Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Article in English | MEDLINE | ID: mdl-38973306

ABSTRACT

Allorecognition-the ability of an organism to discriminate between self and nonself-is crucial to colonial marine animals to avoid invasion by other individuals in the same habitat. The cnidarian hydroid Hydractinia has long been a major research model in studying invertebrate allorecognition, establishing a rich knowledge foundation. In this study, we introduce a new cnidarian model Cladonema radiatum (C. radiatum). C. radiatum is a hydroid jellyfish which also forms polyp colonies interconnected with stolons. Allorecognition responses-fusion or regression of stolons-are observed when stolons encounter each other. By transmission electron microscopy, we observe rapid tissue remodeling contributing to gastrovascular system connection in fusion. Meanwhile, rejection responses are regulated by reconstruction of the chitinous exoskeleton perisarc, and induction of necrotic and autophagic cellular responses at cells in contact with the opponent. Genetic analysis identifies allorecognition genes: six Alr genes located on the putative allorecognition complex and four immunoglobulin superfamily genes on a separate genome region. C. radiatum allorecognition genes show notable conservation with the Hydractinia Alr family. Remarkedly, stolon encounter assays of inbred lines reveal that genotypes of Alr1 solely determine allorecognition outcomes in C. radiatum.

2.
Cell Rep ; 43(6): 114210, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38787723

ABSTRACT

Hunger and satiety can have an influence on decision-making, sensory processing, and motor behavior by altering the internal state of the brain. This process necessitates the integration of peripheral sensory stimuli into the central nervous system. Here, we show how animals without a central nervous system such as the cnidarian Hydra measure and integrate satiety into neuronal circuits and which specific neuronal populations are involved. We demonstrate that this simple nervous system, previously referred to as diffuse, has an endodermal subpopulation (N4) similar to the enteric nervous system (feeding-associated behavior) and an ectodermal population (N3) that performs central nervous system-like functions (physiology/motor). This view of a supposedly simple nervous system could open an important window into the origin of more complex nervous systems.


Subject(s)
Central Nervous System , Enteric Nervous System , Hydra , Neurons , Animals , Hydra/physiology , Neurons/physiology , Enteric Nervous System/physiology , Central Nervous System/physiology , Behavior, Animal/physiology , Satiety Response/physiology
3.
ISME Commun ; 4(1): ycae054, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38707840

ABSTRACT

Cnidarians, such as corals and sea anemones, associate with a wide range of bacteria that have essential functions, including nutrient cycling and the production of antimicrobial compounds. Within cnidarians, bacteria can colonize all microhabitats including the tissues. Among them are obligate intracellular bacteria of the phylum Chlamydiota (chlamydiae) whose impact on cnidarian hosts and holobionts, especially corals, remain unknown. Here, we conducted a meta-analysis of previously published 16S rRNA gene metabarcoding data from cnidarians (e.g. coral, jellyfish, and anemones), eight metagenome-assembled genomes (MAGs) of coral-associated chlamydiae, and one MAG of jellyfish-associated chlamydiae to decipher their diversity and functional potential. While the metabarcoding dataset showed an enormous diversity of cnidarian-associated chlamydiae, six out of nine MAGs were affiliated with the Simkaniaceae family. The other three MAGs were assigned to the Parasimkaniaceae, Rhabdochlamydiaceae, and Anoxychlamydiaceae, respectively. All MAGs lacked the genes necessary for an independent existence, lacking any nucleotide or vitamin and most amino acid biosynthesis pathways. Hallmark chlamydial genes, such as a type III secretion system, nucleotide transporters, and genes for host interaction, were encoded in all MAGs. Together these observations suggest an obligate intracellular lifestyle of coral-associated chlamydiae. No unique genes were found in coral-associated chlamydiae, suggesting a lack of host specificity. Additional studies are needed to understand how chlamydiae interact with their coral host, and other microbes in coral holobionts. This first study of the diversity and functional potential of coral-associated chlamydiae improves our understanding of both the coral microbiome and the chlamydial lifestyle and host range.

4.
PeerJ ; 12: e17349, 2024.
Article in English | MEDLINE | ID: mdl-38784394

ABSTRACT

Background: Antibiotics are commonly used for controlling microbial growth in diseased organisms. However, antibiotic treatments during early developmental stages can have negative impacts on development and physiology that could offset the positive effects of reducing or eliminating pathogens. Similarly, antibiotics can shift the microbial community due to differential effectiveness on resistant and susceptible bacteria. Though antibiotic application does not typically result in mortality of marine invertebrates, little is known about the developmental and transcriptional effects. These sublethal effects could reduce the fitness of the host organism and lead to negative changes after removal of the antibiotics. Here, we quantify the impact of antibiotic treatment on development, gene expression, and the culturable bacterial community of a model cnidarian, Nematostella vectensis. Methods: Ampicillin, streptomycin, rifampicin, and neomycin were compared individually at two concentrations, 50 and 200 µg mL-1, and in combination at 50 µg mL-1 each, to assess their impact on N. vectensis. First, we determined the impact antibiotics have on larval development. Next Amplicon 16S rDNA gene sequencing was used to compare the culturable bacteria that persist after antibiotic treatment to determine how these treatments may differentially select against the native microbiome. Lastly, we determined how acute (3-day) and chronic (8-day) antibiotic treatments impact gene expression of adult anemones. Results: Under most exposures, the time of larval settlement extended as the concentration of antibiotics increased and had the longest delay of 3 days in the combination treatment. Culturable bacteria persisted through a majority of exposures where we identified 359 amplicon sequence variants (ASVs). The largest proportion of bacteria belonged to Gammaproteobacteria, and the most common ASVs were identified as Microbacterium and Vibrio. The acute antibiotic exposure resulted in differential expression of genes related to epigenetic mechanisms and neural processes, while constant application resulted in upregulation of chaperones and downregulation of mitochondrial genes when compared to controls. Gene Ontology analyses identified overall depletion of terms related to development and metabolism in both antibiotic treatments. Discussion: Antibiotics resulted in a significant increase to settlement time of N. vectensis larvae. Culturable bacterial species after antibiotic treatments were taxonomically diverse. Additionally, the transcriptional effects of antibiotics, and after their removal result in significant differences in gene expression that may impact the physiology of the anemone, which may include removal of bacterial signaling on anemone gene expression. Our research suggests that impacts of antibiotics beyond the reduction of bacteria may be important to consider when they are applied to aquatic invertebrates including reef building corals.


Subject(s)
Anti-Bacterial Agents , Larva , Sea Anemones , Animals , Anti-Bacterial Agents/pharmacology , Sea Anemones/genetics , Sea Anemones/drug effects , Larva/microbiology , Larva/drug effects , Larva/genetics , Ampicillin/pharmacology , Neomycin/pharmacology , Streptomycin/pharmacology , Rifampin/pharmacology , Gene Expression/drug effects
5.
Pharmacol Res ; 203: 107173, 2024 May.
Article in English | MEDLINE | ID: mdl-38580186

ABSTRACT

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.


Subject(s)
Cnidaria , Peptides , Receptors, Neuropeptide Y , Animals , Humans , Mice , Cell Movement/drug effects , Focal Adhesion Kinase 1/drug effects , Focal Adhesion Kinase 1/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Ligands , Molecular Docking Simulation , Neovascularization, Physiologic/drug effects , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Peptides/pharmacology , Protein Kinase C/drug effects , Protein Kinase C/metabolism , Receptors, Neuropeptide Y/drug effects , Receptors, Neuropeptide Y/metabolism , Signal Transduction/drug effects , src-Family Kinases/drug effects , src-Family Kinases/metabolism , Zebrafish , Cnidaria/chemistry , Phosphoinositide Phospholipase C/drug effects , Phosphoinositide Phospholipase C/metabolism
6.
Proc Biol Sci ; 291(2021): 20232626, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38654652

ABSTRACT

Bioluminescence is a widespread phenomenon that has evolved multiple times across the tree of life, converging among diverse fauna and habitat types. The ubiquity of bioluminescence, particularly in marine environments where it is commonly used for communication and defense, highlights the adaptive value of this trait, though the evolutionary origins and timing of emergence remain elusive for a majority of luminous organisms. Anthozoan cnidarians are a diverse group of animals with numerous bioluminescent species found throughout the world's oceans, from shallow waters to the light-limited deep sea where bioluminescence is particularly prominent. This study documents the presence of bioluminescent Anthozoa across depth and explores the diversity and evolutionary origins of bioluminescence among Octocorallia-a major anthozoan group of marine luminous organisms. Using a phylogenomic approach and ancestral state reconstruction, we provide evidence for a single origin of bioluminescence in Octocorallia and infer the age of occurrence to around the Cambrian era, approximately 540 Ma-setting a new record for the earliest timing of emergence of bioluminescence in the marine environment. Our results further suggest this trait was largely maintained in descendants of a deep-water ancestor and bioluminescent capabilities may have facilitated anthozoan diversification in the deep sea.


Subject(s)
Anthozoa , Biological Evolution , Luminescence , Phylogeny , Animals , Anthozoa/genetics
7.
Front Zool ; 21(1): 8, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500146

ABSTRACT

BACKGROUND: The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al. Cell 173(6):1520-1534.e20). However, the mapping of the single cell reads still suffers from relatively poor gene annotations and a draft genome consisting of many scaffolds. RESULTS: Here we present a new wildtype resource of the developmental single cell atlas, by re-mapping of sequence data first published in Steger et al. (2022) and Cole et al. (Nat Commun 14(1):1747, 2023), to the new chromosome-level genome assembly and corresponding gene models in Zimmermann et al. (Nat Commun 14, 8270 (2023). https://doi.org/10.1038/s41467-023-44080-7 ). We expand the pre-existing dataset through the incorporation of additional sequence data derived from the capture and sequencing of cell suspensions from four additional samples: 24 h gastrula, 2d planula, an inter-parietal region of the bodywall from a young unsexed animal, and another adult mesentery from a mature male animal. CONCLUSION: Our analyses of the full cell-state inventory provide transcriptomic signatures for 127 distinct cell states, of which 47 correspond to neuroglandular subtypes. We also identify two distinct putatively immune-related transcriptomic profiles that segregate between the inner and outer cell layers. Furthermore, the new gene annotation Nv2 has markedly improved the mapping on the single cell transcriptome data and will therefore be of great value for the community and anyone using the dataset.

8.
Mar Pollut Bull ; 201: 116167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394793

ABSTRACT

Aquaculture industry represents a continuously growing sector playing a fundamental role in pursuing United Nation's goals. Increasing sea-surface temperatures, the growth of encrusting species and current cage cleaning practices proved to affect the productivity of commercial species. Here, through a Dynamic Energy Budget application under two different IPCC scenarios, we investigate the long-term effects of Pennaria disticha fragments' on Mytilus galloprovincialis' functional traits as a result of cage cleaning practices. While Climate-Change did not exert a marked effect on mussels' Life-History traits, the simulated effect of cage cleanings highlighted a positive effect on total weight, fecundity and time to commercial size. West-Mediterranean emerged as the most affected sector, with Malta, Montenegro, Morocco, Syria, Tunisia and Turkey between the top-affected countries. These outcomes confirm the reliability of a DEB-approach in projecting at different spatial and temporal scale eco-physiological results, avoiding the limitation of short-term studies and the difficulties of long-term ones.


Subject(s)
Climate Change , Mytilus , Animals , Reproducibility of Results , Shellfish/analysis , Aquaculture
9.
J Parasitol ; 109(6): 574-579, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38104628

ABSTRACT

The lined sea anemone, Edwardsiella lineata, parasitizes the ctenophore Mnemiopsis leidyi, which is one of the most destructive marine invasive species in the world. Mnemiopsis leidyi is known to tolerate a wide range of environmental conditions. However, the environmental tolerances of its most prominent parasite have never been characterized. Here we determined the effects of temperature (18, 22, 26, and 30 C) and salinity (6, 15, 24, and 33 ppt) on the survival and development of E. lineata from a vermiform parasite to a free-living polyp. At higher temperatures and lower salinities, E. lineata experienced significantly higher mortality, and it failed to develop into an adult polyp at the highest temperature (30 C) and lowest salinities we tested (6 ppt or 15 ppt). While such temperature and salinity restrictions would not currently prevent E. lineata from infecting M. leidyi in many of the European waters where it has become a destructive invasive species, these environmental limitations may be reducing overlap between host and parasite within the host's native range, a situation that could be exacerbated by climate change.


Subject(s)
Ctenophora , Parasites , Sea Anemones , Animals , Temperature , Salinity
10.
Proc Biol Sci ; 290(2009): 20231563, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37876192

ABSTRACT

Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.


Subject(s)
Cnidaria , Sea Anemones , Animals , Sea Anemones/genetics , Genes, Homeobox , Phylogeny , Evolution, Molecular , Multigene Family
11.
J Exp Biol ; 226(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37655651

ABSTRACT

Siphonophores are ubiquitous and often highly abundant members of pelagic ecosystems throughout the open ocean. They are unique among animal taxa in that many species use multiple jets for propulsion. Little is known about the kinematics of the individual jets produced by nectophores (the swimming bells of siphonophores) or whether the jets are coordinated during normal swimming behavior. Using remotely operated vehicles and SCUBA, we video recorded the swimming behavior of several physonect species in their natural environment. The pulsed kinematics of the individual nectophores that comprise the siphonophore nectosome were quantified and, based on these kinematics, we examined the coordination of adjacent nectophores. We found that, for the five species considered, nectophores located along the same side of the nectosomal axis (i.e. axially aligned) were coordinated and their timing was offset such that they pulsed metachronally. However, this level of coordination did not extend across the nectosome and no coordination was evident between nectophores on opposite sides of the nectosomal axis. For most species, the metachronal contraction waves of nectophores were initiated by the apical nectophores and traveled dorsally. However, the metachronal wave of Apolemia rubriversa traveled in the opposite direction. Although nectophore groups on opposite sides of the nectosome were not coordinated, they pulsed with similar frequencies. This enabled siphonophores to maintain relatively linear trajectories during swimming. The timing and characteristics of the metachronal coordination of pulsed jets affects how the jet wakes interact and may provide important insight into how interacting jets may be optimized for efficient propulsion.


Subject(s)
Ecosystem , Hydrozoa , Animals , Biomechanical Phenomena , Swimming
12.
Proc Biol Sci ; 290(2004): 20222490, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37528711

ABSTRACT

Cnidarians are regarded as one of the earliest-diverging animal phyla. One of the hallmarks of the cnidarian body plan is the evolution of a free-swimming medusa in some medusozoan classes, but the origin of this innovation remains poorly constrained by the fossil record and molecular data. Previously described macrofossils, putatively representing medusa stages of crown-group medusozoans from the Cambrian of Utah and South China, are here reinterpreted as ctenophore-grade organisms. Other putative Ediacaran to Cambrian medusozoan fossils consist mainly of microfossils and tubular forms. Here we describe Burgessomedusa phasmiformis gen. et sp. nov., the oldest unequivocal macroscopic free-swimming medusa in the fossil record. Our study is based on 182 exceptionally preserved body fossils from the middle Cambrian Burgess Shale (Raymond Quarry, British Columbia, Canada). Burgessomedusa possesses a cuboidal umbrella up to 20 cm high and over 90 short, finger-like tentacles. Phylogenetic analysis supports a medusozoan affinity, most likely as a stem group to Cubozoa or Acraspeda (a group including Staurozoa, Cubozoa and Scyphozoa). Burgessomedusa demonstrates an ancient origin for the free-swimming medusa life stage and supports a growing number of studies showing an early evolutionary diversification of Medusozoa, including of the crown group, during the late Precambrian-Cambrian transition.


Subject(s)
Biological Evolution , Cnidaria , Animals , Phylogeny , Swimming , Fossils , British Columbia
13.
PeerJ ; 11: e15023, 2023.
Article in English | MEDLINE | ID: mdl-37151292

ABSTRACT

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Subject(s)
Coral Reefs , Dinoflagellida , Genetic Variation , Dinoflagellida/classification , Dinoflagellida/genetics , Phylogeny , Consensus , Anthozoa , Symbiosis
14.
Elife ; 122023 04 06.
Article in English | MEDLINE | ID: mdl-37022138

ABSTRACT

Circadian clocks infer time of day by integrating information from cyclic environmental factors called zeitgebers, including light and temperature. Single zeitgebers entrain circadian rhythms, but few studies have addressed how multiple, simultaneous zeitgeber cycles interact to affect clock behavior. Misalignment between zeitgebers ('sensory conflict') can disrupt circadian rhythms, or alternatively clocks may privilege information from one zeitgeber over another. Here, we show that temperature cycles modulate circadian locomotor rhythms in Nematostella vectensis, a model system for cnidarian circadian biology. We conduct behavioral experiments across a comprehensive range of light and temperature cycles and find that Nematostella's circadian behavior is disrupted by chronic misalignment between light and temperature, which involves disruption of the endogenous clock itself rather than a simple masking effect. Sensory conflict also disrupts the rhythmic transcriptome, with numerous genes losing rhythmic expression. However, many metabolic genes remained rhythmic and in-phase with temperature, and other genes even gained rhythmicity, implying that some rhythmic metabolic processes persist even when behavior is disrupted. Our results show that a cnidarian clock relies on information from light and temperature, rather than prioritizing one signal over the other. Although we identify limits to the clock's ability to integrate conflicting sensory information, there is also a surprising robustness of behavioral and transcriptional rhythmicity.


Almost all living things exhibit circadian rhythms ­ internally driven biological processes ­ which regulate important bodily functions, including sleep and wake cycles, over a roughly 24-hour period. Circadian clocks govern these rhythms by receiving information from the environment that allows them to tell what time of day it is. Two of the most important environmental signals, known as 'zeitgebers' ­ meaning 'time giver' ­ are light and temperature. In nature, circadian clocks must integrate information from multiple zeitgebers simultaneously. Typically, over a 24-hour period, temperature increases and decreases with the light cycle, getting warmer during the day and colder at night. However, artificial light pollution and circadian disruption ­ such as shift work ­ can impact the natural relationship between light and temperature. This 'sensory conflict', where two zeitgebers provide conflicting information about the time of day, can impact ecosystems such as coral reefs; and is also linked to poor health in humans. How circadian clocks behave in complex multi-zeitgeber environments and specifically, whether they prioritize one zeitgeber over another is not fully understood. To investigate how cnidarians ­ a group of marine animals including corals and jellyfish ­ respond to sensory conflict, Berger and Tarrant varied the relationship between light and temperature cycles using the sea anemone Nematostella vectensis as a model system. Nematostella is a nocturnal cnidarian, meaning it moves most at night. First, Berger and Tarrant kept Nematostella in dark conditions with 24-hour temperature cycles ­ starting cold, increasing to a peak in the middle of the day before decreasing towards the end of the day. Monitoring Nematostella movement revealed that they moved most during the cold phase, showing that temperature cycles alone can maintain rhythmic behavior. Similarly, when temperature and light cycles were aligned such that both rose and fell together, nocturnal behavior was preserved. However, when large misalignments between light and temperature cycles were introduced ­ such that temperature decreased during light periods and increased in the dark ­ nocturnal behavior was almost completely lost. This suggests that both light and temperature interact to produce complex patterns of circadian behavior, with neither signal being prioritized over the other. Additionally, Berger and Tarrant investigated how sensory conflict impacts the activity of Nematostella genes. While many genes remained rhythmic, suggesting some gene expression persists when behavior is disturbed, others that were rhythmic became arrhythmic. In contrast, a selection of genes that do not normally display rhythmic behavior gained rhythmic expression. Genes related to protein metabolism and other energy-intensive processes were particularly disrupted. In an increasingly 24/7 society, it is important to understand how complex multi-sensory environments impact circadian rhythms and as a result, health and fitness. The findings show that certain light and temperature regimes severely disrupt Nematostella behavior and could be useful in predicting how other organisms might respond to disruptions such as light pollution. In the future, such information could be used to design optimal light regimes for ecosystems in which the relationship between light cycles and other environmental signals is disrupted by human behavior.


Subject(s)
Circadian Clocks , Sea Anemones , Animals , Sea Anemones/genetics , Circadian Rhythm/genetics , Circadian Clocks/genetics , Time , Transcriptome
15.
Environ Toxicol Chem ; 42(6): 1359-1370, 2023 06.
Article in English | MEDLINE | ID: mdl-36946339

ABSTRACT

Manganese (Mn) is an essential element and is generally considered to be one of the least toxic metals to aquatic organisms, with chronic effects rarely seen at concentrations below 1000 µg/L. Anthropogenic activities lead to elevated concentrations of Mn in tropical marine waters. Limited data suggest that Mn is more acutely toxic to adults than to early life stages of scleractinian corals in static renewal tests. However, to enable the inclusion of sufficient sensitive coral data in species sensitivity distributions to derive water quality guideline values for Mn, we determined the acute toxicity of Mn to the adult scleractinian coral, Acropora muricata, in flow-through exposures. The 48-h median effective concentration was 824 µg Mn/L (based on time-weighted average, measured, dissolved Mn). The endpoint was tissue sloughing, a lethal process by which coral tissue detaches from the coral skeleton. Tissue sloughing was unrelated to superoxidase dismutase activity in coral tissue, and occurred in the absence of bleaching, that is, toxic effects were observed for the coral host, but not for algal symbionts. We confirm that adult scleractinian corals are uniquely sensitive to Mn in acute exposures at concentrations 10-340 times lower than those reported to cause acute or chronic toxicity to coral early life stages, challenging the traditional notion that early life stages are more sensitive than mature organisms. Environ Toxicol Chem 2023;42:1359-1370. © 2023 Commonwealth Scientific and Industrial Research Organisation. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Anthozoa , Animals , Manganese/toxicity , Water Quality , Coral Reefs
16.
PeerJ ; 11: e14749, 2023.
Article in English | MEDLINE | ID: mdl-36751631

ABSTRACT

Overexposure to ultraviolet radiation (UVR) emitted by the sun can damage and kill living cells in animals, plants, and microorganisms. In aquatic environments, UVR can penetrate nearly 47 m into the water column, severely impacting many marine organisms. Jellyfish are often considered resilient to environmental stressors, potentially explaining their success in environmentally disturbed areas, but the extent of their resilience to UVR is not well known. Here, we tested resiliency to UVR by exposing benthic polyps of the moon jellyfish, Aurelia sp., to UVA and UVB-the two types of UVR that reach Earth's surface-both separately and in combination. We quantified asexual reproduction rates and polyp attachment to hard substrate, in addition to qualitative observations of polyp health. There were no differences in asexual reproduction rates between polyps exposed to isolated UVA and polyps that received no UVR. Polyps reproduced when exposed to short term (∼7-9 days) isolated UVB, but long-term exposure limited reproduction and polyp attachment to the substrate. When exposed to both UVA and UVB, polyps were unable to feed and unable to remain attached to the substrate, did not reproduce, and ultimately, experienced 100% mortality within 20 days. Although many studies only examine the effects of UVB, the combination of UVA and UVB here resulted in greater negative impacts than either form of UVR in isolation. Therefore, studies that only examine effects of UVB potentially underestimate environmentally relevant effects of UVR. These results suggest that polyps are unsuccessful under UVR stress, so the planula larval stage must settle in low-UVR environments to establish the success of the polyp stage.


Subject(s)
Aquatic Organisms , Ultraviolet Rays , Animals , Reproduction
17.
Article in English | MEDLINE | ID: mdl-36767709

ABSTRACT

Rhizostoma pulmo is a widely distributed scyphozoan in the Mediterranean Sea. Their stings result mainly in erythema, small vesicles, or/and pain, and cause a high number of bathers to seek assistance from first-aid services during the summer season. Despite the threat that jellyfish stings represent to public health, there is disagreement in the scientific community on first-aid protocols, with the dispute largely centered around the effectiveness of vinegar. In the present research, we investigated the effect of commonly used rinse solutions on nematocyst discharge in R. pulmo and the effect of vinegar on three more scyphozoans (Aurelia sp., Cassiopea sp., and Rhizostoma luteum). Scented ammonia, vinegar, and acetic acid triggered nematocyst discharge in R. pulmo. Vinegar also caused nematocyst discharge in Aurelia sp., Cassiopea sp., and R. luteum. In contrast, seawater, baking soda, freshwater, urine, and hydrogen peroxide were considered neutral solutions that did not induce nematocyst discharge. These results indicate that the use of vinegar, acetic acid, or commercial products based on these compounds is counterproductive. Their use can worsen pain and discomfort caused not only by R. pulmo stings but also by those of any scyphozoan. The use of seawater is recommended for cleaning the R. pulmo sting site until an inhibitor solution that irreversibly prevents nematocyst discharge is discovered.


Subject(s)
Bites and Stings , Cnidaria , Cnidarian Venoms , Scyphozoa , Animals , Acetic Acid , Pain
18.
Environ Sci Pollut Res Int ; 30(17): 50057-50066, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36787068

ABSTRACT

Cell volume regulation is an essential strategy for the maintenance of life under unfavorable osmotic conditions. Mechanisms aimed at minimizing the physiological challenges caused by environmental changes are crucial in anisosmotic environments. However, aquatic ecosystems experience multiple stressors, including variations in salinity and heavy metal pollution. The accumulation of heavy metals in aquatic ecosystems has a significant effect on the biota, leading to impaired function. The aim of this study was to investigate the capacity of volume regulation in isolated cells of the sea anemone Bunodosoma cangicum exposed to nominal copper (Cu) concentrations of 5 and 50 µg L-1, associated or not with hypoosmotic (15‰) or hyperosmotic (45‰) shock for 15 min. In the absence of the metal, our results showed volume maintenance in all osmotic conditions. Our results showed that cell volume was maintained under all osmotic conditions in the absence of Cu. Similarly, no significant differences were observed in cell volumes under isosmotic and hyperosmotic conditions in the presence of both Cu concentrations. A similar homeostatic response was observed under the hypoosmotic condition with 5 µg L-1 Cu. Our results showed an increase in cell volume with exposure of the cells to the hypoosmotic condition and 50 µg L-1 Cu. The response could be associated with the increased bioavailability of Cu, reduced ability to resist multixenobiotics and their efflux pathways, and the impairment of water efflux in specialized transmembrane proteins. Therefore, B. cangicum pedal disk cells can tolerate osmotic variations in aquatic ecosystems. However, the capacity to regulate cell volume under hypoosmotic conditions can be affected by the presence of a metal contaminant (50 µg L-1 Cu), which could be due to the inhibition of water channels.


Subject(s)
Metals, Heavy , Sea Anemones , Water Pollutants, Chemical , Animals , Copper/metabolism , Sea Anemones/metabolism , Ecosystem , Metals, Heavy/metabolism , Cell Size , Water Pollutants, Chemical/metabolism
19.
Genome Biol Evol ; 15(3)2023 03 03.
Article in English | MEDLINE | ID: mdl-36669828

ABSTRACT

Ion channels are highly diverse in the cnidarian model organism Nematostella vectensis (Anthozoa), but little is known about the evolutionary origins of this channel diversity and its conservation across Cnidaria. Here, we examined the evolution of voltage-gated K+ channels in Cnidaria by comparing genomes and transcriptomes of diverse cnidarian species from Anthozoa and Medusozoa. We found an average of over 40 voltage-gated K+ channel genes per species, and a phylogenetic reconstruction of the Kv, KCNQ, and Ether-a-go-go (EAG) gene families identified 28 voltage-gated K+ channels present in the last common ancestor of Anthozoa and Medusozoa (23 Kv, 1 KCNQ, and 4 EAG). Thus, much of the diversification of these channels took place in the stem cnidarian lineage prior to the emergence of modern cnidarian classes. In contrast, the stem bilaterian lineage, from which humans evolved, contained no more than nine voltage-gated K+ channels. These results hint at a complexity to electrical signaling in all cnidarians that contrasts with the perceived anatomical simplicity of their neuromuscular systems. These data provide a foundation from which the function of these cnidarian channels can be investigated, which will undoubtedly provide important insights into cnidarian physiology.


Subject(s)
Cnidaria , Potassium Channels, Voltage-Gated , Sea Anemones , Animals , Humans , Cnidaria/genetics , Potassium Channels, Voltage-Gated/genetics , Phylogeny , Sea Anemones/genetics , Genome , Signal Transduction
20.
Biol Open ; 12(3)2023 03 15.
Article in English | MEDLINE | ID: mdl-36716103

ABSTRACT

Ocean acidification (OA) resulting from anthropogenic CO2 emissions is impairing the reproduction of marine organisms. While parental exposure to OA can protect offspring via carryover effects, this phenomenon is poorly understood in many marine invertebrate taxa. Here, we examined how parental exposure to acidified (pH 7.40) versus ambient (pH 7.72) seawater influenced reproduction and offspring performance across six gametogenic cycles (13 weeks) in the estuarine sea anemone Nematostella vectensis. Females exhibited reproductive plasticity under acidic conditions, releasing significantly fewer but larger eggs compared to ambient females after 4 weeks of exposure, and larger eggs in two of the four following spawning cycles despite recovering fecundity, indicating long-term acclimatization and greater investment in eggs. Males showed no changes in fecundity under acidic conditions but produced a greater percentage of sperm with high mitochondrial membrane potential (MMP; a proxy for elevated motility), which corresponded with higher fertilization rates relative to ambient males. Finally, parental exposure to acidic conditions did not significantly influence offspring development rates, respiration rates, or heat tolerance. Overall, this study demonstrates that parental exposure to acidic conditions impacts gamete production and physiology but not offspring performance in N. vectensis, suggesting that increased investment in individual gametes may promote fitness.


Subject(s)
Sea Anemones , Seawater , Animals , Female , Male , Seawater/chemistry , Hydrogen-Ion Concentration , Ocean Acidification , Semen , Spermatozoa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...