Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
PNAS Nexus ; 3(7): pgae280, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055687

ABSTRACT

Ultrasound, or sound at frequencies exceeding the conventional range of human hearing, is not only audible to mice, microbats, and dolphins, but also creates an auditory sensation when delivered through bone conduction in humans. Although ultrasound is utilized for brain activation and in hearing aids, the physiological mechanism of ultrasonic hearing remains unknown. In guinea pigs, we found that ultrasound above the hearing range delivered through ossicles of the middle ear evokes an auditory brainstem response and a mechano-electrical transduction current through hair cells, as shown by the local field potential called the cochlear microphonic potential (CM). The CM synchronizes with ultrasound, and like the response to audible sounds is actively and nonlinearly amplified. In vivo optical nano-vibration analysis revealed that the sensory epithelium in the hook region, the basal extreme of the cochlear turns, resonates in response both to ultrasound within the hearing range and to harmonics beyond the hearing range. The results indicate that hair cells can respond to stimulation at the optimal frequency and its harmonics, and the hook region detects ultrasound stimuli with frequencies more than two octaves higher than the upper limit of the ordinary hearing range.

2.
J Appl Physiol (1985) ; 125(2): 353-361, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29722618

ABSTRACT

Among possible causes of visual impairment or headache experienced by astronauts in microgravity or postflight and that hamper their performance, elevated intracranial pressure (ICP) has been invoked but never measured for lack of noninvasive methods. The goal of this work was to test two noninvasive methods of ICP monitoring using in-ear detectors of ICP-dependent auditory responses, acoustic and electric, in acute microgravity afforded by parabolic flights. The devices detecting these responses were handheld tablets routinely used in otolaryngology for hearing diagnosis, which were customized for ICP extraction and serviceable by unskilled operators. These methods had been previously validated against invasive ICP measurements in neurosurgery patients. The two methods concurred in their estimation of ICP changes with microgravity, i.e., 11.0 ± 7.7 mmHg for the acoustic method ( n = 7 subjects with valid results out of 30, auditory responses being masked by excessive in-flight noise in 23 subjects) and 11.3 ± 10.6 mmHg for the electric method ( n = 10 subjects with valid results out of 10 tested despite the in-flight noise). These results agree with recent publications using invasive access to cerebrospinal fluid in parabolic flights and suggest that acute microgravity has a moderate average effect on ICP, similar to body tilt from upright to supine, yet with some subjects undergoing large effects whereas others seem immune. The electric in-ear method would be suitable for ICP monitoring in circumstances and with subjects such that invasive measurements are excluded. NEW & NOTEWORTHY In-ear detectors of intracranial pressure-dependent auditory responses allow intracranial pressure to be monitored noninvasively during acute microgravity. The average pressure increase during 20-s long sessions in microgravity is 11 mmHg, comparable with an effect of body tilt. However, intersubject variability is large, with subjects who repeatedly experience from nothing to twice the average effect. A systematic in-flight use would allow the relationship between space adaptation syndrome and ICP to be established or dismissed.


Subject(s)
Ear/physiology , Intracranial Pressure/physiology , Monitoring, Physiologic/methods , Adult , Astronauts , Head-Down Tilt/physiology , Humans , Middle Aged , Posture/physiology , Space Flight/methods , Weightlessness , Young Adult
3.
Iran J Child Neurol ; 12(2): 58-65, 2018.
Article in English | MEDLINE | ID: mdl-29696047

ABSTRACT

OBJECTIVE: Cochlear microphonic (CM) is a cochlear AC electric field, recorded within, around, and remote from its sources. Nowadays it can contribute to the differential diagnosis of different auditory pathologies such as auditory neuropathy spectrum disorder (ANSD). This study compared CM waveforms (CMWs) and amplitudes with broad and narrow band stimuli in 25 healthy male young adults Wistar rats. MATERIALS & METHODS: This experimental study was accomplished in the School of Rehabilitation Sciences of Iran University of Medical Sciences, Tehran, Iran (April, 2016). Using an extratympanic technique in ECochG (Electrocochleography) recording, CMWs in response to click and tonal stimuli with different octave frequencies were recorded at a high intensity level in subjects. The CMW amplitudes were calculated by a graphical user interface (GUI) designed in MATLAB. RESULTS: The CMW magnitude increased upon an increase in bandwidth stimulation. CM amplitude with click stimulation was larger than tonal stimuli. Across tonal stimuli, the CMW amplitudes at lower frequency tones were larger than those at higher frequency tones. Those findings were statistically significant (P<0.001). CONCLUSION: CMW amplitude with click as broadband stimulus was larger than those with tone bursts as narrowband stimulation. Click stimulation due to the width of spectral involves greater regions of cochlear partition. Therefore, CMW most likely is a reflection of spatial summation of voltage drops generated by hair cell groups in response to acoustic stimulation. In order to production nature of CM potentials as well as their very small magnitudes especially with tonal stimuli, thus, we recommend using click stimulation for CM potential recording.

4.
Audiol Neurootol ; 22(2): 89-95, 2017.
Article in English | MEDLINE | ID: mdl-28793285

ABSTRACT

The objective was to design in gerbils a model of reversible decrease in cochlear blood flow (CBF) and analyze its influence on cochlear function. In Mongolian gerbils injected with ferromagnetic microbeads, a magnet placed near the porus acusticus allowed CBF to be manipulated. The cochlear microphonic potential (CM) from the basal cochlea was monitored by a round-window electrode. In 13 of the 20 successfully injected gerbils, stable CBF reduction was obtained for 11.5 min on average. The CM was affected only when CBF fell to less than 60% of its baseline, yet remained >40% of its initial level in about 2/3 of such cases. After CBF restoration, CM recovery was fast and usually complete. Reduced CM came with a 35- to 45-dB threshold elevation of neural responses determined by compound action potentials. This method allowing reversible changes of CBF confirms the robustness of cochlear function to decreased CBF. It can be used to study whether a hypovascularized cochlea is abnormally sensitive to stress.


Subject(s)
Cochlea/blood supply , Cochlear Microphonic Potentials/physiology , Animals , Auditory Threshold , Cochlea/physiopathology , Gerbillinae , Hearing , Regional Blood Flow/physiology , Round Window, Ear
5.
Braz. j. otorhinolaryngol. (Impr.) ; 82(6): 722-736, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828244

ABSTRACT

Abstract Introduction: Auditory Neuropathy/Dyssynchrony is a disorder characterized by the presence of Otoacoustic Emissions and Cochlear Microphonic Potentials, an absence or severe alteration of Brainstem Evoked Auditory Potential, auditory thresholds incompatible with speech thresholds and altered acoustic reflexes. The study of the Cochlear Microphonic Potential appears to be the most important tool for an accurate diagnosis of this pathology. Objective: Determine the characteristics of the Cochlear Microphonic in Auditory Neuropathy/Dyssynchrony using an integrative review. Methods: Bibliographic survey of Pubmed and Bireme platforms and MedLine, LILACS and SciELO data banks, with standardized searches up to July 2014, using keywords. Criteria were established for the selection and assessment of the scientific studies surveyed, considering the following aspects: author, year/place, degree of recommendation/level of scientific evidence, objective, sample, age range, mean age, tests, results and conclusion. Results: Of the 1959 articles found, 1914 were excluded for the title, 20 for the abstract, 9 for the text of the article, 2 for being repeated and 14 were selected for the study. Conclusion: The presence of the Cochlear Microphonic is a determining finding in the differential diagnosis of Auditory Neuropathy/Dyssynchrony. The protocol for the determination of Cochlear Microphonic must include the use of insert earphones, reverse polarity and blocking the stimulus tube to eliminate electrical artifact interference. The amplitude of the Cochlear Microphonic in Auditory Neuropathy/Dyssynchrony shows no significant difference from that of normal individuals. The duration of the Cochlear Microphonic is longer in individuals with Auditory Neuropathy/Dyssynchrony.


Resumo Introdução: A Neuropatia/Dessincronia Auditiva é uma doença caracterizada pela presença das Emissões Otoacústicas e do Microfonismo Coclear, com ausência ou grave alteração do Potencial Evocado Auditivo de Tronco Encefálico, limiares auditivos incompatíveis com limiares vocais e reflexos acústicos alterados. O estudo do Microfonismo Coclear parece ser a ferramenta mais importante para um diagnóstico preciso desta patologia. Objetivo: Verificar por meio de uma revisão integrativa as características do Microfonismo Coclear na Neuropatia/Dessincronia Auditiva. Método: Levantamento bibliográfico nas plataformas Pubmed e Bireme e nas bases de dados MedLine, LILACS e SciELO, com buscas padronizadas até julho de 2014, utilizando-se palavraschave. Para a seleção e avaliação dos estudos científicos levantados, foram estabelecidos critérios, contemplando os aspectos: autor, ano/local, grau de recomendação/nível de evidência científica, objetivo, amostra, faixa etária, média de idade em anos, testes, resultados e conclusão. Resultados: Dos 1959 artigos encontrados, 1914 foram excluídos pelo título, 20 pelo resumo, nove pela leitura do artigo, dois eram repetidos e 14 foram selecionados para o estudo. Conclusão: A presença do Microfonismo Coclear é um achado determinante no diagnóstico diferencial da Neuropatia/Dessincronia auditiva. O protocolo de registro do Microfonismo Coclear deve contar com o uso de fones de inserção, a inversão da polaridade e o bloqueio do tubo do estímulo para impedir a interferência de artefato elétrico. A amplitude do Microfonismo Coclear na Neuropatia/Dessincronia auditiva não apresenta diferença significante entre a amplitude do Microfonismo Coclear em ouvintes normais. A duração do Microfonismo Coclear é maior em indivíduos com Neuropatia/Dessincronia auditiva.


Subject(s)
Humans , Auditory Threshold/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Otoacoustic Emissions, Spontaneous/physiology , Cochlear Microphonic Potentials/physiology , Hearing Loss, Central/physiopathology
6.
Braz J Otorhinolaryngol ; 82(6): 722-736, 2016.
Article in English | MEDLINE | ID: mdl-27177976

ABSTRACT

INTRODUCTION: Auditory Neuropathy/Dyssynchrony is a disorder characterized by the presence of Otoacoustic Emissions and Cochlear Microphonic Potentials, an absence or severe alteration of Brainstem Evoked Auditory Potential, auditory thresholds incompatible with speech thresholds and altered acoustic reflexes. The study of the Cochlear Microphonic Potential appears to be the most important tool for an accurate diagnosis of this pathology. OBJECTIVE: Determine the characteristics of the Cochlear Microphonic in Auditory Neuropathy/Dyssynchrony using an integrative review. METHODS: Bibliographic survey of Pubmed and Bireme platforms and MedLine, LILACS and SciELO data banks, with standardized searches up to July 2014, using keywords. Criteria were established for the selection and assessment of the scientific studies surveyed, considering the following aspects: author, year/place, degree of recommendation/level of scientific evidence, objective, sample, age range, mean age, tests, results and conclusion. RESULTS: Of the 1959 articles found, 1914 were excluded for the title, 20 for the abstract, 9 for the text of the article, 2 for being repeated and 14 were selected for the study. CONCLUSION: The presence of the Cochlear Microphonic is a determining finding in the differential diagnosis of Auditory Neuropathy/Dyssynchrony. The protocol for the determination of Cochlear Microphonic must include the use of insert earphones, reverse polarity and blocking the stimulus tube to eliminate electrical artifact interference. The amplitude of the Cochlear Microphonic in Auditory Neuropathy/Dyssynchrony shows no significant difference from that of normal individuals. The duration of the Cochlear Microphonic is longer in individuals with Auditory Neuropathy/Dyssynchrony.


Subject(s)
Auditory Threshold/physiology , Cochlear Microphonic Potentials/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Hearing Loss, Central/physiopathology , Otoacoustic Emissions, Spontaneous/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL