Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 692
Filter
1.
Methods Mol Biol ; 2856: 11-22, 2025.
Article in English | MEDLINE | ID: mdl-39283444

ABSTRACT

The Structural Maintenance of Chromosomes (SMC) protein complexes are DNA-binding molecular machines required to shape chromosomes into functional units and to safeguard the genome through cell division. These ring-shaped multi-subunit protein complexes, which are present in all kingdoms of life, achieve this by organizing chromosomes in three-dimensional space. Mechanistically, the SMC complexes hydrolyze ATP to either stably entrap DNA molecules within their lumen, or rapidly reel DNA into large loops, which allow them to link two stretches of DNA in cis or trans. In this chapter, the canonical structure of the SMC complexes is first introduced, followed by a description of the composition and general functions of the main types of eukaryotic and prokaryotic SMC complexes. Thereafter, the current model for how SMC complexes perform in vitro DNA loop extrusion is presented. Lastly, chromosome loop formation by SMC complexes is introduced, and how the DNA loop extrusion mechanism contributes to chromosome looping by SMC complexes in cells is discussed.


Subject(s)
Chromosomes , Chromosomes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA/chemistry , DNA/metabolism , DNA/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Adenosine Triphosphate/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry
2.
Methods Mol Biol ; 2856: 445-453, 2025.
Article in English | MEDLINE | ID: mdl-39283468

ABSTRACT

Cohesin is a protein complex that plays a key role in regulating chromosome structure and gene expression. While next-generation sequencing technologies have provided extensive information on various aspects of cohesin, integrating and exploring the vast datasets associated with cohesin are not straightforward. CohesinDB ( https://cohesindb.iqb.u-tokyo.ac.jp ) offers a web-based interface for browsing, searching, analyzing, visualizing, and downloading comprehensive multiomics cohesin information in human cells. In this protocol, we introduce how to utilize CohesinDB to facilitate research on transcriptional regulation and chromatin organization.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , Web Browser , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Humans , Software , Computational Biology/methods , Genomics/methods , Databases, Genetic , Chromatin/metabolism , Chromatin/genetics , Internet , Multiomics
3.
Proc Natl Acad Sci U S A ; 121(38): e2402518121, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39254997

ABSTRACT

The in vivo three-dimensional genomic architecture of adult mature neurons at homeostasis and after medically relevant perturbations such as axonal injury remains elusive. Here, we address this knowledge gap by mapping the three-dimensional chromatin architecture and gene expression program at homeostasis and after sciatic nerve injury in wild-type and cohesin-deficient mouse sensory dorsal root ganglia neurons via combinatorial Hi-C, promoter-capture Hi-C, CUT&Tag for H3K27ac and RNA-seq. We find that genes involved in axonal regeneration form long-range, complex chromatin loops, and that cohesin is required for the full induction of the regenerative transcriptional program. Importantly, loss of cohesin results in disruption of chromatin architecture and severely impaired nerve regeneration. Complex enhancer-promoter loops are also enriched in the human fetal cortical plate, where the axonal growth potential is highest, and are lost in mature adult neurons. Together, these data provide an original three-dimensional chromatin map of adult sensory neurons in vivo and demonstrate a role for cohesin-dependent long-range promoter interactions in nerve regeneration.


Subject(s)
Axons , Chromatin , Cohesins , Nerve Regeneration , Promoter Regions, Genetic , Sensory Receptor Cells , Animals , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Mice , Promoter Regions, Genetic/genetics , Chromatin/metabolism , Nerve Regeneration/genetics , Nerve Regeneration/physiology , Axons/metabolism , Axons/physiology , Humans , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Enhancer Elements, Genetic/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Ganglia, Spinal/metabolism , Ganglia, Spinal/cytology , Sciatic Nerve/metabolism
4.
Genes (Basel) ; 15(9)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39336775

ABSTRACT

BACKGROUND: The STAG1 gene encodes a component of the cohesin complex, involved in chromosome segregation and DNA repair. Variants in genes of the cohesin complex determine clinical conditions characterized by facial dysmorphisms, upper limb anomalies, intellectual disability, and other neurological deficits. However, to date, the STAG1-related clinical phenotype has been poorly investigated (around 20 cases reported). METHODS AND RESULTS: We report, for the first time, two twins affected by a syndromic neurodevelopmental disorder associated with a de novo variant in the STAG1 gene. Although both the twins showed a neurodevelopmental delay, one of them showed a more severe phenotype with greater behavioral problems, speech defects and limb apraxia. CGH array showed a 15q13.3 microduplication, inherited from an unaffected mother. CONCLUSIONS: We found different degrees of behavioral, speech and cognitive impairment in two twins affected by a neurodevelopmental disorder associated with a STAG1 variant. These findings highlight the variability of the STAG1-associated phenotype or a probable role of associated variants (like the discovered 15q13.3 microduplication) in modulating the clinical features.


Subject(s)
Cell Cycle Proteins , Neurodevelopmental Disorders , Twins, Monozygotic , Humans , Cell Cycle Proteins/genetics , Twins, Monozygotic/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Male , Female , Phenotype , Child , Child, Preschool , Intellectual Disability/genetics , Intellectual Disability/pathology , Nuclear Proteins
5.
Cell Rep ; 43(9): 114656, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39240714

ABSTRACT

Cohesin is key to eukaryotic genome organization and acts throughout the cell cycle in an ATP-dependent manner. The mechanisms underlying cohesin ATPase activity are poorly understood. Here, we characterize distinct steps of the human cohesin ATPase cycle and show that the SMC1A and SMC3 ATPase domains undergo specific but concerted structural rearrangements along this cycle. Specifically, whereas the proximal coiled coil of the SMC1A ATPase domain remains conformationally stable, that of the SMC3 displays an intrinsic flexibility. The ATP-dependent formation of the heterodimeric SMC1A/SMC3 ATPase module (engaged state) favors this flexibility, which is counteracted by NIPBL and DNA binding (clamped state). Opening of the SMC3/RAD21 interface (open-engaged state) stiffens the SMC3 proximal coiled coil, thus constricting together with that of SMC1A the ATPase module DNA-binding chamber. The plasticity of the ATP-dependent interface between the SMC1A and SMC3 ATPase domains enables these structural rearrangements while keeping the ATP gate shut. VIDEO ABSTRACT.


Subject(s)
Adenosine Triphosphatases , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Humans , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Protein Domains , Adenosine Triphosphate/metabolism , Protein Binding , Chondroitin Sulfate Proteoglycans
6.
SAGE Open Med Case Rep ; 12: 2050313X241277123, 2024.
Article in English | MEDLINE | ID: mdl-39224759

ABSTRACT

The cohesin protein complex plays a vital role in various cellular processes such as sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. It is constituted by SMC1, SMC3, RAD21, STAG1/STAG2 subunits, and several regulatory proteins. Pathogenic variants in these components cause cohesinopathies, with common clinical features including facial dysmorphism, delayed growth, developmental delay, and limb anomalies. Pathogenic variants in the STAG1 contribute to an emerging syndromic developmental disorder with only 21 reported cases in the literature. We describe a 3-year-old girl presenting with congenital bilateral clubfoot and unilateral microphthalmia-clinical manifestations not previously reported in the literature. Whole exome sequencing revealed a novel de novo nonsense variant (c.1183C>T, p.(Arg395*)) in the STAG1, expanding the clinical and molecular spectrum of STAG1-related cohesinopathy. This patient's unique phenotype highlights the clinical diversity within cohesinopathies, emphasizing their relevance in cases of developmental delay and dysmorphic features. Further studies, including genotype-phenotype correlation analyses and functional investigations, are essential for enhancing our understanding of STAG1-related cohesinopathy.

7.
Leuk Lymphoma ; : 1-10, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264305

ABSTRACT

Myelodysplastic syndrome (MDS) is a heterogeneous myeloid neoplasm that is hallmarked by the acquisition of genetic events that disrupt normal trilineage hematopoiesis and results in bone marrow dysfunction. Somatic genes involving transcriptional regulation, signal transduction, DNA methylation, and chromatin modification are often implicated in disease pathogenesis. The cohesin complex, composed of SMC1, SMC3, RAD21, and either STAG1 or STAG2, has been identified as a recurrent mutational target with STAG2 mutations accounting for more than half of all cohesin mutations in myeloid malignancies. In the last decade, STAG2 cohesin biology has been of great interest given its role in transcriptional activation, association with poorer prognosis, and lack of mutation-specific therapies. This review discusses the clinical landscape of cohesin mutant myeloid malignancies, particularly STAG2 mutant MDS, including molecular features of STAG2 mutations, clinical implications of cohesin mutant neoplasms, and the current understanding of the pathophysiological function of STAG2 mutations in MDS.

8.
EMBO J ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271794

ABSTRACT

Sister chromatid cohesion is mediated by the cohesin complex. In mitotic prophase cohesin is removed from chromosome arms in a Wapl- and phosphorylation-dependent manner. Sgo1-PP2A protects pericentromeric cohesion by dephosphorylation of cohesin and its associated Wapl antagonist sororin. However, Sgo1-PP2A relocates to inner kinetochores well before sister chromatids are separated by separase, leaving pericentromeric regions unprotected. Why deprotected cohesin is not removed by Wapl remains enigmatic. By reconstituting Wapl-dependent cohesin removal from chromatin in vitro, we discovered a requirement for Nek2a and Cdk1/2-cyclin A2. These kinases phosphorylate cohesin-bound Pds5b, thereby converting it from a sororin- to a Wapl-interactor. Replacement of endogenous Pds5b by a phosphorylation mimetic variant causes premature sister chromatid separation (PCS). Conversely, phosphorylation-resistant Pds5b impairs chromosome arm separation in prometaphase-arrested cells and suppresses PCS in the absence of Sgo1. Early mitotic degradation of Nek2a and cyclin A2 may therefore explain why only separase, but not Wapl, can trigger anaphase.

9.
Cells ; 13(17)2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39273012

ABSTRACT

In recent years, various technologies have emerged for the imaging of chromatin loci in living cells via catalytically inactive Cas9 (dCas9). These technologies facilitate a deeper understanding of the mechanisms behind the chromatin dynamics and provide valuable kinetic data that could not have previously been obtained via FISH applied to fixed cells. However, such technologies are relatively complicated, as they involve the expression of several chimeric proteins as well as sgRNAs targeting the visualized loci, a process that entails many technical subtleties. Therefore, the effectiveness in visualizing a specific target locus may be quite low. In this study, we directly compared two versions of a previously published CRISPR-Sirius method based on the use of sgRNAs containing eight MS2 or PP7 stem loops and the expression of MCP or PCP fused to fluorescent proteins. We assessed the visualization efficiency for several unique genomic loci by comparing the two approaches in delivering sgRNA genes (transient transfection and lentiviral transduction), as well as two CRISPR-Sirius versions (with PCP and with MCP). The efficiency of visualization varied among the loci, and not all loci could be visualized. However, the MCP-sfGFP version provided more efficient visualization in terms of the number of cells with signals than PCP-sfGFP for all tested loci. We also showed that lentiviral transduction was more efficient in locus imaging than transient transfection for both CRISPR-Sirius systems. Most of the target loci in our study were located at the borders of topologically associating domains, and we defined a set of TAD borders that could be effectively visualized using the MCP-sfGFP version of the CRISPR-Sirius system. Altogether, our study validates the use of the CRISPR-Sirius technology for live-cell visualization and highlights various technical details that should be considered when using this method.


Subject(s)
CRISPR-Cas Systems , Humans , CRISPR-Cas Systems/genetics , Chromatin/metabolism , Chromatin/genetics , HEK293 Cells , RNA, Guide, CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
10.
Bioessays ; 46(10): e2400121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39169755

ABSTRACT

Topologically associating domain (TAD) boundaries are the flanking edges of TADs, also known as insulated neighborhoods, within the 3D structure of genomes. A prominent feature of TAD boundaries in mammalian genomes is the enrichment of clustered CTCF sites often with mixed orientations, which can either block or facilitate enhancer-promoter (E-P) interactions within or across distinct TADs, respectively. We will discuss recent progress in the understanding of fundamental organizing principles of the clustered CTCF insulator codes at TAD boundaries. Specifically, both inward- and outward-oriented CTCF sites function as topological chromatin insulators by asymmetrically blocking improper TAD-boundary-crossing cohesin loop extrusion. In addition, boundary stacking and enhancer clustering facilitate long-distance E-P interactions across multiple TADs. Finally, we provide a unified mechanism for RNA-mediated TAD boundary function via R-loop formation for both insulation and facilitation. This mechanism of TAD boundary formation and insulation has interesting implications not only on how the 3D genome folds in the Euclidean nuclear space but also on how the specificity of E-P interactions is developmentally regulated.


Subject(s)
CCCTC-Binding Factor , Chromatin , Insulator Elements , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Humans , Insulator Elements/genetics , Animals , Chromatin/genetics , Chromatin/metabolism , Genome/genetics , Enhancer Elements, Genetic/genetics , Promoter Regions, Genetic/genetics , Cohesins , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics
11.
Cell Genom ; 4(8): 100627, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39096913

ABSTRACT

Excision repair cross-complementation group 2 (ERCC2) encodes the DNA helicase xeroderma pigmentosum group D, which functions in transcription and nucleotide excision repair. Point mutations in ERCC2 are putative drivers in around 10% of bladder cancers (BLCAs) and a potential positive biomarker for cisplatin therapy response. Nevertheless, the prognostic significance directly attributed to ERCC2 mutations and its pathogenic role in genome instability remain poorly understood. We first demonstrated that mutant ERCC2 is an independent predictor of prognosis in BLCA. We then examined its impact on the somatic mutational landscape using a cohort of ERCC2 wild-type (n = 343) and mutant (n = 39) BLCA whole genomes. The genome-wide distribution of somatic mutations is significantly altered in ERCC2 mutants, including T[C>T]N enrichment, altered replication time correlations, and CTCF-cohesin binding site mutation hotspots. We leverage these alterations to develop a machine learning model for predicting pathogenic ERCC2 mutations, which may be useful to inform treatment of patients with BLCA.


Subject(s)
Mutation , Urinary Bladder Neoplasms , Xeroderma Pigmentosum Group D Protein , Humans , Urinary Bladder Neoplasms/genetics , Xeroderma Pigmentosum Group D Protein/genetics , Prognosis
12.
EMBO J ; 43(19): 4173-4196, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160275

ABSTRACT

The ring-shaped cohesin complex topologically entraps two DNA molecules to establish sister chromatid cohesion. Cohesin also shapes the interphase chromatin landscape with wide-ranging implications for gene regulation, and cohesin is thought to achieve this by actively extruding DNA loops without topologically entrapping DNA. The 'loop extrusion' hypothesis finds motivation from in vitro observations-whether this process underlies in vivo chromatin loop formation remains untested. Here, using the budding yeast S. cerevisiae, we generate cohesin variants that have lost their ability to extrude DNA loops but retain their ability to topologically entrap DNA. Analysis of these variants suggests that in vivo chromatin loops form independently of loop extrusion. Instead, we find that transcription promotes loop formation, and acts as an extrinsic motor that expands these loops and defines their ultimate positions. Our results necessitate a re-evaluation of the loop extrusion hypothesis. We propose that cohesin, akin to sister chromatid cohesion establishment at replication forks, forms chromatin loops by DNA-DNA capture at places of transcription, thus unifying cohesin's two roles in chromosome segregation and interphase genome organisation.


Subject(s)
Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Cohesins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Chromatin/metabolism , Chromatin/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , DNA, Fungal/metabolism , DNA, Fungal/genetics , Chromatids/metabolism , Chromatids/genetics , Transcription, Genetic
13.
Bioessays ; 46(10): e2400137, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39093600

ABSTRACT

TAD boundaries are genomic elements that separate biological processes in neighboring domains by blocking DNA loops that are formed through Cohesin-mediated loop extrusion. Most TAD boundaries consist of arrays of binding sites for the CTCF protein, whose interaction with the Cohesin complex blocks loop extrusion. TAD boundaries are not fully impermeable though and allow a limited amount of inter-TAD loop formation. Based on the reanalysis of Nano-C data, a multicontact Chromosome Conformation Capture assay, we propose a model whereby clustered CTCF binding sites promote the successive stalling of Cohesin and subsequent dissociation from the chromatin. A fraction of Cohesin nonetheless achieves boundary read-through. Due to a constant rate of Cohesin dissociation elsewhere in the genome, the maximum length of inter-TAD loops is restricted though. We speculate that the DNA-encoded organization of stalling sites regulates TAD boundary permeability and discuss implications for enhancer-promoter loop formation and other genomic processes.


Subject(s)
CCCTC-Binding Factor , Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Cohesins , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Humans , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromatin/metabolism , Chromatin/genetics , Animals , Binding Sites , Genome/genetics , Enhancer Elements, Genetic , Promoter Regions, Genetic/genetics , DNA/metabolism , DNA/genetics
14.
Bioessays ; 46(10): e2400120, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39159466

ABSTRACT

Cohesin is a ring-shaped complex that is loaded on DNA in two different conformations. In one conformation, it forms loops to organize the interphase genome; in the other, it topologically encircles sibling chromosomes to facilitate homologous recombination and to establish the cohesion that is required for orderly segregation during mitosis. How, and even if, these two loading conformation are related is unclear. Here, I propose that loop binding is a required first step for topological binding. This loop-binding-first model integrates the known information about the two loading mechanisms, explains genetic requirements for the two and explains how topological loading evolved from loop binding.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Humans , DNA/metabolism , Animals , Chromosome Segregation , Mitosis , Chromosomes/metabolism
15.
Elife ; 132024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110499

ABSTRACT

Two different models have been proposed to explain how the endpoints of chromatin looped domains ('TADs') in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized, and experimental manipulations of the even skipped TAD boundary, homie, to test the predictions of the 'loop-extrusion' and the 'boundary-pairing' models. Our findings are incompatible with the loop-extrusion model, and instead suggest that the endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head or head-to-tail, with varying degrees of specificity. Although our experiments do not address how partners find each other, the mechanism is unlikely to require loop extrusion.


Subject(s)
Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Chromatin/chemistry , Chromatin/metabolism , Cohesins , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosome Structures , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/chemistry
16.
Yi Chuan ; 46(8): 649-660, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39140145

ABSTRACT

The localization of the meiotic specific regulatory molecule Moa1 to the centromere is regulated by the kinetochore protein CENP-C, and participates in the cohesion of sister chromatids in the centromere region mediated by the cohesin Rec8. To examine the interaction of these proteins, we analyzed the interactions between Moa1 and Rec8, CENP-C by yeast two-hybrid assays and identified several amino acid residues in Moa1 required for the interaction with CENP-C and Rec8. The results revealed that the interaction between Moa1 and CENP-C is crucial for the Moa1 to participate in the regulation of monopolar attachment of sister kinetochores. However, mutation at S143 and T150 of Moa1, which are required for interaction with Rec8 in the two-hybrid assay, did not show significant defects. Mutations in amino acid residues may not be sufficient to interfere with the interaction between Moa1 and Rec8 in vivo. Further research is needed to determine the interaction domain between Moa1 and Rec8. This study revealed specific amino acid sites at which Moa1 affects the meiotic homologous chromosome segregation, providing a deeper understanding of the mechanism of meiotic chromosome segregation.


Subject(s)
Chromosomal Proteins, Non-Histone , Meiosis , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Protein Binding , Kinetochores/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Two-Hybrid System Techniques , Chromosome Segregation , Cohesins , Phosphoproteins
17.
Proc Natl Acad Sci U S A ; 121(33): e2405177121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39110738

ABSTRACT

The ring-shaped Cohesin complex, consisting of core subunits Smc1, Smc3, Scc1, and SA2 (or its paralog SA1), topologically entraps two duplicated sister DNA molecules to establish sister chromatid cohesion in S-phase. It remains largely elusive how the Cohesin release factor Wapl binds the Cohesin complex, thereby inducing Cohesin disassociation from mitotic chromosomes to allow proper resolution and separation of sister chromatids. Here, we show that Wapl uses two structural modules containing the FGF motif and the YNARHWN motif, respectively, to simultaneously bind distinct pockets in the extensive composite interface between Scc1 and SA2. Strikingly, only when both docking modules are mutated, Wapl completely loses the ability to bind the Scc1-SA2 interface and release Cohesin, leading to erroneous chromosome segregation in mitosis. Surprisingly, Sororin, which contains a conserved FGF motif and functions as a master antagonist of Wapl in S-phase and G2-phase, does not bind the Scc1-SA2 interface. Moreover, Sgo1, the major protector of Cohesin at mitotic centromeres, can only compete with the FGF motif but not the YNARHWN motif of Wapl for binding Scc1-SA2 interface. Our data uncover the molecular mechanism by which Wapl binds Cohesin to ensure precise chromosome segregation.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Chromosome Segregation , Cohesins , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Humans , Protein Binding , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Amino Acid Motifs , Mitosis , Chromatids/metabolism , Carrier Proteins , Proto-Oncogene Proteins
18.
Mol Cell ; 84(17): 3237-3253.e6, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39178861

ABSTRACT

Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.


Subject(s)
DNA Breaks, Double-Stranded , DNA, Fungal , DNA, Single-Stranded , Rad51 Recombinase , Recombinational DNA Repair , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , DNA, Fungal/genetics , DNA, Fungal/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromatin/metabolism , Chromatin/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cohesins
19.
Mol Cell ; 84(18): 3406-3422.e6, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39173638

ABSTRACT

Partitioning of repressive from actively transcribed chromatin in mammalian cells fosters cell-type-specific gene expression patterns. While this partitioning is reconstructed during differentiation, the chromatin occupancy of the key insulator, CCCTC-binding factor (CTCF), is unchanged at the developmentally important Hox clusters. Thus, dynamic changes in chromatin boundaries must entail other activities. Given its requirement for chromatin loop formation, we examined cohesin-based chromatin occupancy without known insulators, CTCF and Myc-associated zinc-finger protein (MAZ), and identified a family of zinc-finger proteins (ZNFs), some of which exhibit tissue-specific expression. Two such ZNFs foster chromatin boundaries at the Hox clusters that are distinct from each other and from MAZ. PATZ1 was critical to the thoracolumbar boundary in differentiating motor neurons and mouse skeleton, while ZNF263 contributed to cervicothoracic boundaries. We propose that these insulating activities act with cohesin, alone or combinatorially, with or without CTCF, to implement precise positional identity and cell fate during development.


Subject(s)
CCCTC-Binding Factor , Cell Cycle Proteins , Chromatin , Chromosomal Proteins, Non-Histone , Cohesins , DNA-Binding Proteins , Animals , Chromatin/metabolism , Chromatin/genetics , Mice , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Transcription Factors/metabolism , Transcription Factors/genetics , Motor Neurons/metabolism , Cell Differentiation , Zinc Fingers , Humans , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics
20.
Development ; 151(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38975838

ABSTRACT

Cohesin, a chromatin-associated protein complex with four core subunits (Smc1a, Smc3, Rad21 and either Stag1 or 2), has a central role in cell proliferation and gene expression in metazoans. Human developmental disorders termed 'cohesinopathies' are characterized by germline variants of cohesin or its regulators that do not entirely eliminate cohesin function. However, it is not clear whether mutations in individual cohesin subunits have independent developmental consequences. Here, we show that zebrafish rad21 or stag2b mutants independently influence embryonic tailbud development. Both mutants have altered mesoderm induction, but only homozygous or heterozygous rad21 mutation affects cell cycle gene expression. stag2b mutants have narrower notochords and reduced Wnt signaling in neuromesodermal progenitors as revealed by single-cell RNA sequencing. Stimulation of Wnt signaling rescues transcription and morphology in stag2b, but not rad21, mutants. Our results suggest that mutations altering the quantity versus composition of cohesin have independent developmental consequences, with implications for the understanding and management of cohesinopathies.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Cohesins , Mutation , Zebrafish Proteins , Zebrafish , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Mutation/genetics , Gene Expression Regulation, Developmental , Wnt Signaling Pathway/genetics , Embryonic Development/genetics , Gene Dosage , Mesoderm/metabolism , Mesoderm/embryology
SELECTION OF CITATIONS
SEARCH DETAIL