Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125588

ABSTRACT

Colanic acid (CA) is an exopolysaccharide found in Enterobacteriaceae. Recently, its ability to stimulate physical activity in mice and to prolong the lifespan of invertebrates has been described. In the current work, we use standard MTT assay, fluorescence microscopy, and flow cytometry to describe CA action on several cell lines of different origins. We observed slight antiproliferative activity against colorectal cancer (HCT-116), neuroblastoma (IMR-32), and myoblast (C2C12) cell lines at a concentration of 256 µg/mL, while other cell lines of non-cancerous origin (Vero, HPF) did not show any decrease in the MTT assay. In all cell lines, we observed a rearrangement of mitochondria localization using fluorescence microscopy. CA induces cell differentiation in the myoblast cell line (C2C12) at concentrations of 50-200 µg/mL. Briefly, we observed that the number of apoptotic cells increased and the metabolic activity in the MTT assay decreased, which was accompanied by changes in cell morphology, the quantity of ROS, and the potential of the mitochondrial membrane. Taken together, these results indicate that CA is specific in cytotoxicity to cell lines of different origins and can impact mitochondria and differentiation, consistent with its potential geroprotective function.


Subject(s)
Cell Proliferation , Enterobacteriaceae , Humans , Animals , Mice , Cell Proliferation/drug effects , Enterobacteriaceae/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Polysaccharides/pharmacology , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Line
2.
J Agric Food Chem ; 72(28): 15811-15822, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38975865

ABSTRACT

Colanic acid (CA) is exopolysaccharide that presents growing potential in the food and healthcare industry as a versatile polymer. Previously, we have constructed the Escherichia coli strain WWM16 which can efficiently produce CA. In this study, WWM16 has been further engineered to produce a higher yield of CA with low molecular mass and viscosity. The gene mcbR encoding a transcriptional factor, and the genes opgD, opgG, and opgH related to the biosynthesis of osmoregulated periplasmic glucans were deleted in E. coli WWM16, and the resulting strain WWM166 produced 18.1 g/L CA. The expression level of wcaD encoding the polymerase in WWM166 was downregulated using CRISPRi. As a result, the strain WWM166/pWpD1 could produce 49.9 g/L CA with lower molecular mass. CA products were purified from both WWM166 and WWM166/pWpD1, and their molecular mass, viscosity, fluidity, hygroscopicity, and antioxidant activity were determined and compared. These findings demonstrate the potential application of CA with different molecular masses to prolong life and protect skin in the food and cosmetic industries.


Subject(s)
Escherichia coli , Molecular Weight , Escherichia coli/genetics , Escherichia coli/metabolism , Viscosity , Metabolic Engineering , Polysaccharides/metabolism , Polysaccharides/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry
3.
Microbiol Res ; 285: 127783, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795407

ABSTRACT

The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Gene Expression Regulation, Bacterial , Signal Transduction , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Phosphorylation , Virulence , Bacterial Capsules/metabolism , Bacterial Capsules/genetics , Biosensing Techniques
4.
J Agric Food Chem ; 71(37): 13857-13868, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37688786

ABSTRACT

Colanic acid (CA) is a natural polysaccharide macromolecule with rich and unique biological properties and is a promising candidate for use in food and cosmetics. To date, the efficient biosynthesis of CA and the influence of product accumulation on the strains used have yet to be precisely investigated. Herein, bottlenecks in the CA metabolic pathway were untangled by finely regulating the expression of manA, cpsG, fcl, and rcsA. Engineered strains produced CA at >1 g/L in shake flasks without dependence on cold temperatures, and it was verified in a 1 L bioreactor with a titer up to 18.64 g/L within 24 h. The accumulation of CA caused a decrease in the saturated fatty acid content (represented by C16:0 and C18:0) in the cell membrane. This study demonstrated pathway engineering for efficient CA production in cell factories and provided insights into the barriers and solutions faced in the biosynthesis of natural products.


Subject(s)
Biological Products , Escherichia coli , Escherichia coli/genetics , Bioreactors , Polysaccharides
5.
Front Cell Infect Microbiol ; 13: 1228159, 2023.
Article in English | MEDLINE | ID: mdl-37767199

ABSTRACT

Introduction: Adherent-invasive Escherichia coli (AIEC) is strongly associated with the pathogenesis of Crohn's disease (CD). However, no molecular markers currently exist for AIEC identification. This study aimed to identify differentially expressed genes (DEGs) between AIEC and non-AIEC strains that may contribute to AIEC pathogenicity and to evaluate their utility as molecular markers. Methods: Comparative transcriptomics was performed on two closely related AIEC/non-AIEC strain pairs during Intestine-407 cell infection. DEGs were quantified by RT-qPCR in the same RNA extracts, as well as in 14 AIEC and 23 non-AIEC strains to validate the results across a diverse strain collection. Binary logistical regression was performed to identify DEGs whose quantification could be used as AIEC biomarkers. Results: Comparative transcriptomics revealed 67 differences in expression between the two phenotypes in the strain pairs, 50 of which (81.97%) were corroborated by RT-qPCR. When explored in the whole strain collection, 29 DEGs were differentially expressed between AIEC and non-AIEC phenotypes (p-value < 0.042), and 42 genes between the supernatant fraction of infected cell cultures and the cellular fraction containing adhered and intracellular bacteria (p-value < 0.049). Notably, six DEGs detected in the strain collection were implicated in arginine biosynthesis and five in colanic acid synthesis. Furthermore, two biomarkers based on wzb and cueR gene expression were proposed with an accuracy of ≥ 85% in our strain collection. Discussion: This is the first transcriptomic study conducted using AIEC-infected cell cultures. We have identified several genes that may be involved in AIEC pathogenicity, two of which are putative biomarkers for identification.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Bacterial Adhesion/genetics , Intestines/pathology , Phenotype , Epithelial Cells/microbiology , Biomarkers/metabolism , Gene Expression
6.
FEMS Microbes ; 4: xtad013, 2023.
Article in English | MEDLINE | ID: mdl-37701421

ABSTRACT

In a previous in silico study, we identified an essential outer membrane protein (LptD) as an attractive target for development of novel antibiotics. Here, we characterized the effects of LptD depletion on Escherichia coli physiology and morphology. An E. coli CRISPR interference (CRISPRi) strain was constructed to allow control of lptD expression. Induction of the CRISPRi system led to ∼440-fold reduction of gene expression. Dose-dependent growth inhibition was observed, where strong knockdown effectively inhibited initial growth but partial knockdown exhibited maximum overall killing after 24 h. LptD depletion led to morphological changes where cells exhibited long, filamentous cell shapes and cytoplasmic accumulation of lipopolysaccharide (LPS). Transcriptional profiling by RNA-Seq showed that LptD knockdown led to upregulation of carbohydrate metabolism, especially in the colanic acid biosynthesis pathway. This pathway was further overexpressed in the presence of sublethal concentrations of colistin, an antibiotic targeting LPS, indicating a specific transcriptional response to this synergistic envelope damage. Additionally, exposure to colistin during LptD depletion resulted in downregulation of pathways related to motility and chemotaxis, two important virulence traits. Altogether, these results show that LptD depletion (i) affects E. coli survival, (ii) upregulates carbohydrate metabolism, and (iii) synergizes with the antimicrobial activity of colistin.

7.
J Agric Food Chem ; 71(22): 8516-8526, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37235531

ABSTRACT

Colanic acid has broad application prospects in the food and healthcare market due to its excellent physical properties and biological activities. In this study, we discovered that colonic acid production in Escherichia coli could be enhanced by regulating cardiolipin biosynthesis. Single deletion of clsA, clsB, or clsC related to cardiolipin biosynthesis in E. coli MG1655 only slightly increased colonic acid production, but double or triple deletion of these three genes in E. coli MG1655 increased colonic acid production up to 2.48-fold. Previously, we have discovered that truncating lipopolysaccharide by deletion of the waaLUZYROBSPGQ gene cluster and enhancing RcsA by deletion of genes lon and hns can increase colonic acid production in E. coli. Therefore, these genes together with clsA, clsB, or/and clsC were deleted in E. coli, and all the resulting mutants showed increased colonic acid production. The best colonic acid production was observed in the mutant WWM16, which is 126-fold higher than in the control MG1655. To further improve colonic acid production, the genes rcsA and rcsD1-466 were overexpressed in WWM16, and the resulting recombinant E. coli WWM16/pWADT could produce 44.9 g/L colonic acid, which is the highest titer reported to date.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Cardiolipins , Polysaccharides , Escherichia coli Proteins/genetics
8.
J Agric Food Chem ; 70(27): 8351-8364, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35773212

ABSTRACT

Colanic acid is a major exopolysaccharide existing in most Enterobacteriaceae when exposed to an extreme environment. Colanic acid possesses excellent physical properties and biological activities, which makes it a candidate in the food and healthcare market. Previous strategies for colanic acid overproduction in E. coli mainly focus on removing the negative regulator on colanic acid biosynthesis or overexpressing the rcsA gene to up-regulate the cps operon. In this study, modifications in metabolic pathways were implemented in E. coli mutant strains with shortened lipopolysaccharides to improve colanic acid production. First, ackA was deleted to remove the byproduct acetate and the effect of accumulated acetyl-phosphate on colanic acid production was investigated. Second, 11 genes responsible for O-antigen synthesis were deleted to reduce its competition for glucose-1-phosphate and UDP-galactose with colanic acid production. Third, uppS was overexpressed to supply lipid carriers for synthesizing a colanic acid repeat unit. Colanic acid production in the final engineered strain WZM008/pTrcS reached 11.68 g/L in a 2.0 L bioreactor, 3.54 times the colanic acid production by the WQM001 strain. The results provide insights for further engineering E. coli to maximize CA production.


Subject(s)
Escherichia coli , Lipopolysaccharides , Escherichia coli/genetics , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Metabolic Engineering , Polysaccharides/metabolism
9.
Microorganisms ; 10(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35630322

ABSTRACT

Colanic acid can promote the lifespan of humans by regulating mitochondrial homeostasis, and it has widespread applications in the field of health. However, colanic acid is produced at a low temperature (20 °C) with low titer. Using Escherichia coli K-12 MG1655, we constructed the SRP-4 strain with high colanic acid production at 30 °C by enhancing the precursor supply and relieving the regulation of transcription for colanic acid synthesis genes by the RCS system. After media optimization, the colanic acid titer increased by 579.9-fold and reached 12.2 g/L. Subsequently, we successfully purified the colanic acid hydrolase and reduced the molecular weight of colanic acid (106.854 kDa), thereby eliminating the inhibition of high-molecular-weight colanic acid on strain growth. Finally, after adding the colanic acid hydrolase (4000 U/L), the colanic acid with low molecular weight reached 24.99 g/L in 3-L bioreactor, the highest titer reported so far. This high-producing strain of colanic acid will promote the application of low-molecular-weight colanic acid in the field of health.

10.
J Agric Food Chem ; 69(46): 13881-13894, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34763421

ABSTRACT

Colanic acid has promising applications in food, cosmetic, and healthcare fields. In this study, a recombinant WQM003/pRAU was constructed by deleting genes lon and hns and overexpressing genes rcsA and galU in E. coli MG1655Δ(L-Q). After systematic optimization of fermentation conditions, colanic acid yield in WQM003/pRAU reached 19.79 g/L, the highest yield reported so far. The colanic acid produced by WQM003/pRAU was purified and its structure and physical properties were determined. This colanic acid shows a triple-helical structure and is stable up to 102 °C, and its melting temperature is 253.9 °C. This colanic acid shows a sphere-like chain conformation in aqueous solution. The viscosity of this colanic acid solution is related to concentration, shear rate, salt, temperature, and pH. At high concentrations, this colanic acid shows both viscous and elastic behaviors. These results suggest that the colanic acid produced by WQM003/pRAU has broad application prospects.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Polysaccharides
11.
Appl Biochem Biotechnol ; 193(12): 4083-4096, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34542821

ABSTRACT

Colanic acid (CA) is a major exopolysaccharide synthesized by Escherichia coli that serves as a constituent of biofilm matrices. CA demonstrates potential applications in the food, cosmetics, and pharmaceutical industry. Moreover, L-fucose, a monomeric constituent of CA, exhibits various physiological activities, such as antitumor, anti-inflammatory, and skin-whitening. Here, the effects of genetic and environmental perturbations were investigated for improving CA production by E. coli. When rcsF, a positive regulator gene of CA synthesis, was expressed in E. coli ΔwaaF, a CA-producing strain constructed previously, the CA titer increased to 3051.2 mg/L as compared to 2052.8 mg/L observed with E. coli ΔwaaF. Among the environmental factors tested, namely, osmotic and oxidative stresses and pH, pH was a primary factor that significantly improved CA production. When the pH of the culture medium of E. coli ΔwaaF + rcsF was maintained at 7, the CA titer significantly increased to 4351.6 mg/L. The CA yield obtained with E. coli ΔwaaF + rcsF grown at pH 7 was 5180.4 mg CA/g dry cell weight, which is the highest yield of CA reported so far. This engineered E. coli system with optimization of environmental conditions can be employed for fast and economically-feasible production of CA.


Subject(s)
Escherichia coli , Metabolic Engineering , Polysaccharides/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Polysaccharides/genetics
12.
Appl Environ Microbiol ; 87(23): e0138921, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34550763

ABSTRACT

Poly-3-hydroxybutyrate (PHB) is an environmentally friendly polymer and can be produced in Escherichia coli cells after overexpression of the heterologous gene cluster phaCAB. The biosynthesis of the outer membrane (OM) consumes many nutrients and influences cell morphology. Here, we engineered the OM by disrupting all gene clusters relevant to the polysaccharide portion of lipopolysaccharide (LPS), colanic acid (CA), flagella, and/or fimbria in E. coli W3110. All these disruptions benefited PHB production. Especially, disrupting all these OM components increased the PHB content to 83.0 wt% (PHB content percentage of dry cell weight), while the wild-type control produced only 1.5 wt% PHB. The increase was mainly due to the LPS truncation to Kdo2 (3-deoxy-d-manno-octulosonic acid)-lipid A, which resulted in 82.0 wt% PHB with a 25-fold larger cell volume, and disrupting CA resulted in 57.8 wt% PHB. In addition, disrupting LPS facilitated advantageous fermentation features, including 69.1% less acetate, a 550% higher percentage of autoaggregated cells among the total culture cells, 69.1% less biofilm, and a higher broken cell ratio. Further detailed mechanism investigations showed that disrupting LPS caused global changes in envelope and cellular metabolism: (i) a sharp decrease in flagella, fimbria, and secretions; (ii) more elastic cells; (iii) much greater carbon flux toward acetyl coenzyme A (acetyl-CoA) and supply of cofactors, including NADP, NAD, and ATP; and (iv) a decrease in by-product acids but increase in γ-aminobutyric acid by activating σE factor. Disrupting CA, flagella, and fimbria also improved the levels of acetyl-CoA and cofactors. The results indicate that engineering the OM is an effective strategy to enhance PHB production and highlight the applicability of OM engineering to increase microbial cell factory performance. IMPORTANCE Understanding the detailed influence of the OM on the cell envelope and cellular metabolism is important for optimizing the E. coli cell factory and many other microorganisms. This study revealed the applicability of remodeling the OM to enhance PHB accumulation as representative inclusion bodies. The results generated in this study give essential information for producing other inclusion bodies or chemicals which need more acetyl-CoA and cofactors but less by-product acids. This study is promising to provide new ideas for the improvement of microbial cell factories.


Subject(s)
Bacterial Outer Membrane , Escherichia coli , Hydroxybutyrates/metabolism , Polyesters/metabolism , Acetyl Coenzyme A , Escherichia coli/genetics , Lipopolysaccharides , Microorganisms, Genetically-Modified
13.
Vaccines (Basel) ; 9(2)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671372

ABSTRACT

Non-typhoidal Salmonella are a major cause of gastroenteritis worldwide, as well as causing bloodstream infections in sub-Saharan Africa with a high fatality rate. No vaccine is currently available for human use. Current vaccine development strategies are focused on capsular polysaccharides (CPS) present on the surface of non-typhoidal Salmonella. This study aimed to boost the amount of CPS purified from S. Typhimurium for immunization trials. Random mutagenesis with Tn10 transposon increased the production of CPS colanic acid, by 10-fold compared to wildtype. Immunization with colanic acid or colanic acid conjugated to truncated glycoprotein D or inactivated diphtheria toxin did not induce a protective immune response in mice. However, immunization with Generalized Modules for Membrane Antigens (GMMAs) isolated from colanic acid overproducing isolates reduced Salmonella colonization in mice. Our results support the development of a GMMA-CPS-based vaccine against non-typhoidal Salmonella.

14.
J Biosci Bioeng ; 131(4): 381-389, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33495047

ABSTRACT

Initial work to generate physically robust biofilms for biocatalytic applications revealed that Escherichia coli K-12 can form a floating biofilm at the air-liquid interface, commonly referred to as a pellicle. Unlike other species where pellicle formation is well-characterised, such as Bacillus subtilis, there are few reports of E. coli K-12 pellicles in the literature. In order to study pellicle formation, a growth model was developed and pellicle formation was monitored over time. Mechanical forces, both motility and shaking, were shown to have effects on pellicle formation and development. The role and regulation of curli, an amyloid protein adhesin critical in E. coli K-12 biofilm formation, was studied by using promoter-green fluorescent protein reporters; flow cytometry and confocal laser scanning microscopy were used to monitor curli expression over time and in different locations. Curli were found to be not only crucial for pellicle formation, but also heterogeneously expressed within the pellicle. The components of the extracellular polymeric substances (EPS) in pellicles were analysed by confocal microscopy using lectins, revealing distinct pellicle morphology on the air-facing and medium-facing sides, and spatially- and temporally-regulated generation of the EPS components poly-N-acetyl glucosamine and colanic acid. We discuss the difference between pellicles formed by E. coli K-12, pathogenic E. coli strains and other species, and the relationship between E. coli K-12 pellicles and solid surface-attached biofilms.


Subject(s)
Adhesins, Bacterial/metabolism , Escherichia coli K12/metabolism , Adhesins, Bacterial/genetics , Biofilms , Escherichia coli K12/genetics , Polysaccharides/metabolism
15.
Appl Biochem Biotechnol ; 193(1): 111-127, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32820352

ABSTRACT

Colanic acid (CA) is one of the major bacterial exopolysaccharides. Due to its biological activities, CA has a significant commercial value. However, the cultivation conditions have not been optimized for the large-scale production of CA. Here, we constructed a CA-overproducing Escherichia coli strain (ΔwaaF) and statistically optimized its culture media for maximum CA production. Glucose and tryptone were found the optimal carbon and nitrogen sources, respectively. Fractional factorial design indicated tryptone and Na2HPO4 as the critical nutrients for CA production. Through further optimization, we achieved a maximum CA production of 1910.0 mg/L, which is approximately 12-fold higher than the amount obtained using the non-optimized medium initially used. The predicted value of CA production was comparable with experimental value (2052.8 mg/L) under the optimized conditions. This study constitutes a successful demonstration of media optimization for increased CA production, and paves the way for future research for achieving large-scale CA production.


Subject(s)
Escherichia coli , Metabolic Engineering , Microorganisms, Genetically-Modified , Polysaccharides , Escherichia coli/genetics , Escherichia coli/metabolism , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Polysaccharides/biosynthesis , Polysaccharides/genetics
16.
Biofouling ; 36(7): 753-765, 2020 08.
Article in English | MEDLINE | ID: mdl-32847400

ABSTRACT

Larval settlement and metamorphosis is essential for the development of marine invertebrates. Although polysaccharides are involved in larval settlement and metamorphosis of Mytilus coruscus, the molecular basis of polysaccharides underlying this progression remains largely unknown. Here, the roles of the polysaccharide biosynthesis-related gene 01912 of Pseudoalteromonas marina ECSMB14103 in the regulation of larval settlement and metamorphosis were examined by gene-knockout technique. Compared with biofilms (BFs) of the wild-type P. marina, Δ01912 BFs with a higher colanic acid (CA) content showed a higher inducing activity on larval settlement and metamorphosis. Deletion of the 01912 gene caused an increase in c-di-GMP levels, accompanied by a decrease in the motility, an increase in cell aggregation, and overproduction of CA. Thus, the bacterial polysaccharide biosynthesis-related gene 01912 may regulate mussel settlement by producing CA via the coordination of c-di-GMP. This work provides a deeper insight into the molecular mechanism of polysaccharides in modulating mussel settlement.


Subject(s)
Biofilms , Mytilus , Pseudoalteromonas , Animals , Larva/genetics , Metamorphosis, Biological , Mytilus/genetics , Polysaccharides, Bacterial
17.
Microbiol Res ; 239: 126527, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32590169

ABSTRACT

Lipopolysaccharide and colanic acid are important forms of exopolysaccharides located on the cell surface of Escherichia coli, but their interrelation with the cell stress response is not well understood. In this study, nine mutant strains with different structures of lipopolysaccharide were constructed from E. coli MG1655 by deletion of a single gene or multiple genes. All mutant strains did not produce colanic acid when grown in LB medium, but six of them could produce colanic acid when grown either in M9 medium in which glucose is the sole carbon source or in LB medium supplemented with glucose. The results indicate that colanic acid production in E. coli is dependent on both lipopolysaccharide structure and glucose availability. However, transcriptional analysis showed that 20 genes related to the colanic acid biosynthesis and the key gene rcsA in the Rcs system were all transcriptionally up-regulated in all of the nine mutant strains no matter they were grown in M9 or LB medium. This suggests that the availability of some nucleotide-sugar precursors shared by the biosynthesis of lipopolysaccharide and colanic acid might play a major role in colanic acid production in E. coli. Lipopolysaccharide pathway might have a huge priority to colanic acid pathway to use the common precursors; therefore, the colanic acid is not produced in MG1655 and the nine mutants when grown in LB medium. In the six mutant strains that can produce colanic acid in the glucose rich media, the common precursors might be abundant because they were not needed for synthesizing the mutant lipopolysaccharide.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Glucose/metabolism , Lipopolysaccharides/chemistry , Polysaccharides/biosynthesis , Carbohydrate Metabolism , Culture Media/chemistry , Escherichia coli/genetics , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Mutation
18.
Appl Microbiol Biotechnol ; 104(12): 5427-5436, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32307570

ABSTRACT

The pathogenicity of Salmonella Typhimurium, a foodborne pathogen, is mainly attributed to its ability to form biofilm on food contact surfaces. ε-polylysine, a polymer of positively charged lysine, is reported to inhibit biofilm formation of both gram-positive and gram-negative bacteria. To elucidate the mechanism underlying ε-polylysine-mediated inhibition of biofilm formation, the transcriptional profiles of ε-polylysine-treated and untreated Salmonella Typhimurium cells were comparatively analysed. The genome-wide DNA microarray analysis was performed using Salmonella Typhimurium incubated with 0.001% ε-polylysine in 0.1% Bacto Soytone at 30 °C for 2 h. The expression levels of genes involved in curli amyloid fibres and cellulose production, quorum sensing, and flagellar motility were downregulated, whereas those of genes associated with colanic acid synthesis were upregulated after treatment with ε-polylysine. The microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Furthermore, treatment with ε-polylysine decreased the production of colanic acid in Salmonella Typhimurium. The findings of this study improved our understanding of the mechanisms underlying ε-polylysine-mediated biofilm inhibition and may contribute to the development of new disinfectants to control biofilm during food manufacturing and storage.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Polylysine/pharmacology , Salmonella typhimurium/drug effects , Bacterial Adhesion/drug effects , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Plastics , Salmonella typhimurium/physiology
19.
Microbiology (Reading) ; 165(8): 891-904, 2019 08.
Article in English | MEDLINE | ID: mdl-31246167

ABSTRACT

Multidrug-resistant Klebsiella pneumoniae has emerged as one of the deadliest opportunistic nosocomial pathogens that forms biofilm for the establishment of chronic K. pneumoniae infections. Herein, we made an attempt to identify the genes involved in biofilm formation in the strain K. pneumoniae ATCC13883. To achieve this, we constructed mini-Tn5 transposon insertion mutants and screened them for biofilm production. We observed that the biofilm formation was enhanced in the mutant where the wcaJ gene was disrupted. WcaJ is the initiating enzyme of colanic acid synthesis and loads the first sugar (glucose-1-P) on the lipid carrier undecaprenyl phosphate. The absence of this glycosyltransferase results in the absence of colanic acid, which renders a non-mucoid phenotype to the mutant. Further, to determine the effect of mucoidy on antibiotic susceptibility, we tested the sensitivity of the strains towards different groups of antibiotics. Unlike the mucoid strains, the resistance of the non-mucoid cells was greater for polymyxins, but less for quinolones. Capsular polysaccharides are known to have a protective effect against phagocytosis, therefore we assessed the role of colanic acid in virulence by conducting infection studies on murine macrophages. Surprisingly, the ΔwcaJ strain was less efficient in macrophage activation and was not readily phagocytosed. Thus, the presence of colanic acid appeared to increase the immunogenicity of K. pneumoniae. Overall, the results indicate that the presence of colanic acid increases the vulnerability of K. pneumoniae towards both polymyxins and macrophages, implying that the mucoid strains are less threatening as compared to their high biofilm forming non-mucoid counterparts.


Subject(s)
Biofilms/growth & development , Glycosyltransferases/genetics , Klebsiella pneumoniae/genetics , Macrophage Activation/immunology , Polysaccharides/immunology , Animals , Bacterial Capsules/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Gene Expression Regulation, Bacterial , Glycosyltransferases/metabolism , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/immunology , Mice , Polymyxins/pharmacology , Polysaccharides/metabolism , Quinolones/pharmacology , Virulence
20.
Microorganisms ; 7(6)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31200539

ABSTRACT

Pectobacterium carotovorum is a gram-negative bacterium that, together with other soft rot Enterobacteriaceae causes soft rot disease in vegetables, fruits, and ornamental plants through the action of exoproteins including plant cell wall-degrading enzymes (PCWDEs). Although pathogenicity in these bacteria is complex, virulence levels are proportional to the levels of plant cell wall-degrading exoenzymes (PCWDEs) secreted. Two low enzyme-producing transposon Tn5 mutants were isolated, and compared to their parent KD100, the mutants were less virulent on celery petioles and carrot disks. The inactivated gene responsible for the reduced virulence phenotype in both mutants was identified as wcaG. The gene, wcaG (previously denoted fcl) encodes NAD-dependent epimerase/dehydratase, a homologue of GDP-fucose synthetase of Escherichia coli. In Escherichia coli, GDP-fucose synthetase is involved in the biosynthesis of the exopolysaccharide, colanic acid (CA). The wcaG mutants of P. carotovorum formed an enhanced level of biofilm in comparison to their parent. In the hydrophobicity test the mutants showed more hydrophobicity than the parent in hexane and hexadecane as solvents. Complementation of the mutants with extrachromosomal copies of the wild type gene restored these functions to parental levels. These data indicate that NAD-dependent epimerase/dehydratase plays a vital rule in cell surface properties, exoenzyme production, and virulence in P. carotovorum.

SELECTION OF CITATIONS
SEARCH DETAIL