Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 347
Filter
1.
Front Cell Infect Microbiol ; 14: 1398706, 2024.
Article in English | MEDLINE | ID: mdl-38756231

ABSTRACT

Introduction: Mycoplasma hominis (M. hominis) belongs to the class Mollicutes, characterized by a very small genome size, reduction of metabolic pathways, including transcription factors, and the absence of a cell wall. Despite this, they adapt well not only to specific niches within the host organism but can also spread throughout the body, colonizing various organs and tissues. The adaptation mechanisms of M. hominis, as well as their regulatory pathways, are poorly understood. It is known that, when adapting to adverse conditions, Mycoplasmas can undergo phenotypic switches that may persist for several generations. Methods: To investigate the adaptive properties of M. hominis related to survival in the host, we conducted a comparative phenotypic and proteogenomic analysis of eight clinical isolates of M. hominis obtained from patients with urogenital infections and the laboratory strain H-34. Results: We have shown that clinical isolates differ in phenotypic features from the laboratory strain, form biofilms more effectively and show resistance to ofloxacin. The comparative proteogenomic analysis revealed that, unlike the laboratory strain, the clinical isolates possess several features related to stress survival: they switch carbon metabolism, activating the energetically least advantageous pathway of nucleoside utilization, which allows slowing down cellular processes and transitioning to a starvation state; they reconfigure the repertoire of membrane proteins; they have integrative conjugative elements in their genomes, which are key mediators of horizontal gene transfer. The upregulation of the methylating subunit of the restriction-modification (RM) system type I and the additional components of RM systems found in clinical isolates suggest that DNA methylation may play a role in regulating the adaptation mechanisms of M. hominis in the host organism. It has been shown that based on the proteogenomic profile, namely the genome sequence, protein content, composition of the RM systems and additional subunits HsdM, HsdS and HsdR, composition and number of transposable elements, as well as the sequence of the main variable antigen Vaa, we can divide clinical isolates into two phenotypes: typical colonies (TC), which have a high growth rate, and atypical (aTC) mini-colonies, which have a slow growth rate and exhibit properties similar to persisters. Discussion: We believe that the key mechanism of adaptation of M. hominis in the host is phenotypic restructuring, leading to a slowing down cellular processes and the formation of small atypical colonies. This is due to a switch in carbon metabolism and activation the pathway of nucleoside utilization. We hypothesize that DNA methylation may play a role in regulating this switch.


Subject(s)
Adaptation, Physiological , Mycoplasma Infections , Mycoplasma hominis , Proteogenomics , Humans , Mycoplasma hominis/genetics , Mycoplasma hominis/metabolism , Mycoplasma Infections/microbiology , Biofilms/growth & development , Genome, Bacterial , Phenotype , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics
2.
Antibiotics (Basel) ; 13(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786157

ABSTRACT

The heterogenicity of antimicrobial resistance genes described in clinically significant bacterial isolates and their potential role in reducing the efficacy of classically effective antibiotics pose a major challenge for global healthcare, especially in infections caused by Gram-negative bacteria. We analyzed 112 multidrug-resistant (MDR) isolates from clinical samples in order to detect high resistance profiles, both phenotypically and genotypically, among four Gram-negative genera (Acinetobacter, Escherichia, Klebsiella, and Pseudomonas). We found that 9.8% of the total selected isolates were classified as extensively drug-resistant (XDR) (six isolates identified as A. baumannii and five among P. pneumoniae isolates). All other isolates were classified as MDR. Almost 100% of the isolates showed positive results for blaOXA-23 and blaNDM-1 genes among the A. baumannii samples, one resistance gene (blaCTX-M) among E. coli, and two genetic determinants (blaCTX-M and aac(6')-Ib) among Klebsiella. In contrast, P. aeruginosa showed just one high-frequency antibiotic resistance gene (dfrA), which was present in 68.42% of the isolates studied. We also describe positive associations between ampicillin and cefotaxime resistance in A. baumannii and the presence of blaVEB and blaGES genes, as well as between the aztreonam resistance phenotype and the presence of blaGES gene in E. coli. These data may be useful in achieving a better control of infection strategies and antibiotic management in clinical scenarios where these multidrug-resistant Gram-negative pathogens cause higher morbidity and mortality.

3.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38675432

ABSTRACT

Methicillin-resistant Staphylococcus aureus (M RSA) infections, in particular biofilm-organized bacteria, remain a clinical challenge and a serious health problem. Rifabutin (RFB), an antibiotic of the rifamycins class, has shown in previous work excellent anti-staphylococcal activity. Here, we proposed to load RFB in liposomes aiming to promote the accumulation of RFB at infected sites and consequently enhance the therapeutic potency. Two clinical isolates of MRSA, MRSA-C1 and MRSA-C2, were used to test the developed formulations, as well as the positive control, vancomycin (VCM). RFB in free and liposomal forms displayed high antibacterial activity, with similar potency between tested formulations. In MRSA-C1, minimal inhibitory concentrations (MIC) for Free RFB and liposomal RFB were 0.009 and 0.013 µg/mL, respectively. Minimum biofilm inhibitory concentrations able to inhibit 50% biofilm growth (MBIC50) for Free RFB and liposomal RFB against MRSA-C1 were 0.012 and 0.008 µg/mL, respectively. Confocal microscopy studies demonstrated the rapid internalization of unloaded and RFB-loaded liposomes in the bacterial biofilm matrix. In murine models of systemic MRSA-C1 infection, Balb/c mice were treated with RFB formulations and VCM at 20 and 40 mg/kg of body weight, respectively. The in vivo results demonstrated a significant reduction in bacterial burden and growth index in major organs of mice treated with RFB formulations, as compared to Control and VCM (positive control) groups. Furthermore, the VCM therapeutic dose was two fold higher than the one used for RFB formulations, reinforcing the therapeutic potency of the proposed strategy. In addition, RFB formulations were the only formulations associated with 100% survival. Globally, this study emphasizes the potential of RFB nanoformulations as an effective and safe approach against MRSA infections.

4.
PeerJ ; 12: e17199, 2024.
Article in English | MEDLINE | ID: mdl-38680892

ABSTRACT

Carbapenem-resistant Acinetobacter spp. is associated with nosocomial infections in intensive care unit patients, resulting in high mortality. Although Acinetobacter spp. represent a serious public health problem worldwide, there are a few studies related to the presence of carbapenemases in health care facilities and other environmental settings in Ecuador. The main aim of this study was to characterize the carbapenem-resistant Acinetobacter spp. isolates obtained from four hospitals (52) and from five rivers (27) close to Quito. We used the disc diffusion and EDTA sinergy tests to determine the antimicrobial susceptibility and the production of metallo ß-lactamases, respectively. We carried out a multiplex PCR of gyrB gene and the sequencing of partial rpoB gene to bacterial species identification. We performed molecular screening of nine carbapenem-resistant genes (blaSPM, blaSIM, blaGIM, blaGES, blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, and blaOXA-143) by multiplex PCR, followed by identification using sequencing of blaOXA genes. Our findings showed that carbapenem-resistant A. baumannii were the main species found in health care facilities and rivers. Most of the clinical isolates came from respiratory tract samples and harbored blaOXA-23, blaOXA-366, blaOXA-72, blaOXA-65, blaOXA-70, and blaOXA-143-like genes. The river isolates harbored only the blaOXA-51 and probably blaOXA-259 genes. We concluded that the most predominant type of carbapenem genes among isolates were both blaOXA-23 and blaOXA-65 among A. baumannii clinical isolates.


Subject(s)
Acinetobacter Infections , Acinetobacter , Bacterial Proteins , beta-Lactamases , Ecuador/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Acinetobacter Infections/microbiology , Acinetobacter Infections/drug therapy , Acinetobacter/genetics , Acinetobacter/isolation & purification , Acinetobacter/drug effects , Acinetobacter/enzymology , Microbial Sensitivity Tests , Cross Infection/microbiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Rivers/microbiology , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/enzymology , Multiplex Polymerase Chain Reaction
5.
Fungal Genet Biol ; 172: 103891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38621582

ABSTRACT

Candida glabrata (Nakaseomyces glabrata) is an emergent and opportunistic fungal pathogen that colonizes and persists in different niches within its human host. In this work, we studied five clinical isolates from one patient (P7), that have a clonal origin, and all of which come from blood cultures except one, P7-3, obtained from a urine culture. We found phenotypic variation such as sensitivity to high temperature, oxidative stress, susceptibility to two classes of antifungal agents, and cell wall porosity. Only isolate P7-3 is highly resistant to the echinocandin caspofungin while the other four isolates from P7 are sensitive. However, this same isolate P7-3, is the only one that displays susceptibility to fluconazole (FLC), while the rest of the isolates are resistant to this antifungal. We sequenced the PDR1 gene which encodes a transcription factor required to induce the expression of several genes involved in the resistance to FLC and found that all the isolates encode for the same Pdr1 amino acid sequence except for the last isolate P7-5, which contains a single amino acid change, G1099C in the putative Pdr1 transactivation domain. Consistent with the resistance to FLC, we found that the CDR1 gene, encoding the main drug efflux pump in C. glabrata, is highly overexpressed in the FLC-resistant isolates, but not in the FLC-sensitive P7-3. In addition, the resistance to FLC observed in these isolates is dependent on the PDR1 gene. Additionally, we found that all P7 isolates have a different proportion of cell wall carbohydrates compared to our standard strains CBS138 and BG14. In P7 isolates, mannan is the most abundant cell wall component, whereas ß-glucan is the most abundant component in our standard strains. Consistently, all P7 isolates have a relatively low cell wall porosity compared to our standard strains. These data show phenotypic and genotypic variability between clonal isolates from different niches within a single host, suggesting microevolution of C. glabrata during an infection.


Subject(s)
Antifungal Agents , Candida glabrata , Drug Resistance, Fungal , Fungal Proteins , Microbial Sensitivity Tests , Candida glabrata/genetics , Candida glabrata/drug effects , Antifungal Agents/pharmacology , Humans , Drug Resistance, Fungal/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fluconazole/pharmacology , Cell Wall/genetics , Cell Wall/drug effects , Candidiasis/microbiology , Caspofungin/pharmacology , Evolution, Molecular , Oxidative Stress/genetics , Echinocandins/pharmacology , Transcription Factors/genetics
6.
Drug Resist Updat ; 75: 101087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678745

ABSTRACT

In recent years, new evidence has shown that the SOS response plays an important role in the response to antimicrobials, with involvement in the generation of clinical resistance. Here we evaluate the impact of heterogeneous expression of the SOS response in clinical isolates of Escherichia coli on response to the fluoroquinolone, ciprofloxacin. In silico analysis of whole genome sequencing data showed remarkable sequence conservation of the SOS response regulators, RecA and LexA. Despite the genetic homogeneity, our results revealed a marked differential heterogeneity in SOS response activation, both at population and single-cell level, among clinical isolates of E. coli in the presence of subinhibitory concentrations of ciprofloxacin. Four main stages of SOS response activation were identified and correlated with cell filamentation. Interestingly, there was a correlation between clinical isolates with higher expression of the SOS response and further progression to resistance. This heterogeneity in response to DNA damage repair (mediated by the SOS response) and induced by antimicrobial agents could be a new factor with implications for bacterial evolution and survival contributing to the generation of antimicrobial resistance.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Escherichia coli Proteins , Escherichia coli , Microbial Sensitivity Tests , Rec A Recombinases , SOS Response, Genetics , SOS Response, Genetics/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Ciprofloxacin/pharmacology , Humans , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Drug Resistance, Bacterial/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Damage/drug effects , Whole Genome Sequencing , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Gene Expression Regulation, Bacterial/drug effects , Adaptation, Physiological , DNA Repair/drug effects , DNA-Binding Proteins
7.
Front Cell Infect Microbiol ; 14: 1348093, 2024.
Article in English | MEDLINE | ID: mdl-38516533

ABSTRACT

Introduction: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. are microorganisms referred as the ESKAPE group pathogens. These microorganisms have generated great concern in health institutions around the world since most of them have resistance to multiple antibiotics and cause most infections associated with healthcare, as well as community infections. The aim of this study was the analysis of antibiotic resistance in microorganisms of the ESKAPE group, recovered from clinical samples in 11 health institutions from Hermosillo and Ciudad Obregón in the State of Sonora, México, during the period from 2019 to 2020. Methods: A cross-sectional, descriptive, observational, and temporality epidemiological study was carried out. A comparative and statistical analysis of antibiotic resistance was carried out using the chi-square test, and small values were analyzed using Fisher's exact test p ≤ 0.05. Results and discussion: All the ESKAPE group microorganisms showed significant differences in antibiotic resistance percentages between both cities. High resistance percentages for some antibiotics, like cephalosporins and ciprofloxacin were detected for Klebsiella pneumoniae and Acinetobacter baumannii.


Subject(s)
Acinetobacter baumannii , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross-Sectional Studies , Drug Resistance, Multiple, Bacterial , Mexico , Humans
8.
Microorganisms ; 12(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38543595

ABSTRACT

The genus Acanthamoeba comprises free-living amoebae distributed in a wide variety of environments. These amoebae are clinically significant, causing opportunistic infections in humans and other animals. Despite this, limited data on Acanthamoeba sequence types and alleles are available in Italy. In the present study, we analyzed all Acanthamoeba sequences deposited from Italy with new positive Acanthamoeba clinical samples from symptomatic AK cases, to provide an overview of the genetic variants' spatial patterns from different sources within the Italian context. A total of 137 Acanthamoeba sequences were obtained. Six sequence types were identified: T2/6, T3, T4, T11, T13, and T15. Only T4 and T15 were found in both sources. The Acanthamoeba T4 sequence type was found to be the most prevalent in all regions, accounting for 73% (100/137) of the Italian samples analyzed. The T4 sequence type demonstrated significant allelic diversity, with 30 distinct alleles from clinical and/or environmental samples. These outcomes enabled a better understanding of the distribution of Acanthamoeba isolates throughout Italy, reaffirming its well-recognized ubiquity. Acanthamoeba isolates analysis from keratitis, together with the environmental strains monitoring, might provide important information on different genotypes spreading. This might be useful to define the transmission pathways of human keratitis across different epidemiological scales.

9.
J Fungi (Basel) ; 10(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38535232

ABSTRACT

The opportunistic fungus Candida albicans is the leading cause of invasive candidiasis in immune-compromised individuals. Drugs from the echinocandin (ECN) class, including caspofungin, are used as a first line of therapy against invasive candidiasis. The only known mechanism of clinical resistance to ECNs is point mutations in the FKS1 gene, which encodes the drug target. However, many clinical isolates developed decreased ECN susceptibilities in the absence of resistance-associated FKS1 mutations. We have identified 15 C. albicans genes that contribute to decreased drug susceptibility. We explored the expression of these 15 genes in clinical isolates with different levels of ECN susceptibility. We found that these 15 genes are expressed in clinical isolates with or without FKS1 mutations, including those strains that are less susceptible to ECNs. In addition, FKS1 expression was increased in such less susceptible isolates compared to highly susceptible isolates. Similarities of gene expression patterns between isolates with decreased ECN susceptibilities in the absence of FKS1 mutations and clinically resistant isolates with mutations in FKS1 suggest that clinical isolates with decreased ECN susceptibilities may be a precursor to development of resistance.

10.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38366124

ABSTRACT

Selective forces in the environment drive bacterial adaptation to novel niches, choosing the fitter variants in the population. However, in dynamic and changing environments, the evolutionary processes controlling bacterial adaptation are difficult to monitor. Here, we follow 9 people with cystic fibrosis chronically infected with Pseudomonas aeruginosa, as a proxy for bacterial adaptation. We identify and describe the bacterial changes and evolution occurring between 15 and 35 yr of within-host evolution. We combine whole-genome sequencing, RNA sequencing, and metabolomics and compare the evolutionary trajectories directed by the adaptation of 4 different P. aeruginosa lineages to the lung. Our data suggest divergent evolution at the genomic level for most of the genes, with signs of convergent evolution with respect to the acquisition of mutations in regulatory genes, which drive the transcriptional and metabolomic program at late time of evolution. Metabolomics further confirmed convergent adaptive phenotypic evolution as documented by the reduction of the quorum-sensing molecules acyl-homoserine lactone, phenazines, and rhamnolipids (except for quinolones). The modulation of the quorum-sensing repertoire suggests that similar selective forces characterize at late times of evolution independent of the patient. Collectively, our data suggest that similar environments and similar P. aeruginosa populations in the patients at prolonged time of infection are associated with an overall reduction of virulence-associated features and phenotypic convergence.


Subject(s)
Cystic Fibrosis , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Cystic Fibrosis/complications , Lung/microbiology , Genomics , Mutation
11.
Vaccine ; 42(8): 1941-1952, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38368223

ABSTRACT

Given that individuals with latent tuberculosis (TB) infection represent the major reservoir of TB infection, latency-associated antigens may be promising options for development of improved multi-antigenic TB subunit vaccine. Thus, we selected RipA, a peptidoglycan hydrolase required for efficient cell division of Mycobacterium tuberculosis (Mtb), as vaccine candidate. We found that RipA elicited activation of dendritic cells (DCs) by induction of phenotypic maturation, increased production of inflammatory cytokines, and prompt stimulation of MAPK and NF-κB signaling pathways. In addition, RipA-treated DCs promoted Th1-polarzied immune responses of naïve CD4+ T cells with increased proliferation and activated T cells from Mtb-infected mice, which conferred enhanced control of mycobacterial growth inside macrophages. Moreover, mice immunized with RipA formulated in GLA-SE adjuvant displayed remarkable generation of Ag-specific polyfunctional CD4+ T cells in both lung and spleen. Following an either conventional or ultra-low dose aerosol challenges with 2 Mtb Beijing clinical strains, RipA/GLA-SE-immunization was not inferior to BCG by mediating protection as single Ag. Collectively, our findings highlighted that RipA could be a novel candidate as a component of multi-antigenic TB subunit vaccines.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Animals , Mice , N-Acetylmuramoyl-L-alanine Amidase , Beijing , Tuberculosis/prevention & control , Disease Outbreaks , Antigens, Bacterial , BCG Vaccine
12.
Recent Adv Antiinfect Drug Discov ; 19(4): 307-314, 2024.
Article in English | MEDLINE | ID: mdl-38213149

ABSTRACT

BACKGROUND: Acinetobacter baumannii is an opportunistic hospital pathogen with high antibiotic resistance, and the ability to produce biofilm. This study aimed to investigate epsA, ompA, and bap genes involved in biofilm formation in MDR and XDR clinical isolates of Acinetobacter baumannii in Khorramabad, Iran. METHODS: In this study, 79 A. baumannii isolates were collected from various samples of the patients admitted to tertiary hospitals in Khorramabad city, Iran, between January and August 2019. After performing the semi-quantitative evaluation of biofilm production by microtiter plate assay, screening of isolates carrying epsA, ompA, and bap genes was done by PCR method. Finally, statistical analyses were conducted using SPSS 22. RESULTS: Among 79 A. baumannii isolates, 52% XDR, 40% MDR, and 16% non-XDRMDR isolates were found to be biofilm producers. All XDR and 94% MDR isolates had ompA and epsA genes, and bap genes were detected among > 80% of these isolates. Moreover, the presence of biofilm-related genes and biofilm production among non-XDRMDR isolates were less than among resistant isolates (p≤ 0.01). CONCLUSION: Based on the results, biofilm production and simultaneous presence of epsA, ompA, and bap genes among MDR, and XDR A. baumannii isolates have been found to be significantly more than non-XDR-MDR isolates.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacterial Outer Membrane Proteins , Biofilms , Drug Resistance, Multiple, Bacterial , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Iran/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Humans , Biofilms/growth & development , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Bacterial Outer Membrane Proteins/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
13.
Chem Biodivers ; 21(2): e202301834, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38179845

ABSTRACT

We discovered a new tetronomycin analog, C-32-OH tetronomycin (2) from the Streptomyces sp. K20-0247 strain, which produces tetronomycin (1). After NMR analysis of 2, we determined the planar structure. Futhermore, the absolute stereochemistry of 2 was deduced based on the biosynthetic pathway of 1 in the K20-0247 strain and a comparison of experimental electronic circular dichroism (ECD) results of 1 with 2. While 2 exihibits potent antibacterial activity aganist Gram-positive baceria including vancomycin-intermediate Staphylococcus aureus (VISA) strains and vancomycin-resistant Enterococci (VRE), the antibacterial activity of 2 shows 16-32-folds weaker than that of 1 suggesting that the C-34 methyl group in 1 is one of the very important functinal group. Moreover, we evaluated the ionophore activity of 1 and 2 and neither compound shows ionophore activity at reasonable concetrations. Our research suggests that 1 and 2 would have different target(s) from an ionophore mechanism in the antibacterial activity and tetronomycins are promising natural products for broad-spectrum antibiotics.


Subject(s)
Anti-Bacterial Agents , Ethers , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Ionophores , Microbial Sensitivity Tests
14.
Antimicrob Agents Chemother ; 68(3): e0129123, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38259087

ABSTRACT

Malaria elimination requires interventions able to target both the asexual blood stage (ABS) parasites and transmissible gametocyte stages of Plasmodium falciparum. Lead antimalarial candidates are evaluated against clinical isolates to address key concerns regarding efficacy and to confirm that the current, circulating parasites from endemic regions lack resistance against these candidates. While this has largely been performed on ABS parasites, limited data are available on the transmission-blocking efficacy of compounds with multistage activity. Here, we evaluated the efficacy of lead antimalarial candidates against both ABS parasites and late-stage gametocytes side-by-side, against clinical P. falciparum isolates from southern Africa. We additionally correlated drug efficacy to the genetic diversity of the clinical isolates as determined with a panel of well-characterized, genome-spanning microsatellite markers. Our data indicate varying sensitivities of the isolates to key antimalarial candidates, both for ABS parasites and gametocyte stages. While ABS parasites were efficiently killed, irrespective of genetic complexity, antimalarial candidates lost some gametocytocidal efficacy when the gametocytes originated from genetically complex, multiple-clone infections. This suggests a fitness benefit to multiclone isolates to sustain transmission and reduce drug susceptibility. In conclusion, this is the first study to investigate the efficacy of antimalarial candidates on both ABS parasites and gametocytes from P. falciparum clinical isolates where the influence of parasite genetic complexity is highlighted, ultimately aiding the malaria elimination agenda.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Plasmodium falciparum/genetics , Malaria, Falciparum/parasitology
15.
ACS Sens ; 9(1): 379-387, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38175523

ABSTRACT

Antimicrobial resistance (AMR) is predicted to become the leading cause of death worldwide in the coming decades. Rapid and on-site antibiotic susceptibility testing (AST) is crucial for guiding appropriate antibiotic choices to combat AMR. With this in mind, we have designed a simple and efficient plasmonic nanosensor consisting of Cu2+ and cysteine-modified AuNP (Au/Cys) that utilizes the metabolic activity of bacteria toward Cu2+ for bacterial detection and AST. When Cu2+ is present, it induces the aggregation of Au/Cys. However, in the presence of bacteria, Cu2+ is metabolized to varying extents, resulting in distinct levels of aggregation. Moreover, the metabolic activity of bacteria can be influenced by their antibiotic susceptibility, allowing us to differentiate between susceptible and resistant strains through direct color changes from the Cu2+-Au/Cys platform over approximately 3 h. These color changes can be easily detected using naked-eye observation, smartphone analysis, or absorption readout. We have validated the platform using four clinical isolates and six types of antibiotics, demonstrating a clinical sensitivity and specificity of 95.8%. Given its simplicity, low cost, high speed, and high accuracy, the plasmonic nanosensor holds great potential for point-of-care detection of antibiotic susceptibility across various settings.


Subject(s)
Anti-Bacterial Agents , Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
16.
BMC Microbiol ; 24(1): 14, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38178003

ABSTRACT

BACKGROUND: Reliable species identification of cultured isolates is essential in clinical bacteriology. We established a new study algorithm named NOVA - Novel Organism Verification and Analysis to systematically analyze bacterial isolates that cannot be characterized by conventional identification procedures MALDI-TOF MS and partial 16 S rRNA gene sequencing using Whole Genome Sequencing (WGS). RESULTS: We identified a total of 35 bacterial strains that represent potentially novel species. Corynebacterium sp. (n = 6) and Schaalia sp. (n = 5) were the predominant genera. Two strains each were identified within the genera Anaerococcus, Clostridium, Desulfovibrio, and Peptoniphilus, and one new species was detected within Citrobacter, Dermabacter, Helcococcus, Lancefieldella, Neisseria, Ochrobactrum (Brucella), Paenibacillus, Pantoea, Porphyromonas, Pseudoclavibacter, Pseudomonas, Psychrobacter, Pusillimonas, Rothia, Sneathia, and Tessaracoccus. Twenty-seven of 35 strains were isolated from deep tissue specimens or blood cultures. Seven out of 35 isolated strains identified were clinically relevant. In addition, 26 bacterial strains that could only be identified at the species level using WGS analysis, were mainly organisms that have been identified/classified very recently. CONCLUSION: Our new algorithm proved to be a powerful tool for detection and identification of novel bacterial organisms. Publicly available clinical and genomic data may help to better understand their clinical and ecological role. Our identification of 35 novel strains, 7 of which appear to be clinically relevant, shows the wide range of undescribed pathogens yet to define.


Subject(s)
Bacteria , Corynebacterium , Bacteria/genetics , Whole Genome Sequencing , Corynebacterium/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques/methods
17.
IJID Reg ; 10: 132-139, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38283056

ABSTRACT

Objectives: Coagulase-positive staphylococcus (CoPS), represented by Staphylococcus aureus, is a major cause of infections in humans. This study aimed to investigate molecular epidemiological characteristics, antimicrobial resistance, and their trends of CoPS in Bangladesh. Methods: Clinical isolates of CoPS were collected from two medical institutions in Bangladesh for a 2-year period and analyzed for their species, genotypes, virulence factors, antimicrobial susceptibility, and resistance determinants. Results: 172 CoPS isolates collected were identified as S. aureus or S. argenteus (170 and two, respectively). Methicillin-resistant S. aureus (MRSA) accounted for 36% (n = 61), having Staphylococcal cassette chromosome mec (SCCmec)-IV (82%) or V (18%). Panton-Valentine leukocidin (PVL) genes were detected at higher rate in methicillin-susceptible S. aureus (MSSA) (62%) than MRSA (26%). MRSA comprised 11 STs, including a dominant type ST6 (46%) associated with mostly SCCmec-IVa/spa-t304, and one isolate had genetic features of the USA300 clone (ST8/SCCmec-IVa/coa-IIIa/spa-t008/ACME-I/ΦSa2USA). STs of CC1, CC88, and CC398 were common in MSSA, with CC88 showing the highest PVL-positive rate. One MSSA isolate (ST8/spa-t008) harbored fexA and cfr showing susceptibility to linezolid. S. argenteus was methicillin-susceptible and belonged to ST2250/coa-XId. Conclusions: Genetic characteristics of current MRSA/MSSA in Bangladesh were revealed, with first identification of S. argenteus at low prevalence.

18.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38256916

ABSTRACT

The diminishing portfolio of mankind's available antibiotics urges science to develop novel potent drugs. Here, we present a peptide fitting the typical blueprint of amphipathic and membrane-active antimicrobial peptides, denominated C14R. This 2 kDa peptide consists of 16 amino acid residues, with seven being either hydrophobic, aromatic, or non-polar, and nine being polar or positively charged, strictly separated on opposite sides of the predicted α-helix. The affinity of the peptide C14R to P. aeruginosa membranes and its intrinsic tendency to productively insert into membranes of such composition were analyzed by dynamic simulations. Its biological impact on the viability of two different P. aeruginosa reference strains was demonstrated by determining the minimal inhibitory concentrations (MICs), which were found to be in the range of 10-15 µg/mL. C14R's pore-forming capability was verified in a permeabilization assay based on the peptide-triggered uptake of fluorescent dyes into the bacterial cells. Finally, the peptide was used in radial diffusion assays, which are commonly used for susceptibility testing of antimicrobial peptides in clinical microbiology. In comparison to reference strains, six clinical P. aeruginosa isolates were clearly affected, thereby paving the way for further in-depth analyses of C14R as a promising new AMP drug in the future.

19.
Diagn Microbiol Infect Dis ; 108(2): 116150, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38035652

ABSTRACT

The emergence of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI TOF MS) technology has expanded the capabilities for identifying microorganisms in clinical labs, replacing traditional biochemical testing with a proteomic approach. In the present study, we compared results between the two commercial MALDI TOF MS systems, Bruker Microflex LT Biotyper and Zybio EXS2600 Ex-Accuspec, for the identification of 1979 urinary isolates by direct extraction method. Current study found that both systems identified a high percentage of isolates to at least the genus level - Bruker 95.6 % of isolates, Zybio 92.4 %. In the case of 89.5 % of all analyzed spectra, the identification results were consistent between the used devices. The highest score values and the highest percentage of spectra identified to species were obtained for gram-negative bacteria. The results show that both systems are equally good choices in terms of analytical performance for routine microbiological diagnostic procedures.


Subject(s)
Gram-Negative Bacteria , Proteomics , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
20.
Infect Drug Resist ; 16: 7413-7425, 2023.
Article in English | MEDLINE | ID: mdl-38077299

ABSTRACT

Purpose: The objective of this study was to investigate the prevalence and molecular characteristics of Vibrio parahaemolyticus isolates from fecal samples of patients in Nantong, China. Methods: From 2018 to 2021, a total of 106 clinical cases and samples of V. parahaemolyticus infection were collected. The virulence genes, serotypes and antibiotic resistance of these isolates were analyzed. Additionally, pulsed-field gel electrophoresis (PFGE) was used to analyze the homogeneity of the isolates. Results: Outbreaks of V. parahaemolyticus infection were concentrated in the summer, with seafood consumption being the primary contributing factor, followed by meat and meat products. tlh+tdh+trh- was confirmed as the most frequently detected virulence genotype among the clinical isolates. 16 serotypes were identified, and O3:K6 was the dominant serotype in Nantong. The antimicrobial susceptibility testing revealed the highest resistance rate to cefazolin (99.1%, 104/106), followed by ampicillin (64.2%, 68/106) and tetracycline (29.2%, 31/106). Fourteen resistant phenotypes were identified, with ampicillin-cefazolin being the most prevalent. The multiple antibiotic resistance (MAR) index ranged from 0.07 to 0.36. PFGE typing clustered isolates with similarity greater than 85% into ten genetic clusters (A-J). Conclusion: Clinical isolates generally exhibited pathogenicity and drug resistance, with some isolates displaying high homology. Clusters C, E, and G were the predominant circulating clusters in this area, posing a potential risk of recurrent outbreaks, which demanded our vigilance.

SELECTION OF CITATIONS
SEARCH DETAIL
...