Relationship, Drug , Furans/toxicity , Humans , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Micronuclei, Chromosome-Defective/chemically induced , Mutagens , Oxidation-Reduction
19.
Article in English | MEDLINE | ID: mdl-34583821

ABSTRACT

DNA damage has long been known to play an essential role in tumorigenesis induced by chemical carcinogen exposure. The preponderance of data generated during the past approximately 50 years of cancer research indicates that DNA damage and DNA adduct formation are necessary but not sufficient for tumor induction by chemical carcinogenesis. This is true for all of the species studied, including experimental animals, some animals in the wild, and humans. Cetaceans, which include whales, dolphins and porpoises, are a challenge to evaluate because tissues are difficult to obtain, and cancer rates, with a single exception, are low (0.7-2.0 %). However, both non-specific (chromosomal aberrations, DNA strand breaks, 8-hydroxy-2'-deoxyguanosine, mitochondrial DNA damage), and chemical-specific (aromatic DNA adducts, and carcinogenic polycyclic aromatic hydrocarbon [PAH]-DNA adducts) DNA damage have been found in cetaceans. For some types of DNA damage, cetaceans may carry a burden similar to that seen in many other species, including humans, but linking DNA damage to cancer rates in cetaceans has been largely impossible. The one exception is a population of beluga whales in the St. Lawrence Estuary (SLE) in Quebec, Canada, where correlations have been found between long-term PAH exposure, PAH-DNA adducts in small intestinal crypt cells, and a high rate (7%) of gastrointestinal cancers. Taken together, the current literature demonstrates that cetaceans may carry a burden of many types of DNA damage and, given the example of the SLE beluga, cetaceans may sustain a potential susceptibility to pollution-induced tumorigenesis. Knowledge of DNA damage and cancer rates in whales is critically important for understanding and predicting the health of marine life, human life, and the aquatic environment of our planet.


Subject(s)
Carcinogenesis/chemically induced , Carcinogenesis/genetics , Cetacea/genetics , DNA Damage , Animals , Biomarkers, Tumor/genetics , Carcinogens/toxicity , Female , Male , Mutagens/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
20.
Comput Toxicol ; 182021 May 01.
Article in English | MEDLINE | ID: mdl-34504984

ABSTRACT

Regulatory agencies world-wide face the challenge of performing risk-based prioritization of thousands of substances in commerce. In this study, a major effort was undertaken to compile a large genotoxicity dataset (54,805 records for 9299 substances) from several public sources (e.g., TOXNET, COSMOS, eChemPortal). The names and outcomes of the different assays were harmonized, and assays were annotated by type: gene mutation in Salmonella bacteria (Ames assay) and chromosome mutation (clastogenicity) in vitro or in vivo (chromosome aberration, micronucleus, and mouse lymphoma Tk +/- assays). This dataset was then evaluated to assess genotoxic potential using a categorization scheme, whereby a substance was considered genotoxic if it was positive in at least one Ames or clastogen study. The categorization dataset comprised 8442 chemicals, of which 2728 chemicals were genotoxic, 5585 were not and 129 were inconclusive. QSAR models (TEST and VEGA) and the OECD Toolbox structural alerts/profilers (e.g., OASIS DNA alerts for Ames and chromosomal aberrations) were used to make in silico predictions of genotoxicity potential. The performance of the individual QSAR tools and structural alerts resulted in balanced accuracies of 57-73%. A Naïve Bayes consensus model was developed using combinations of QSAR models and structural alert predictions. The 'best' consensus model selected had a balanced accuracy of 81.2%, a sensitivity of 87.24% and a specificity of 75.20%. This in silico scheme offers promise as a first step in ranking thousands of substances as part of a prioritization approach for genotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...