Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Curr Med Chem ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37702171

ABSTRACT

Breast carcinoma is among the most frequent cancerous tumour in females around the globe. The major modalities now employed in the therapeutic management of breast cancer include surgeries, chemotherapy, and specialized medicines. Despite their potential to help individuals' problems, they are also associated with many negative impacts. As a result, natural products are increasingly regarded to be a preferable alternative. Alkaloids are essential biochemical substances that can be used to develop new drugs. Numerous alkaloids that originate from natural plants have been shown in vitro and in vivo to have anti-proliferation and anti-metastasis actions on different kinds of carcinoma. According to the data collected in this study, the utilization of alkaloids as anti-tumor medicines appears to be extremely potent; nevertheless, extensive studies and clinical trials are required before utilizing individual alkaloids. In this overview, we provide a detailed and vital exploration of pre-existing alkaloids possessing anti-tumor activities due to bioactive compounds. This study also includes an overview of synthesized analogues and pharmacological characteristics that will be beneficial to scientists working on alkaloids for medicinal purposes. In a recent survey of the literature, alkaloids are an important component of plant-derived antitumor medicines that hold great potential for the future development of cancer therapy and preventive therapies. We have also discussed structural analysis relationship (SAR) studies. Moreover, it covers clinical trial medications and FDA-approved medicines from the last five years that will be useful in further research.

2.
Biomolecules ; 13(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36671478

ABSTRACT

Breast cancer is the most commonly diagnosed cancer in women. The high incidence of breast cancer, which is continuing to rise, makes treatment a significant challenge. The PI3K-AKT pathway and its downstream targets influence various cellular processes. In recent years, mounting evidence has shown that natural products and synthetic drugs targeting PI3K-AKT signaling have the potential to treat breast cancer. In this review, we discuss the role of the PI3K-AKT signaling pathway in the occurrence and development of breast cancer and highlight PI3K-AKT-targeting natural products and drugs in clinical trials for the treatment of breast cancer.


Subject(s)
Biological Products , Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use
3.
Eur J Med Chem ; 247: 115020, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36543034

ABSTRACT

Cancer represents one of the world's biggest hazardous diseases. p53 is the uttermost researched tumour suppressor protein. It is commonly considered the "guardian of the genome," performing a critical function in genetic stability maintenance through controlling the cell cycle, programmed cell death, DNA repair, aging, and angiogenesis. The abnormalities in p53 lead to genetic instability and plays a significant role in carcinogenesis. The role of p53 in tumour suppression is emphasized in addition by the observation that primary silencing with this protein occurred in more than 50% of cancers. MDM2, p53, and the p53-MDM2 connections are well-known targets for the prevention and treatment of cancer. Moreover, in tumors with wild-type p53, their efficacy is decreased due to MDM2 enlargement or by the gradual decrease of MDM2 blocker ARF. As a result, improving p53 activity in cancerous cells provides a promising anticancer strategy. Various techniques are now being investigated, and addressing the p53-MDM2 interaction had also evolved as a potentially feasible strategy for contending with tumors. Both p53 and MDM2, interact via an autoregulation response signal: p53 activity induces MDM2 transcription, which in response interacts with p53's N-terminal transactivation domain, inhibiting its transcriptional activity. This article provides information on the current scenario of anti-tumor activities, with a particular emphasis on structure-activity relationship characteristics (SAR) against the p53-MDM2 to treat cancer. The primary purpose of this review is to cover recent advancements in the creation and testing of anticancer drugs that target the p53-MDM2 structure. This review contains different heterocyclic moieties which show significant results toward cancer. A mechanistic route is shown here, demonstrating both normal and malignant conditions via several stressed factors. Several compounds entered clinical trials as p53-MDM2 inhibitors for the treatment of cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/metabolism
4.
J Biomol Struct Dyn ; 39(15): 5368-5375, 2021 09.
Article in English | MEDLINE | ID: mdl-32627689

ABSTRACT

Initially, the SARS-CoV-2 virus was emerged from Wuhan, China and rapidly spreading across the world and urges the scientific community to develop antiviral therapeutic agents. Among several strategies, drug repurposing will help to react immediately to overcome the COVID-19 pandemic. In the present study, we have chosen two clinical trial drugs against HIV-1 protease namely, TMB607 and TMC310911 to use as the inhibitors of SARS-CoV-2 main protease (Mpro) enzyme. To make use of these two inhibitors as the repurposed drugs for COVID-19, it is essential to know the molecular basis of the binding mechanism of these two molecules with the SARS-CoV-2 Mpro. To understand the binding mechanism, we have performed molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations against the SARS-CoV-2 Mpro. The docking results indicate that both molecules form intermolecular interactions with the active site amino acids of Mpro enzyme. However, during the MD simulations, TMB607 forms strong interaction with the key amino acids of Mpro, and remains intact. The RMSD and RMSF values of both complexes were stable throughout the MD simulations. The MM-GBSA binding free energy values of both complexes are -43.7 and -34.9 kcal/mol, respectively. This in silico study proves that the TMB607 molecule binds strongly with the SARS-CoV-2 Mpro enzyme and it may be suitable for the drug repurposing of COVID-19 and further drug designing.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , HIV-1 , Pharmaceutical Preparations , HIV Protease/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2
5.
China Pharmacy ; (12): 4766-4769, 2015.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-502659

ABSTRACT

OBJECTIVE:To explore the method for the scientific and standard management of clinical trial drugs. METHODS:By theory analysis and empirical analysis,the management model of clinical trial drugs in our hospital was introduced in terms of software and hardware construction of clinical trial pharmacy,the formulation of drug management system and standard operation procedure,regular quality control and drug information management platform construction,etc. RESULTS:In the experience of our hospital,it could safeguard the safety of drug use in subjects and scientificity and preciseness of drug clinical trial results through the concentrated administration trial drugs by full-time pharmacists according to national laws and regulations,management system and standard operation procedure,and regular quality control inspection by quality control group. CONCLUSIONS:Drug clinical trial institute strictly abide the requirements of Good Clinical Practice,strengthen the management of trial drugs and im-prove information management continuously,which is of important significance to construct standardized,detailed and high-effi-ciency centralized management system of clinical trial drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...