Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Ultrasonics ; 141: 107341, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796976

ABSTRACT

Ultrasonic testing is an established method of non-destructive evaluation. The increasing complexity of material systems requires an extension of conventional methods. In related fields such as radar and medical ultrasound, signal optimisation and coded stimulation are successfully used and offer great potential for optimising state-of-the-art measurements and extending applications. In our work, we highlight the difference between using a coded sequence to stimulate an ultrasonic testing system and the actual performance of the digital code to motivate the exploration of inverse stimulation. In order to study inverse stimulation, a custom-built ultrasonic system was designed. As a first step, the transfer function was obtained by testing pulse and chirp stimulation. In the next step, inverse stimulation was performed based on the linear transfer function to engineer the ultrasonic echoes to have shapes similar to the target code. Finally, the auto-correlation function of the ultrasonic echoes resulting from the inverse stimulation is compared with the function of the original code sequence and the agreement of the recorded ultrasonic echo with the spectrally limited code sequence. With this work we propose an integrated, low-voltage, fully linear ultrasonic testing system where the recording of a linear transfer function allows echo engineering even for a binary coded excitation sequence. We have demonstrated that inverse stimulation enables the generation of binary ultrasonic echoes with performance equal to the digital code.

2.
Sensors (Basel) ; 24(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610378

ABSTRACT

Originating in the early 20th century, ultrasonic testing has found increasingly extensive applications in medicine, industry, and materials science. Achieving both a high signal-to-noise ratio and high efficiency is crucial in ultrasonic testing. The former means an increase in imaging clarity as well as the detection depth, while the latter facilitates a faster refresh of the image. It is difficult to balance these two indicators with a conventional short pulse to excite the probe, so in general handling methods, these two factors have a trade-off. To solve the above problems, coded excitation (CE) can increase the pulse duration and offers great potential to improve the signal-to-noise ratio with equivalent or even higher efficiency. In this paper, we first review the fundamentals of CE, including signal modulation, signal transmission, signal reception, pulse compression, and optimization methods. Then, we introduce the application of CE in different areas of ultrasonic testing, with a focus on industrial bulk wave single-probe detection, industrial guided wave detection, industrial bulk wave phased array detection, and medical phased array imaging. Finally, we point out the advantages as well as a few future directions of CE.

3.
Ultrasonics ; 138: 107224, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38134515

ABSTRACT

Bipolar sequences can be readily transmitted by ultrasound (US) pulser hardware with the full driving voltage to boost the echo magnitude in B-mode monitoring of HIFU treatment. In this study, a novel single-transmit bipolar sequence with minimum-peak-sidelobe (MPS) level is developed not only to restore the image quality of US monitoring but also remove acoustic interference from simultaneous HIFU transmission. The proposed MPS code is designed with an equal number of positive and negative bits and the bit duration should be an integer multiple of the period of the HIFU waveform. In addition, different permutations of code sequence are searched in order to obtain the optimal encoding. The received imaging echo is firstly decoded by matched filtering to cancel HIFU interference and to enhance the echo magnitude of US monitoring. Then, Wiener filtering is applied as the second-stage pulse compression to improve the final image quality. Simulations and phantom experiments are performed to compare the single-transmit MPS decoding with conventional two-transmit methods such as pulse-inversion subtraction (PIS) and Golay decoding for their performance in simultaneous US monitoring of HIFU treatment. Results show that the MPS decoding effectively removes HIFU interference even in the presence of tissue motion. The image quality of PIS and Golay decoding, on the other hand, is compromised by the uncancelled HIFU components due to tissue motion. Simultaneous US monitoring of tissue ablation using the proposed MPS decoding has also demonstrated to be feasible in ex-vivo experiments. Compared to the notch filtering that also allows single-transmit HIFU elimination, the MPS decoding is preferrable because it does not suffer from the tradeoff between residual HIFU and speckle deterioration in US monitoring images.


Subject(s)
Data Compression , Extracorporeal Shockwave Therapy , High-Intensity Focused Ultrasound Ablation , High-Intensity Focused Ultrasound Ablation/methods , Ultrasonography/methods , Motion
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 718-724, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37666762

ABSTRACT

Magneto-acoustic-electric tomography (MAET) boasts high resolution in ultrasound imaging and high contrast in electrical impedance imaging, making it of significant research value in the fields of early tumor diagnosis and bioelectrical monitoring. In this study, a method was proposed that combined high conductivity liquid metal and maximum length sequence (M sequence) coded excitation to improve the signal-to-noise ratio. It was shown that, under rotational scanning, the liquid metal significantly improved the signal-to-noise ratio of the inter-tissue magneto-acoustic-electric signal and enhanced the quality of the reconstructed image. The signal-to-noise ratio of the signal was increased by 5.6, 11.1, 21.7, and 45.7 times under the excitation of 7-, 15-, 31-, and 63-bit M sequence code, respectively. The total usage time of 31-bit M sequence coded excitation imaging was shortened by 75.6% compared with single-pulse excitation when the same signal-to-noise ratio was improved. In conclusion, the imaging method combining liquid metal and M-sequence coding excitation has positive significance for improving MAET image quality.


Subject(s)
Contrast Media , Electricity , Electric Conductivity , Acoustics , Tomography
5.
Ultrasonics ; 134: 107063, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37300907

ABSTRACT

To enhance the effectiveness and safety of focused ultrasound (FUS) therapy, ultrasound image-based guidance and treatment monitoring are crucial. However, the use of FUS transducers for both therapy and imaging is impractical due to their low spatial resolution, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To address this issue, we propose a new method that significantly improve the quality of images obtained by a FUS transducer. The proposed method employs coded excitation to enhance SNR and Wiener deconvolution to solve the problem of low axial resolution resulting from the narrow spectral bandwidth of FUS transducers. Specifically, the method eliminates the impulse response of a FUS transducer from received ultrasound signals using Wiener deconvolution, and pulse compression is performed using a mismatched filter. Simulation and commercial phantom experiments confirmed that the proposed method significantly improves the quality of images acquired by the FUS transducer. The -6 dB axial resolution was improved 1.27 mm to 0.37 mm that was similar to the resolution achieved by the imaging transducer, i.e., 0.33 mm. SNR and CNR also increased from 16.5 dB and 0.69 to 29.1 dB and 3.03, respectively, that were also similar to those by the imaging transducer (27.8 dB and 3.16). Based on the results, we believe that the proposed method has great potential to enhance the clinical utility of FUS transducers in ultrasound image-guided therapy.


Subject(s)
Data Compression , Data Compression/methods , Ultrasonography/methods , Signal-To-Noise Ratio , Computer Simulation , Phantoms, Imaging , Transducers
6.
Ultrason Imaging ; 45(1): 22-29, 2023 01.
Article in English | MEDLINE | ID: mdl-36632798

ABSTRACT

Recent advances in electronics miniaturization have led to the development of low-power, low-cost, point-of-care ultrasound scanners. Low-cost systems employing simple bi-level pulse generation devices need only utilize binary phase modulated coded excitations to significantly improve sensitivity; however the performance of complementary codes in the presence of nonlinear harmonic distortion has not been thoroughly investigated. Through simulation, it was found that nonlinear propagation media with little attenuative properties can significantly deteriorate the Peak Sidelobe Level (PSL) performance of complementary Golay coded pulse compression, resulting in PSL levels of -62 dB using nonlinear acoustics theory contrasted with -198 dB in the linear case. Simulations of 96 complementary pairs revealed that some pairs are more robust to sidelobe degradation from nonlinear harmonic distortion than others, up to a maximum PSL difference of 17 dB between the best and worst performing codes. It is recommended that users consider the effects of nonlinear harmonic distortion when implementing binary phase modulated complementary Golay coded excitations.


Subject(s)
Acoustics , Ultrasonography/methods , Computer Simulation
7.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008892

ABSTRACT

Magneto-acoustic-electric tomography (MAET) boasts high resolution in ultrasound imaging and high contrast in electrical impedance imaging, making it of significant research value in the fields of early tumor diagnosis and bioelectrical monitoring. In this study, a method was proposed that combined high conductivity liquid metal and maximum length sequence (M sequence) coded excitation to improve the signal-to-noise ratio. It was shown that, under rotational scanning, the liquid metal significantly improved the signal-to-noise ratio of the inter-tissue magneto-acoustic-electric signal and enhanced the quality of the reconstructed image. The signal-to-noise ratio of the signal was increased by 5.6, 11.1, 21.7, and 45.7 times under the excitation of 7-, 15-, 31-, and 63-bit M sequence code, respectively. The total usage time of 31-bit M sequence coded excitation imaging was shortened by 75.6% compared with single-pulse excitation when the same signal-to-noise ratio was improved. In conclusion, the imaging method combining liquid metal and M-sequence coding excitation has positive significance for improving MAET image quality.


Subject(s)
Contrast Media , Electricity , Electric Conductivity , Acoustics , Tomography
8.
Ultrasonics ; 126: 106825, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36007292

ABSTRACT

In our research we present a new method of differential compression of the Golay encoded ultrasound (DCGEU) in the standard beamforming mode to visualize the slow (<1cm/s) blood mimicking fluid flow in small diameter tubes. The proposed DCGEU method is based on synthesis of several subsequent B-mode frames acquired with certain time intervals (30 ms in this study) followed by the visualization of differential beamformed radio frequency (RF) echoes, which yielded the images of the scatterers moving slowly in the vessel and suppressing the static echoes outside the vessel. In order to extract small backscattered echoes from the vessel area we took an advantage of improved sensitivity of the complementary Golay coded sequences (CGCS). The validation of the proposed DCGEU method was carried out in two stages. In the first one, we compared the flow images in small tubes with a diameter of 1 mm and 2.5 mm, reconstructed from numerically simulated acoustic data for the standard transmission of short pulses and 16-bits long CGCS signals. In the second stage of the research, the experimental data were acquired in a flow phantom with silicone tubes with an internal diameter of 1.5 mm and 4.5 mm and a fluid flow velocity of 0.9 cm/s. The experiments were carried out using preprogrammed Verasonics Vantage™ research ultrasound system equipped with ALT L12-5/50 mm MHz linear array transducer with 7.8 MHz center frequency. It was evidenced both in simulations and experiments that the DCGEU provided a good flow image along the entire length of tubing with virtually angle independent detection in comparison with the conventional short pulse interrogation.


Subject(s)
Image Enhancement , Image Interpretation, Computer-Assisted , Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography/methods
9.
Ultrasonics ; 121: 106669, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35007837

ABSTRACT

Insufficient imaging penetration and large data acquisition are two of the major challenges of high-frequency ultrasound imaging. Based on the good autocorrelation properties of chirp signal and the feasibility of using compressed sensing theory to reconstruct high-quality ultrasound images with low sampling requirements, this paper proposed a chirp coded excitation combined with compressed sensing (CCE-CS) technique for high-frequency endoscopic ultrasound (HFEUS) imaging. The feasibility of the method was verified by a brief theoretical analysis, and the relevant parameters were selected and analyzed according to the actual engineering situation. Simulated phantoms and in-vitro tissue experiments were used to evaluate the performance of the CCE-CS. Simulation results demonstrate that CCE-CS is capable of reducing the impact of reconstruction errors and improving imaging quality through comparison with conventional methods. The reduction of reconstruction data had less impact on penetration depth, resolution and general contrast general contrast-to-noise ratio (gCNR), and the reconstructed image was closer to the original image with a maximum improvement of 37% in peak signal-to-noise ratio (PSNR). Moreover, comparisons were conducted on the digestive tract of swine, and the results show that CCE-CS is also feasible in the in-vitro environment. These results demonstrated that CCE-CS method has good potential for application to improve the imaging quality of HFEUS while reducing the sampling rate.


Subject(s)
Endosonography/methods , Intestines/diagnostic imaging , Animals , Computer Simulation , Image Processing, Computer-Assisted , In Vitro Techniques , Signal-To-Noise Ratio , Swine
10.
Ultrasonics ; 119: 106606, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34627027

ABSTRACT

The combination of air-coupled ultrasonic testing (ACUT) and ultrasonic Lamb wave is featured with long-distance propagation and high sensitivity to discontinuities, which is a promising method for rapid and accurate inspection of plate-like materials and lightweighted structures. However, dispersive nature of Lamb wave, signal attenuation plus inevitable noises would lead to low signal-to-noise ratio (SNR). To address this problem, phase coded excitation and pulse compression technique are proposed in this paper to achieve higher SNR by over 10 dB in received signals. 13-bit and 1-carrier-period Barker code is employed as both main lobe peak and Peak Side-lobe Level (PSL) are relatively high. It is demonstrated that A0 mode Lamb wave has good localization ability for defects based on these SNR-enhanced signals. Furthermore, Damage Index (DI) and modified Reconstruction Algorithm for the Probabilistic Inspection of Damage (RAPID) are applied to realize ultrasonic imaging based defect evaluation. Results show that the imaging results agree well with the actual artificial defects in terms of size and shape. Lamb-wave-based air-coupled ultrasonic testing, combined with DI and ultrasonic imaging algorithm, could be a potential way in the NDT of lightweighted structures.

11.
Ultrasonics ; 115: 106434, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33878528

ABSTRACT

Complementary Golay coded sequences (CGCS) have several advantages over conventional short pulse transmitted signals. Specifically, CGCS allow the signal-to-noise ratio (SNR) to be increased. Moreover, due to matched filtering and compression, echoes resembling the short pulse waveform with substantially higher amplitude can be obtained. However, CGCS require two subsequent transmissions to obtain a single compressed signal. This decreases the data acquisition rate and the frame rate of ultrasound imaging by two-fold. To alleviate this problem, mutually orthogonal Golay complementary sequences (MOGCS) can be used. MOGCS allow the simultaneous transmission of two CGCS pairs to be implemented, yielding the acoustic data for two image frames in one data acquisition cycle. The main objective of this work was an experimental study of the most crucial parameters of the received acoustic signals, e.g. the signal-to-noise ratio (SNR), the side-lobes level (SLL) of the signal and the axial resolution, obtained from simultaneous transmission of two pairs of CGCS comprising a MOGCS set to demonstrate their feasibility of being used in ultrasonography. For this purpose, a simultaneous synthetic transmit aperture method (SSTA) was proposed. The SSTA is based on MOGCS transmission and simultaneous reconstruction of two image frames from a single data acquisition cycle. This doubles the image reconstruction rate in comparison with conventional CGCS signals. In this paper, the ultrasound data from a perfect reflector, commercial phantoms and in vivo measurements were analysed. Two 16-bit long CGCS pairs comprising the MOGCS set were programmed and transmitted using the Verasonics Vantage™ research ultrasound system equipped with a Philips ATL L7-4 linear array ultrasound probe. It was shown that the signal parameters and overall quality of reconstructed B-mode images did not deteriorate when using the MOGCS in comparison to the conventional CGCS and short pulse signals explored so far.


Subject(s)
Image Enhancement/methods , Ultrasonography/methods , Data Compression , Humans , Image Processing, Computer-Assisted , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
12.
Ultrasonics ; 102: 106056, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31948807

ABSTRACT

Accurate evaluation of ultrasonic wave attenuation is important in many medical applications of ultrasound. The aim of this work is to present a thorough analysis of the effectiveness of using complementary Golay coded sequences (CGCS) during the evaluation of ultrasound attenuation in tissue-like materials, especially at greater depths or at high attenuation. In order to compare the results of the attenuation measurement with the use of CGCS transmission and a short two sine cycles pulse, ultrasound backscattered from medium with predefined attenuation of 0.3, 0.7 and 2 dB/[MHz × cm] were simulated. Also for the same transmission signals, measurements of ultrasound echoes scattered in the tissue phantom with an attenuation of 0.5 dB/[MHz × cm] were performed. In the case of numerically simulated data, for the CGCS excitation, the maximum depth for which the attenuation was correctly determined increased from 55 mm to 80 mm for the 0.7 dB/[MHz × cm] phantom and from 20 mm to 50 mm for the 2 dB/[MHz × cm] phantom compared to excitation of the transducer with a short two sine cycles pulse. When the measurement data obtained using the tissue phantom was used to estimate the attenuation coefficient, the relative error was determined to be 6% and 16% for the depths of 10 mm and 40 mm for the short two sine cycles pulse excitation, respectively. Corresponding values for CGCS excitation and considered depths were 2% and 4%. The use of CGSC sequence during attenuation measurements increases measurement accuracy and can improve medical diagnostic techniques.

13.
Sensors (Basel) ; 19(4)2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30791619

ABSTRACT

It has been reported that the frequency bandwidth of capacitive micro-machined ultrasonic transducers (CMUTs) is relatively broader than that of other ceramic-based conventional ultrasonic transducers. In this paper, a feasibility study for orthogonal chirp coded excitation to efficiently make use of the wide bandwidth characteristic of CMUT array is presented. The experimental result shows that the two orthogonal chirps mixed and simultaneously fired in CMUT array can be perfectly separated in decoding process of the received echo signal without sacrificing the frequency bandwidth each chirp. The experimental study also shows that frequency band-divided orthogonal chirps are successfully compressed to two short pulses having the -6 dB axial beam-width of 0.26- and 0.31-micro second for high frequency and low frequency chirp, respectively. B-mode image simulations are performed using Field II to estimate the improvement of image quality assuming that the orthogonal chirps designed for the experiments are used for simultaneous transmission multiple-zone focusing (STMF) technique. The simulation results show that the STMF technique used in CMUT array can improve the lateral resolution up to 77.1% and the contrast resolution up to 74.7%, respectively. It is shown that the penetration depth also increases by more than 3 cm.

14.
Sensors (Basel) ; 18(8)2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30096810

ABSTRACT

In this article, an approach to designing and developing an ultrahigh frequency (≤600 MHz) ultrasound analog frontend with Golay coded excitation sequence for high resolution imaging applications is presented. For the purpose of visualizing specific structures or measuring functional responses of micron-sized biological samples, a higher frequency ultrasound is needed to obtain a decent spatial resolution while it lowers the signal-to-noise ratio, the difference in decibels between the signal level and the background noise level, due to the higher attenuation coefficient. In order to enhance the signal-to-noise ratio, conventional approach was to increase the transmit voltage level. However, it may cause damaging the extremely thin piezoelectric material in the ultrahigh frequency range. In this paper, we present a novel design of ultrahigh frequency (≤600 MHz) frontend system capable of performing pseudo Golay coded excitation by configuring four independently operating pulse generators in parallel and the consecutive delayed transmission from each channel. Compared with the conventional monocycle pulse approach, the signal-to-noise ratio of the proposed approach was improved by 7⁻9 dB without compromising the spatial resolution. The measured axial and lateral resolutions of wire targets were 16.4 µm and 10.6 µm by using 156 MHz 4 bit pseudo Golay coded excitation, respectively and 4.5 µm and 7.7 µm by using 312 MHz 4 bit pseudo Golay coded excitation, respectively.

15.
Ultrasonics ; 89: 178-186, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29857178

ABSTRACT

Ultrasound computed tomography (USCT) using the transmission mode is a way to detect and assess the extent of decay in wood structures. The resolution of the ultrasonic image is closely related to the different anatomical features of wood. The complexity of the wave propagation process generates complex signals consisting of several wave packets with different signatures. Wave paths, depth dependencies, wave velocities or attenuations are often difficult to interpret. For this kind of assessment, the focus is generally on signal pre-processing. Several approaches have been used so far including filtering, spectrum analysis and a method involving deconvolution using a characteristic transfer function of the experimental device. However, all these approaches may be too sophisticated and/or unstable. The alternative methods proposed in this work are based on coded excitation, which makes it possible to process both local and general information available such as frequency and time parameters. Coded excitation is based on the filtering of the transmitted signal using a suitable electric input signal. The aim of the present study was to compare two coded-excitation methods, a chirp- and a wavelet-coded excitation method, to determine the time of flight of the ultrasonic wave, and to investigate the feasibility, the robustness and the precision of the measurement of geometrical and acoustical properties in laboratory conditions. To obtain control experimental data, the two methods were compared with the conventional ultrasonic pulse method. Experiments were conducted on a polyurethane resin sample and two samples of different wood species using two 500 kHz-transducers. The relative errors in the measurement of thickness compared with the results of caliper measurements ranged from 0.13% minimum for the wavelet-coded excitation method to 2.3% maximum for the chirp-coded excitation method. For the relative errors in the measurement of ultrasonic wave velocity, the coded excitation methods showed differences ranging from 0.24% minimum for the wavelet-coded excitation method to 2.62% maximum for the chirp-coded excitation method. Methods based on coded excitation algorithms thus enable accurate measurements of thickness and ultrasonic wave velocity in samples of wood species.

16.
Ultrasound Med Biol ; 44(1): 187-198, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29066019

ABSTRACT

Speed of sound (SoS) is an acoustic property that is highly sensitive to changes in tissues. SoS can be mapped non-invasively using ultrasonic through transmission wave tomography. This however, practically limits its clinical use to the breast. A pulse-echo-based method that has broader clinical use and that can reliably measure treatment-induced changes in SoS even under poor signal-to-noise ratio (SNR) is highly desirable. The aim of this study was to evaluate the implementation of coded excitations (CoEs) to improve pulse-echo monitoring of heat-induced changes in the SoS. In this study, a binary phase modulated Barker sequence and a linear frequency-modulated chirp were compared with a common Gaussian pulse transmission. The comparison was conducted using computer simulations, as well as transmissions in both agar-gelatin phantoms and ex vivo bovine liver. SoS changes were experimentally induced by heating the specimens with a therapeutic ultrasound system. The performance of each transmission signal was evaluated by correlating the relative echo shifts to the normalized SoS measured by through transmission. The computer simulations indicated that CoEs are beneficial at very low SNR. The Barker code performed better than both the chirp and Gaussian pulses, particularly at SNRs <10 dB (R2 = 0.81 ± 0.06, 0.68 ± 0.07 and 0.55 ± 0.08, respectively, at 0 dB). At high SNRs, the CoEs performed statistically on par with the Gaussian pulse. The experimental findings indicated that both Barker and chirp codes performed better than the Gaussian pulse on ex vivo liver (R2 = 0.80 ± 0.15, 0.79 ± 0.15 and 0.54 ± 0.17, respectively) and comparably on agar-gelatin phantoms. In conclusion, CoEs can be beneficial for assessing temperature-induced changes in the SoS using the pulse-echo method under poor SNR.


Subject(s)
Hot Temperature , Liver/diagnostic imaging , Signal Processing, Computer-Assisted , Ultrasonography, Interventional/methods , Animals , Cattle , Computer Simulation , Phantoms, Imaging , Signal-To-Noise Ratio
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-699941

ABSTRACT

Objective To solve the problem of the low signal to noise ratio (SNR)and limited imaging quality using single pulse exciting method in magnetoacoustic imaging, as well as the limited imaging speed using wave averaging processing method to magnetoacoustic signal. Methods M-sequence coded exciting method was proposed to enhance SNR imaging efficiency. The SNR improvement and sidelobe level were investigated using M-sequence code by simulation and experiments.Results The SNR of magnetoacoustic signal were 19.4,29.6,and 40.4 dB respectively under 7,31 and 127 bit M-sequence coded excitation. Three bits of M-sequence coded excitation magnetoacoustic signals had the integrated sidelobe level being 14.1,10.0 and 7.6 dB,and the peak sidelobe level being 26.3,24.3 and 21.3 dB.In case the SNR was increased by 40 dB,127 bit of M-sequence coded excitation shortened the sampling and procession time from 53.1 s to 0.520 s when compared with singl-pulse excitation combined with waveform average.Conclusion The coded excitation is significant for magnetoacoustic signal SNR and imaging quality improvement.

18.
Biomed Eng Online ; 16(1): 87, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28659191

ABSTRACT

BACKGROUND: Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. METHODS: The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. RESULTS: The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. CONCLUSIONS: Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.


Subject(s)
Elasticity Imaging Techniques/methods , Animals , Elasticity , Liver/diagnostic imaging , Phantoms, Imaging , Rats
19.
Ultrasonics ; 77: 121-132, 2017 05.
Article in English | MEDLINE | ID: mdl-28231486

ABSTRACT

Coded excitation was initially introduced to ultrasound imaging as a method for enhancing the signal-to-noise ratio (SNR). However, this method was also shown to be helpful in conjunction with synthetic aperture transmission for high frame rate imaging. Recently, we introduced two families of mismatched coded excitations based on frequency modulation chirp and combined frequency modulation and Golay code. Here "mismatched" indicates that the coded excitations generate very small cross-correlations among themselves while each has a very strong autocorrelation. Employing weakly correlated coded excitations enables performing simultaneous insonifications from several elements of the ultrasonic transducer and receiving distinguishable responses to each code. In this work, we propose and experimentally demonstrate another set of mismatched correlated coded excitations based on Golay codes. The generated phase codes share identical duration and center frequency which results in similar SNR and image resolution.

20.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(5): 653-659, 2017 Oct 01.
Article in Chinese | MEDLINE | ID: mdl-29761949

ABSTRACT

Detecting and imaging method of biological electrical characteristics based on magneto-acoustic coupling effect gives valuable information of tissue in early tumor diagnosis and bioelectrical current monitoring. Normal exciting and receiving method is to use single pulse. In this method the signal to noise ratio (SNR) is limited, so the imaging quality and imaging speed are low. In this study, we propose a processing method based on coded excitation to improve SNR and shorten the processing time. The processing method using 13 bit Barker coded excitation and 16 bit Golay code excitation are studied by simulation and experiments. The results show that SNR of magneto-acoustic signal is improved by 20.96 dB and 20.62 dB by using 13 bit Barker coded and 16 bit Golay coded excitation, respectively. It also indicates the processing time is short compare to single pulse mode. In the case of the SNR increasing, the overall acquiring and processing time under 13 bit Barker coded excitation and the 16 bit Golay coded excitation is shortened to 3.62% and 4.73%, respectively, compared to the single pulse excitation with waveform averaging method. In conclusion, the coded excitation will be significant for the improvement of magneto-acoustic signal SNR and imaging quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...