Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Saudi J Biol Sci ; 30(12): 103846, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38046866

ABSTRACT

Microbacterium sp. strain 1S1, an arsenic-resistant bacterial strain, was isolated with 75 mM MIC against arsenite. Brownish precipitation with silver nitrate appeared, which confirmed its oxidizing ability against arsenite. The bacterial genomic DNA underwent Illumina and Nanopore sequencing, revealing a distinctive cluster of genes spanning 9.6 kb associated with arsenite oxidation. These genes were identified within an isolated bacterial strain. Notably, the smaller subunit (aioB) of the arsenite oxidizing gene at the chromosomal DNA locus (Prokka_01508) was pinpointed. This gene, aioB, is pivotal in arsenite oxidation, a process crucial for energy metabolism. Upon thorough sequencing analysis, only a singular megaplasmid was detected within the isolated bacterial strain. Strikingly, this megaplasmid did not harbor any genes responsible for arsenic resistance or detoxification. This intriguingly indicates that the bacterial strain relies on the arsenic oxidizing genes present for its efficient arsenic oxidation capability. This is especially true for Microbacterium sp. strain 1S1. Subsequently, a segment of genes linked to arsenic resistance was successfully cloned into E. coli (DH5a). The fragment of arsenic-resistant genes was cloned in E. coli (DH5a), further confirmed by the AgNO3 method. This genetically engineered E. coli (DH5a) can decontaminate arsenic-contaminated sites.

2.
3 Biotech ; 11(7): 340, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34221811

ABSTRACT

Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.

SELECTION OF CITATIONS
SEARCH DETAIL