Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 706
Filter
1.
Biomed Pharmacother ; 177: 117118, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002440

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Drug Delivery Systems , Liver Neoplasms , Sorafenib , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Sorafenib/administration & dosage , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Drug Delivery Systems/methods , Animals , Nanoparticles , Drug Resistance, Neoplasm
2.
Adv Mater ; : e2404784, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38958110

ABSTRACT

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.

3.
J Nanobiotechnology ; 22(1): 431, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034407

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.


Subject(s)
Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/drug therapy , Animals , Nanomedicine/methods , Nanotechnology/methods , Combined Modality Therapy , Antirheumatic Agents/therapeutic use , Drug Delivery Systems/methods , Nanostructures/chemistry , Nanostructures/therapeutic use , Nanoparticles/chemistry
4.
Heliyon ; 10(12): e33178, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994056

ABSTRACT

There is still little research on the co-delivery of vitamins and AgNPs to accelerate wound healing. In this study, a bi-layered electrospun PCL/PVA patch loaded with Vitamin C, Vitamin B12, and AgNPs was fabricated using a co-spinning technique. SEM, FTIR, degradation, swelling, tensile strength, disk diffusion, and MTT assay were studied. Nine rats were placed in three groups (control: no treatment, G1: without agents, and G2: with agents) for 14 days in an in-vivo study. H&E and Masson Trichrome staining were employed for histological analysis. Results showed that the final electrospun wound dressings depicted nanofibers with diameters ranging from 100 to 500 nm. The presence of AgNP enhanced the mechanical strength (40-50 MPs). An appropriate swelling (100 %) and degradation (50 %) rate was observed for groups with no significant difference (P > 0.05). G1 and G2 did not show a significant difference in terms of porosity (65 % vs. 69 %). Regarding WVTR, G2 demonstrated higher WVTR (88 vs. 95 g/m2. h). G2 showed a vitamin release of more than 90 % after 48 h. Compared to G1, G2 demonstrated good antibacterial activity (>3 cm) against E. Coli and S. aureous (P < 0.01), with cell viability of more than 93 % (P > 0.05). Furthermore, the in-vivo study approved that G2 accelerated wound healing in full-thickness wounds, compared to the control groups, with notable wound size reduction (8 mm), epithelialization, and collagen formation. The findings support the use of this simple but potent electrospun wound dressing for the healing of full-thickness wounds.

5.
Int J Nanomedicine ; 19: 6829-6843, 2024.
Article in English | MEDLINE | ID: mdl-39005958

ABSTRACT

Background: With the rapid development of nanotechnology, constructing a multifunctional nanoplatform that can deliver various therapeutic agents in different departments and respond to endogenous/exogenous stimuli for multimodal synergistic cancer therapy remains a major challenge to address the inherent limitations of chemotherapy. Methods: Herein, we synthesized hollow mesoporous Prussian Blue@zinc phosphate nanoparticles to load glucose oxidase (GOx) and DOX (designed as HMPB-GOx@ZnP-DOX NPs) in the non-identical pore structures of their HMPB core and ZnP shell, respectively, for photothermally augmented chemo-starvation therapy. Results: The ZnP shell coated on the HMPB core, in addition to providing space to load DOX for chemotherapy, could also serve as a gatekeeper to protect GOx from premature leakage and inactivation before reaching the tumor site because of its degradation characteristics under mild acidic conditions. Moreover, the loaded GOx can initiate starvation therapy by catalyzing glucose oxidation while causing an upgradation of acidity and H2O2 levels, which can also be used as forceful endogenous stimuli to trigger smart delivery systems for therapeutic applications. The decrease in pH can improve the pH-sensitivity of drug release, and O2 can be supplied by decomposing H2O2 through the catalase-like activity of HMPBs, which is beneficial for relieving the adverse conditions of anti-tumor activity. In addition, the inner HMPB also acts as a photothermal agent for photothermal therapy and the generated hyperthermia upon laser irradiation can serve as an external stimulus to further promote drug release and enzymatic activities of GOx, thereby enabling a synergetic photothermally enhanced chemo-starvation therapy effect. Importantly, these results indicate that HMPB-GOx@ZnP-DOX NPs can effectively inhibit tumor growth by 80.31% and exhibit no obvious systemic toxicity in mice. Conclusion: HMPB-GOx@ZnP-DOX NPs can be employed as potential theranostic agents that incorporate multiple therapeutic modes to efficiently inhibit tumors.


Subject(s)
Doxorubicin , Ferrocyanides , Glucose Oxidase , Phosphates , Photothermal Therapy , Zinc Compounds , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Animals , Glucose Oxidase/chemistry , Glucose Oxidase/pharmacology , Mice , Ferrocyanides/chemistry , Ferrocyanides/pharmacology , Humans , Zinc Compounds/chemistry , Phosphates/chemistry , Phosphates/pharmacology , Photothermal Therapy/methods , Porosity , Nanoparticles/chemistry , Cell Line, Tumor , Drug Liberation , Mice, Inbred BALB C , Drug Delivery Systems/methods , Neoplasms/drug therapy , Neoplasms/therapy , Drug Carriers/chemistry
6.
Article in English | MEDLINE | ID: mdl-39009932

ABSTRACT

Co-delivery of different protein-encoding polynucleotide species with varying expression kinetics of their therapeutic product will become a prominent requirement in the realm of combined nucleic acid(NA)-based therapies in the upcoming years. The current study explores the capacity for time-staggered expression of encoded proteins by simultaneous delivery of plasmid DNA (pDNA) in the core and mRNA on the shell of the same nanocarrier. The core is based on a Gelatin Type A-pDNA coacervate, thermally stabilized to form an irreversible nanogel stable enough for the deposition of cationic coats namely, protamine sulfate or LNP-related lipid mixtures. Only the protamine-coated nanocarriers remained colloidally stable following mRNA loading and could successfully co-transfect murine dendritic cell line DC2.4 with fluorescent reporter mRNA(mCherry) and pDNA (pAmCyan1). Further investigation of the protamine-coated nanosystem only, the transfection efficiency (percentage of transfected cells) and level of protein expression (mean fluorescence intensity, MFI) of mRNA and pDNA, simultaneously delivered by the same nanocarrier, were compared and kinetically assessed over 48 h in DC2.4 using flow cytometry. The onset of transfection for both nucleotides was initially delayed, with levels < 5% at 6 h. Thereafter, mRNA transfection reached 90% after 24 h and continued to slightly increase until 48 h. In contrast, pDNA transfection was clearly slower, reaching approximately 40% after 24 h, but continuing to increase to reach 94% at 48 h. The time course of protein expression (represented by MFI) for both NAs essentially followed that of transfection. Model-independent as well as model-dependent kinetic parameters applied to the data further confirmed such time-staggered expression of the two NA's where mRNA's rate of transfection and protein expression initially exceeded those of pDNA in the first 24 h of the experiment whereas the opposite was true during the second 24 h of the experiment where pDNA displayed the higher response rates. We expect that innovative nanocarriers capable of time-staggered co-delivery of different nucleotides could open new perspectives for multi-dosing, pulsatile or sustained expression of nucleic acid-based therapeutics in protein replacement, vaccination, and CRISPR-mediated gene editing scenarios.

7.
Polymers (Basel) ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000680

ABSTRACT

Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders, with a major involvement of oxidative stress in its onset and progression. Pioglitazone (Pio) is an antidiabetic drug that mainly works by reducing insulin resistance, while curcumin (Cur) is a powerful antioxidant with an important hypoglycemic effect. Both drugs are associated with several drawbacks, such as reduced bioavailability and a short half-life time (Pio), as well as instability and poor water solubility (Cur), which limit their therapeutic use. In order to overcome these disadvantages, new co-delivery (Pio and Cur) chitosan-based nanoparticles (CS-Pio-Cur NPs) were developed and compared with simple NPs (CS-Pio/CS-Cur NPs). The NPs were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). In addition, the entrapment efficiency (EE) and loading capacity (LC), as well as the release profile, of the APIs (Pio and Cur) from the CS-APIs NPs in simulated fluids (SGF, SIF, and SCF) were also assessed. All the CS-APIs NPs presented a small particle size (PS) (211.6-337.4 nm), a proper polydispersity index (PI) (0.104 and 0.289), and a positive zeta potential (ZP) (21.83 mV-32.64 mV). Based on the TEM results, an amorphous state could be attributed to the CA-APIs NPs, and the TEM analysis showed a spherical shape with a nanometric size for the CS-Pio-Cur NPs. The FT-IR spectroscopy supported the successful loading of the APIs into the CS matrix and proved some interactions between the APIs and CS. The CS-Pio-Cur NPs presented increased or similar EE (85.76% ± 4.89 for Cur; 92.16% ± 3.79 for Pio) and LC% (23.40% ± 1.62 for Cur; 10.14% ± 0.98 for Pio) values in comparison with simple NPs, CS-Cur NPs (EE = 82.46% ± 1.74; LC = 22.31% ± 0.94), and CS-Pio NPs (EE = 93.67% ± 0.89; LC = 11.24% ± 0.17), respectively. Finally, based on the release profile results, it can be appreciated that the developed co-delivery nanosystem, CS-Pio-Cur NPs, assures a controlled and prolonged release of Pio and Cur from the polymer matrix along the GI tract.

8.
Int J Pharm ; 662: 124483, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029636

ABSTRACT

Single and dual bioactive linear poly(ionic liquid)s (PIL) were synthesized for use as nanocarriers in drug delivery systems (DDS). These PILs were obtained through the (co)polymerization of the choline-based monomeric ionic liquids (MIL) with pharmaceutical anions possessing antibacterial properties, specifically [2-(methacryloyloxy)ethyl]trimethyl-ammonium with ampicillin and p-aminosalicylate (TMAMA/AMP and TMAMA/PAS). The copolymers exhibited varying chain lengths defined by a degree of polymerization (DPn = 122-370), and differing contents of ionic fraction and drugs (TMAMA 61-92 %, AMP 61-93 % and PAS 16-21 %). These parameters were adjustable by the monomer conversion (33-92 %) and the initial ratio of comonomers. In aqueous solution, the polymer particles reached nanosizes, i.e. 190-328 nm for AMP systems and 200-235 nm for AMP/PAS systems. In the release process, the pharmaceutical anions were released through exchange by phosphate anions in PBS at pH 7.4 at 37 °C. Depending on the copolymer composition the release of AMP was attained in 72-100 % (11.1-19.5 µg/mL) within 26 h by the single drug systems, while the dual drug systems released 61-100 % of AMP (14.8-24.7 µg/mL) and 82-100 % of PAS (3.1-4.8 µg/mL) within 72 h. The effectiveness in the drug delivery of the designed TMAMA polymers seems to be promising for future applications in antibiotic therapy and the combined therapy.

9.
Pharmaceutics ; 16(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931902

ABSTRACT

Glioblastoma multiform (GBM) is considered the deadliest brain cancer. Conventional therapies are followed by poor patient survival outcomes, so novel and more efficacious therapeutic strategies are imperative to tackle this scourge. Gene therapy has emerged as an exciting and innovative tool in cancer therapy. Its combination with chemotherapy has significantly improved therapeutic outcomes. In line with this, our team has developed temozolomide-transferrin (Tf) peptide (WRAP5)/p53 gene nanometric complexes that were revealed to be biocompatible with non-cancerous cells and in a zebrafish model and were able to efficiently target and internalize into SNB19 and U373 glioma cell lines. The transfection of these cells, mediated by the formulated peptide-drug/gene complexes, resulted in p53 expression. The combined action of the anticancer drug with p53 supplementation in cancer cells enhances cytotoxicity, which was correlated to apoptosis activation through quantification of caspase-3 activity. In addition, increased caspase-9 levels revealed that the intrinsic or mitochondrial pathway of apoptosis was implicated. This assumption was further evidenced by the presence, in glioma cells, of Bax protein overexpression-a core regulator of this apoptotic pathway. Our findings demonstrated the great potential of peptide TMZ/p53 co-delivery complexes for cellular transfection, p53 expression, and apoptosis induction, holding promising therapeutic value toward glioblastoma.

10.
Front Pharmacol ; 15: 1389922, 2024.
Article in English | MEDLINE | ID: mdl-38831883

ABSTRACT

Combination therapies can enhance the sensitivity of cancer to drugs, lower drug doses, and reduce side effects in cancer treatment. However, differences in the physicochemical properties and pharmacokinetics of different therapeutic agents limit their application. To avoid the above dilemma and achieve accurate control of the synergetic ratio, a nanoscale co-delivery system (NCDS) has emerged as a prospective tool for combined therapy in cancer treatment, which is increasingly being used to co-load different therapeutic agents. In this study, we have summarized the mechanisms of therapeutic agents in combination for cancer therapy, nanoscale carriers for co-delivery, drug-loading strategies, and controlled/targeted co-delivery systems, aiming to give a general picture of these powerful approaches for future NCDS research studies.

11.
Pharm Res ; 41(7): 1493-1505, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38918308

ABSTRACT

PURPOSE: Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS: A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS: TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS: These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Rheumatoid , Diterpenes , Drug Liberation , Indoles , Nanoparticles , Phenanthrenes , Polymers , Silicon Dioxide , Animals , Silicon Dioxide/chemistry , Arthritis, Rheumatoid/drug therapy , Nanoparticles/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacokinetics , Phenanthrenes/chemistry , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacokinetics , Phenanthrenes/pharmacology , Rats , Diterpenes/administration & dosage , Diterpenes/chemistry , Diterpenes/pharmacokinetics , Diterpenes/pharmacology , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacokinetics , Indoles/pharmacology , Polymers/chemistry , Porosity , Male , Epoxy Compounds/chemistry , Epoxy Compounds/administration & dosage , Glucosamine/chemistry , Glucosamine/administration & dosage , Rats, Sprague-Dawley , Drug Carriers/chemistry , Humans , Mice , Delayed-Action Preparations , Inflammation/drug therapy , Inflammation/prevention & control
12.
Eur J Pharm Biopharm ; 201: 114348, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844097

ABSTRACT

Nitric oxide (NO) / ß-Lapachone (Lap) combined therapy by causing oxidative stress is an effective tumor therapy strategy. Herein, a dual-responsive lipid nanoparticles (LNPs) LSNO for NO / Lap co-delivery were constructed from the zinc-coordinated lipid (DSNO(Zn)) and the hydrophobic drug Lap in the presence of helper lipids (DOPE and DSPE-PEG2000). The zinc-coordinated structure in LSNO might elevate the Zn2+ content in tumor cells, contributing to antioxidant imbalance. The fluorescent assays proved the light-triggered NO release and fluorescent self-reporting abilities of LSNO. In addition, the LNPs had good drug release behavior under high concentration of GSH, indicating the NO / drug co-delivery capacity. In vitro antitumor assays showed that the NO / Lap combination treatment group could induce more significant tumor cell growth inhibition and cell apoptosis than individual NO or Lap treatment. The following mechanism studies revealed that NO / Lap combination treatment led to distinct oxidative stress by producing reactive oxygen species (ROS) and peroxynitrite anion (ONOO-). On the other hand, the intracellular redox balance could be further disrupted by Lap-induced NADPH consumption and Zn2+ / NO-induced reductase activities downregulation, thus promoting the degree of cell damage. Besides, it was also found that NO and Lap could directly damage nuclear DNA and induce mitochondrial dysfunction, thereby leading to caspase-3 activation and tumor cell death. These results proved that LSNO could serve as a promising multifunctional tumor therapy platform.


Subject(s)
Nanoparticles , Naphthoquinones , Nitric Oxide , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Naphthoquinones/administration & dosage , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Nitric Oxide/metabolism , Nitric Oxide/administration & dosage , Humans , Nanoparticles/chemistry , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Drug Delivery Systems/methods , Drug Liberation , Zinc/chemistry , Zinc/administration & dosage , Neoplasms/drug therapy , Neoplasms/metabolism , Lipids/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology
13.
Colloids Surf B Biointerfaces ; 241: 114029, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38878663

ABSTRACT

Pickering emulsions provide a promising platform for the efficient delivery of bioactive. However, co-delivery of fragile bioactives with different physicochemical properties for comprehensive effects still faces practical challenges due to the limited protection for bioactives and the lack of stimuli-responsive property for on-demand release. Herein, a stimuli-responsive co-delivery system is developed based on biomineralized particles stabilized Pickering emulsions. In this tailor co-delivery system, hydrophilic bioactive (pepsin) with the fragile structure is encapsulated and immobilized by biomineralization, the obtained biomineralized particles (PPS@CaCO3) are further utilized as emulsifiers to form O/W Pickering emulsions, in which the hydrophobic oxidizable bioactive (curcumin) is stably trapped into the dispersed phase. The results show that two bioactives are successfully co-encapsulated in Pickering emulsions, and benefiting from the protection capacities of biomineralization and Pickering emulsions, the activity of pepsin and curcumin shows a 7.33-fold and 144.83-fold enhancement compared to the free state, respectively. Moreover, In vitro study demonstrates that Pickering emulsions enable to co-release of two bioactives with high activity retention by the acid-induced hydrolyzation of biomineralized particles. This work provides a powerful stimuli-responsive platform for the co-delivery of multiple bioactive compounds, enabling high activity of bioactives for the comprehensive health effects.


Subject(s)
Curcumin , Emulsifying Agents , Emulsions , Particle Size , Emulsions/chemistry , Emulsifying Agents/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Hydrophobic and Hydrophilic Interactions , Drug Carriers/chemistry , Drug Delivery Systems , Calcium Carbonate/chemistry , Pepsin A/chemistry , Pepsin A/metabolism , Humans , Surface Properties , Drug Liberation , Biomineralization/drug effects
14.
Int J Pharm X ; 7: 100248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689600

ABSTRACT

Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.

15.
Carbohydr Polym ; 338: 122196, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763723

ABSTRACT

Triple negative breast cancer (TNBC) represents the most aggressive and heterogenous disease, and combination therapy holds promising potential. Here, an enzyme-responsive polymeric prodrug with self-assembly properties was synthesized for targeted co-delivery of paclitaxel (PTX) and ursolic acid (UA). Hyaluronic acid (HA) was conjugated with UA, yielding an amphiphilic prodrug with 13.85 mol% UA and a CMC of 32.3 µg/mL. The HA-UA conjugate exhibited ∼14 % and 47 % hydrolysis at pH 7.4 and in tumor cell lysate. HA-UA/PTX NPs exhibited a spherical structure with 173 nm particle size, and 0.15 PDI. The nanoparticles showed high drug loading (11.58 %) and entrapment efficiency (76.87 %) of PTX. Release experiments revealed accelerated drug release (∼78 %) in the presence of hyaluronidase enzyme. Cellular uptake in MDA-MB-231 cells showed enhanced uptake of HA-UA/PTX NPs through CD44 receptor-mediated endocytosis. In vitro, HA-UA/PTX NPs exhibited higher cytotoxicity, apoptosis, and mitochondrial depolarization compared to PTX alone. In vivo, HA-UA/PTX NPs demonstrated improved pharmacokinetic properties, with 2.18, 2.40, and 2.35-fold higher AUC, t1/2, and MRT compared to free PTX. Notably, HA-UA/PTX NPs exhibited superior antitumor efficacy with a 90 % tumor inhibition rate in 4T1 tumor model and low systemic toxicity, showcasing their significant potential as carriers for TNBC combination therapy.


Subject(s)
Hyaluronic Acid , Nanoparticles , Paclitaxel , Triple Negative Breast Neoplasms , Triterpenes , Ursolic Acid , Triterpenes/chemistry , Triterpenes/pharmacology , Hyaluronic Acid/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Humans , Nanoparticles/chemistry , Animals , Female , Paclitaxel/pharmacology , Paclitaxel/chemistry , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Cell Line, Tumor , Drug Liberation , Apoptosis/drug effects , Mice , Drug Carriers/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Mice, Inbred BALB C , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/chemistry
16.
Int J Biol Macromol ; 269(Pt 1): 131971, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705336

ABSTRACT

A dual pH/temperature sensitive core-shell nanoformulation has been developed based on ZIF-8 coated with chitosan-poly(N-isopropyl acrylamide) (CS-PNIPAAm) for co-delivery of doxorubicin (DOX) and carboplatin (CBP) in breast cancer cells. The resulting nanoparticles (NPs) had particle sizes around 200 nm and a zeta potential of about +30 mV. The CBP and DOX loading contents in the final NPs were 11.6 % and 55.54 %, respectively. NPs showed a pH and thermoresponsive drug release profile with a sustained prolonged release under physiological conditions. The in vitro cytotoxicity experiments showed a significant synergism of CBP and DOX to induce the IC50 of 1.96 µg/mL in MCF-7 cells and 4.54 µg/mL in MDA-MB-231 cells. Also, the final NPs were safer than free DOX and CBP on normal cells. The in vitro study confirmed the higher potency of the designed NPs in combination therapy against breast cancer cells with lower side effects than free drugs.


Subject(s)
Acrylic Resins , Breast Neoplasms , Carboplatin , Chitosan , Doxorubicin , Drug Carriers , Drug Liberation , Nanoparticles , Humans , Chitosan/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Hydrogen-Ion Concentration , Nanoparticles/chemistry , Acrylic Resins/chemistry , Female , Carboplatin/pharmacology , Carboplatin/chemistry , Drug Carriers/chemistry , MCF-7 Cells , Cell Line, Tumor , Temperature , Imidazoles/chemistry , Imidazoles/pharmacology , Metal-Organic Frameworks/chemistry , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Particle Size
17.
Eur J Pharm Biopharm ; 200: 114327, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759900

ABSTRACT

P-glycoprotein (P-gp) overexpressed mutidrug resistance (MDR) is currently a key factor limiting the effectiveness of breast cancer chemotherapy. Systemic administration based on P-gp-associated mechanism leads to severe toxic side effects. Here, we designed a T7 peptide-modified mixed liposome (T7-MLP@DTX/SchB) that, by active targeting co-delivering chemotherapeutic agents and P-gp inhibitors, harnessed synergistic effects to improve the treatment of MDR breast cancer. This study established drug-resistant cell models and animal models. Subsequently, comprehensive evaluations involving cell uptake, cell apoptosis, cellular toxicity assays, in vivo tumor-targeting capability, and anti-tumor activity assays were conducted to assess the drug resistance reversal effects of T7-MLP@DTX/SchB. Additionally, a systematic assessment of the biosafety profile of T7-MLP@DTX/SchB was executed, including blood profiles, biochemical markers, and histopathological examination. It was found that this co-delivery strategy successfully exerted the synergistic effects, since there was a significant tumor growth inhibitory effect on multidrug-resistant breast cancer. Targeted modification with T7 peptide enhanced the therapeutic efficacy remarkably, while vastly ameliorating the biocompatibility compared to free drugs. The intriguing results supported the promising potential use of T7-MLP@DTX/SchB in overcoming MDR breast cancer treatment.


Subject(s)
Breast Neoplasms , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Liposomes , Mice, Inbred BALB C , Female , Animals , Drug Resistance, Neoplasm/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Humans , Mice , Drug Resistance, Multiple/drug effects , Cell Line, Tumor , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Delivery Systems/methods , Xenograft Model Antitumor Assays , Mice, Nude , MCF-7 Cells , Peptide Fragments/administration & dosage , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Collagen Type IV
18.
ACS Appl Mater Interfaces ; 16(20): 25710-25726, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739808

ABSTRACT

The present study investigated the concurrent delivery of antineoplastic drug, doxorubicin, and HER2 siRNA through a targeted theranostic metallic gold nanoparticle designed using polysaccharide, PSP001. The as-synthesized HsiRNA@PGD NPs were characterized in terms of structural, functional, physicochemical, and biological properties. HsiRNA@PGD NPs exposed adequate hydrodynamic size, considerable ζ potential, and excellent drug/siRNA loading and encapsulation efficiency. Meticulous exploration of the biocompatible dual-targeted nanoconjugate exhibited an appealing biocompatibility and pH-sensitive cargo release kinetics, indicating its safety for use in clinics. HsiRNA@PGD NPs deciphered competent cancer cell internalization, enhanced cytotoxicity mediated via the induction of apoptosis, and excellent downregulation of the overexpressing target HER2 gene. Further in vivo explorations in the SKBR3 xenograft breast tumor model revealed the appealing tumor reduction properties, selective accumulation in the tumor site followed by significant suppression of the HER2 gene which contributed to the exclusive abrogation of breast tumor mass by the HsiRNA@PGD NPs. Compared to free drugs or the monotherapy constructs, the dual delivery approach produced a synergistic suppression of breast tumors both in vitro and in vivo. Hence the drawings from these findings implicate that the as-synthesized HsiRNA@PGD NPs could offer a promising platform for chemo-RNAi combinational breast cancer therapy.


Subject(s)
Breast Neoplasms , Doxorubicin , Gene Silencing , RNA, Small Interfering , Receptor, ErbB-2 , Animals , Female , Humans , Mice , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Mice, Inbred BALB C , Mice, Nude , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology
19.
Int J Nanomedicine ; 19: 3387-3404, 2024.
Article in English | MEDLINE | ID: mdl-38617801

ABSTRACT

Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Programmed Cell Death 1 Receptor , Immunotherapy , Drug Delivery Systems , CD8-Positive T-Lymphocytes , Neoplasms/drug therapy
20.
J Adv Res ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636588

ABSTRACT

INTRODUCTION: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer with an extremely dismal prognosis and few treatment options. As a desmoplastic tumor, TNBC tumor cells are girdled by stroma composed of cancer-associated fibroblasts (CAFs) and their secreted stromal components. The rapidly proliferating tumor cells, together with the tumor stroma, exert additional solid tissue pressure on tumor vasculature and surrounding tissues, severely obstructing therapeutic agent from deep intratumoral penetration, and resulting in tumor metastasis and treatment resistance. OBJECTIVES: Fucoxanthin (FX), a xanthophyll carotenoid abundant in marine algae, has attracted widespread attention as a promising alternative candidate for tumor prevention and treatment. Twist is a pivotal regulator of epithelial to mesenchymal transition, and its depletion has proven to sensitize antitumor drugs, inhibit metastasis, reduce CAFs activation and the following interstitial deposition, and increase tumor perfusion. The nanodrug delivery system co-encapsulating FX and nucleic acid drug Twist siRNA (siTwist) was expected to form a potent anti-TNBC therapeutic cyclical feedback loop. METHODS AND RESULTS: Herein, our studies constituted a novel self-assembled polymer nanomedicine (siTwist/FX@HES-CH) based on the amino-modified hydroxyethyl starch (HES-NH2) grafted with hydrophobic segment cholesterol (CH). The MTT assay, flow cytometry apoptosis analysis, transwell assay, western blot, and 3D multicellular tumor spheroids growth inhibition assay all showed that siTwist/FX@HES-CH could kill tumor cells and inhibit their metastasis in a synergistic manner. The in vivo anti-TNBC efficacy was demonstrated that siTwist/FX@HES-CH remodeled tumor microenvironment, facilitated interstitial barrier crossing, killed tumor cells synergistically, drastically reduced TNBC orthotopic tumor burden and inhibited lung metastasis. CONCLUSION: Systematic studies revealed that this dual-functional nanomedicine that targets both tumor cells and tumor microenvironment significantly alleviates TNBC orthotopic tumor burden and inhibits lung metastasis, establishing a new paradigm for TNBC therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...