Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 441
Filter
1.
Ecol Evol ; 14(10): e70412, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39385840

ABSTRACT

The loss of freshwater fish habitats, exacerbated by climate change and dam constructions, poses a critical environmental concern. The upper Yangtze River basin, noted for its abundant fish fauna and concentrated dam development, serves as a crucial locale for investigating the impacts of climate shifts and dam construction. This study aims to disentangle the impacts of hydroelectric dams and climate change on fish habitat distribution by analyzing species presence data across different periods. Species distribution models were constructed using Maxent for Coreius guichenoti (a warm-water endangered fish) and Schizopygopsis malacanthus (a cold-water endangered fish). The model accuracy was assessed using the area under the curve of the receiver operating characteristic. Habitat distribution modeling and prediction for the pre-dam period (1970-2000) and post-dam period (2001-2020), as well as future climate change under two shared socioeconomic pathways scenarios, were conducted. The impacts of climate change and dam construction on the habitat suitability of two fish species were quantified. The results revealed dam construction predominantly diminished habitat suitability and range, with high-suitability habitats in the post-dam period decreasing by 56.3% (720.18 km) and 67.0% (1665.52 km) for the two fishes, respectively. Climate change would enhance the habitat suitability of Coreius guichenoti, while it would decrease the habitat suitability of Schizopygopsis malacanthus. The impact of dam construction is greater that of climate change for them. This study underscores the profound impacts of dam construction on fish habitats, particularly for cold-water species, and highlights the critical need for habitat restoration in sustainable hydropower development. Our method of disentangling these factors also provides a new approach to evaluating environmental impacts in large river basins.

2.
Front Physiol ; 15: 1432009, 2024.
Article in English | MEDLINE | ID: mdl-39376896

ABSTRACT

Introduction: Athletic training requires both challenging stimuli for adaptation and sufficient recovery for improved performance. While cold water immersion (CWI) is already a popular recovery method, handheld percussive massage (PM) devices have also gained popularity in recent years. This study aims to assess the effects of CWI and PM on performance recovery after strenuous eccentric exercises compared to a passive rest (PR) control condition. Methods: Thirty-four healthy physically active participants (9 females, 25 males) were randomly divided into three groups: CWI (n = 11), PM (n = 11), and passive rest (PR) (n = 12). They underwent an exhausting eccentric exercise protocol and different measurements at six time points (baseline, POST1, POST2, POST24, POST48, and POST72) over the time course of 72 h. These included subjective assessments of muscle soreness and perceived stiffness as well as measures of skin temperature, leg volume, creatine kinase activity, and three different jump tests. The eccentric exercise protocol consisted of 15 min downhill running (slope: 12%, speed: 10 km/h) and 3 sets of successive depth jumps (dropping height: 0.5 m) until individual exhaustion. After POST1 measurements, participants received 12 min of either CWI (11 ± 0.5°C), PM (40 Hz) or PR (supine posture). Results: No significant group effects were found for the number of depth jumps performed during the exhaustion protocol. All jump tests displayed a significant group × time interaction effect. Post-hoc analysis indicated significant lower jump heights in ΔPOST2 between CWI and both PM and PR. No other significant group effects were observed at any time point. No significant group × time interaction effects were noted for CK, leg volume, and soreness. The perceived stiffness showed a significant group × time interaction effect. Post-hoc analysis revealed a significant decrease in stiffness for PM compared to PR at ΔPOST2. Conclusion: Neither CWI nor PM showed any significant improvement in performance recovery over the 72-h period following strenuous eccentric exercise compared to PR. CWI showed an immediate performance decline which may be attributed to a cold-related reduction in motor nerve conduction velocity.

3.
BMC Musculoskelet Disord ; 25(1): 749, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294614

ABSTRACT

BACKGROUND: This systematic review and network meta-analysis assessed via direct and indirect comparisons the recovery effects of hydrotherapy and cold therapy at different temperatures on exercise induced muscle damage. METHODS: Five databases were searched in English and Chinese. The included studies included exercise interventions such as resistance training, high-intensity interval training, and ball games, which the authors were able to define as activities that induce the appearance of EIMD. The included RCTs were analyzed using the Cochrane Risk of Bias tool. Eligible studies were included and and two independent review authors extracted data. Frequentist network meta-analytical approaches were calculated based on standardized mean difference (SMD) using random effects models. The effectiveness of each intervention was ranked and the optimal intervention was determined using the surface under the cumulative ranking curve (SUCRA) indicator. RESULTS: 57 studies with 1220 healthy participants were included, and four interventions were examined: Cold Water Immersion (CWI), Contrast Water Therapy (CWT), Thermoneutral or Hot Water Immersion (TWI/HWI), and Cryotherapy(CRYO). According to network meta-analysis, Contrast Water Immersion (SUCRA: 79.9% )is most effective in recovering the biochemical marker Creatine Kinase. Cryotherapy (SUCRA: 88.3%) works best to relieve Delayed Onset Muscle Soreness. In the recovery of Jump Ability, cryotherapy (SUCRA: 83.7%) still ranks the highest. CONCLUSION: We found that CWT was the best for recovering biochemical markers CK, and CRYO was best for muscle soreness and neuromuscular recovery. In clinical practice, we recommend the use of CWI and CRYO for reducing EIMD. SYSTEMATIC REVIEW REGISTRATION: [PROSPERO], identifier [CRD42023396067].


Subject(s)
Cryotherapy , Hydrotherapy , Muscle, Skeletal , Humans , Cryotherapy/methods , Exercise/adverse effects , Exercise/physiology , Hydrotherapy/methods , Muscle, Skeletal/injuries , Muscle, Skeletal/physiopathology , Network Meta-Analysis , Recovery of Function/physiology , Treatment Outcome
4.
J Pain ; : 104670, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245195

ABSTRACT

Conditioned pain modulation and exercise-induced hypoalgesia reflect inhibitory pain controls emanating from the brain. The aim of this study was to compare the extent of pain inhibition from exercise-induced hypoalgesia (isometric wall squat), conditioned pain modulation (cold-water immersion), and their combination (wall squat followed by cold water in fixed order) in healthy pain-free adults. Sixty-one participants (median age 21 years) completed 3 sessions (wall-squat, cold-water, and combined) in random order. Sessions were separated by at least a week. In each session, pressure-pain thresholds, single-pinprick-pain ratings, and pinprick-temporal summation of pain (the fifth minus the first) were obtained at quadriceps, forearms, and forehead, before and after wall squat and/or cold water. Each intervention inhibited pain to pressure (partial η2 = .26) and single pinprick (partial η2 = .16) to a similar extent; however, pressure-pain inhibition was negligible in the forehead. After adjusting for age and sex, single-pinprick-pain inhibition in the forehead induced by wall squat was associated with that induced by cold water (adjusted R2 = .15; P = .007), and stronger pain inhibition was predicted by a higher thigh-pain rating to wall squat (adjusted R2 = .10; P = .027). Neither intervention affected pinprick-temporal summation of pain. Together, the findings suggest that pain-inhibitory effects of exercise-induced hypoalgesia and conditioned pain modulation may overlap when exercise is at least moderately painful (6/10 intensity). Pressure pain in body regions remote from the exercised or conditioned sites may be weakly modulated. PERSPECTIVE: The current findings suggest that pain-inhibitory effects induced by painful wall squat and by cold-water immersion may overlap. The magnitude of pain inhibition in the forehead remote from the exercised thigh or the conditioned foot appears smaller, which could be examined further in future research.

5.
Womens Health (Lond) ; 20: 17455057241265080, 2024.
Article in English | MEDLINE | ID: mdl-39168149

ABSTRACT

BACKGROUND: Cold water swimming is growing in popularity, especially among women. We have previously reported that women felt that cold water swimming helps with their menstrual and menopause symptoms. But little is known about the habits of women who cold water swim. OBJECTIVES: To determine the habits of women who cold water swim. DESIGN: This was a mixed-methods study. METHODS: An online survey asked women who cold water swim about their experience of swimming and how this affected their menstrual and menopause symptoms. The survey was advertised for 2 months on social media, with a focus on advertising in cold water swimming Facebook groups. In this article, only the questions on the women's swimming habits were analyzed. RESULTS: The analysis of 1114 women, mainly from the United Kingdom, revealed that most had been swimming for 1-5 years (79.5%). Most swim in the sea (64.4%), and only 15.5% swim alone. The majority (89.0%) swim all year around, swimming for mainly 30-60 min in the summer and 5-15 min in the winter. The women mostly swim wearing swimming costumes (skins) throughout the year. The majority of the free-text responses showed women found mental and physical benefits from cold water swimming. CONCLUSION: It was not surprising to learn that women swim for longer in the summer than the winter, but hearing how they feel cold water swimming helps their physical and mental health is important. With the limitations on access and safety of many wild swimming sites in the United Kingdom, it is time to ensure that cold water swimming is safer and more supported.


Subject(s)
Cold Temperature , Swimming , Humans , Female , Swimming/physiology , Adult , Middle Aged , Surveys and Questionnaires , United Kingdom , Menopause/physiology , Habits , Young Adult , Menstruation/physiology
6.
J Sci Med Sport ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39209689

ABSTRACT

OBJECTIVES: To determine the influence of a patent foramen ovale and fibroblast growth factor-21 on core temperature (Tc) responses in SCUBA divers. Additionally, we aimed to quantify the individual and combined influences of wetsuit thickness and anthropometric data on Tc changes during the dives. DESIGN: An experimental study comparing the Tc responses between divers with (n = 17) and without a patent foramen ovale (n = 14). METHODS: A total of 31 divers participated in the study. Tc was measured pre- and post-dive in 17-18 °C sea water using a telemetric pill. Additionally, blood was drawn pre-dive and ~1-2 h post-dive for measurement of fibroblast growth factor-21. RESULTS: There was no influence of a patent foramen ovale on the Tc responses during SCUBA diving in either dive profile (p > 0.05). Additionally, there was no influence of SCUBA diving on fibroblast growth factor-21 concentrations (p > 0.05). The strongest positive and significant associations with the ∆Tc/min were found when multiplying wetsuit thickness in millimeters by body mass (r2 = 0.3147, p = 0.0010), BMI (r2 = 0.3123, p = 0.0011), and body surface area (r2 = 0.2877, p = 0.0019). There was a significant, negative linear relationship between the body surface area to mass ratio and ∆Tc/min (r2 = 0.2812, p = 0.0032). CONCLUSIONS: These data suggest that Tc regulation during recreational SCUBA diving can be facilitated in part by the appropriate choice of wetsuit thickness for a given set of anthropometric characteristics.

7.
Sci Total Environ ; 951: 175210, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39098414

ABSTRACT

Elevated sea surface temperatures are causing an increase in coral bleaching events worldwide, and represent an existential threat to coral reefs. Early studies of Mesophotic Coral Ecosystems (MCEs) highlighted their potential as thermal refuges for shallow-water coral species in the face of predicted 21st century warming. However, recent genetic evidence implies that limited ecological connectivity between shallow- and deep-water coral communities inhibits their effectiveness as refugia; instead MCEs host distinct endemic communities that are ecologically significant in and of themselves. In either scenario, understanding the response of MCEs to climate change is critical given their ecological significance and widespread global distribution. Such an understanding has so far eluded the community, however, because of the challenges associated with long-term field monitoring, the stochastic nature of climatic events that drive bleaching, and the paucity of deep-water observations. Here we document the first observed cold-water bleaching of a mesophotic coral reef at Clipperton Atoll, a remote Eastern Tropical Pacific (ETP) atoll with high coral cover and a well-developed MCE. The severe bleaching (>70 % partially or fully bleached coral cover at 32 m depth) was driven by an anomalously shallow thermocline, and highlights a significant and previously unreported challenge for MCEs. Prompted by these observations, we compiled published cold-water bleaching events for the ETP, and demonstrate that the timing of past cold-water bleaching events in the ETP coincides with decadal oscillations in mean zonal wind strength and thermocline depth. The latter observation suggests any future intensification of easterly winds in the Pacific could be a significant concern for its MCEs. Our observations, in combination with recent reports of warm-water bleaching of Red Sea and Indian Ocean MCEs, highlight that 21st century MCEs in the Eastern Pacific face a two-pronged challenge: warm-water bleaching from above, and cold-water bleaching from below.


Subject(s)
Anthozoa , Climate Change , Cold Temperature , Coral Reefs , Anthozoa/physiology , Animals , Coral Bleaching , Environmental Monitoring , Ecosystem
8.
Int J Mol Sci ; 25(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39201531

ABSTRACT

Rainbow trout (Oncorhynchus mykiss, Walbaum, 1792) is an important economic cold-water fish that is susceptible to heat stress. To date, the heat stress response in rainbow trout is more widely understood at the transcriptional level, while little research has been conducted at the translational level. To reveal the translational regulation of heat stress in rainbow trout, in this study, we performed a ribosome profiling assay of rainbow trout liver under normal and heat stress conditions. Comparative analysis of the RNA-seq data with the ribosome profiling data showed that the folding changes in gene expression at the transcriptional level are moderately correlated with those at the translational level. In total, 1213 genes were significantly altered at the translational level. However, only 32.8% of the genes were common between both levels, demonstrating that heat stress is coordinated across both transcriptional and translational levels. Moreover, 809 genes exhibited significant differences in translational efficiency (TE), with the TE of these genes being considerably affected by factors such as the GC content, coding sequence length, and upstream open reading frame (uORF) presence. In addition, 3468 potential uORFs in 2676 genes were identified, which can potentially affect the TE of the main open reading frames. In this study, Ribo-seq and RNA-seq were used for the first time to elucidate the coordinated regulation of transcription and translation in rainbow trout under heat stress. These findings are expected to contribute novel data and theoretical insights to the international literature on the thermal stress response in fish.


Subject(s)
Heat-Shock Response , Liver , Oncorhynchus mykiss , Protein Biosynthesis , Ribosomes , Sequence Analysis, RNA , Animals , Oncorhynchus mykiss/genetics , Heat-Shock Response/genetics , Ribosomes/metabolism , Ribosomes/genetics , Protein Biosynthesis/genetics , Liver/metabolism , Gene Expression Regulation , Transcription, Genetic , Gene Expression Profiling , Fish Proteins/genetics , Fish Proteins/metabolism , Open Reading Frames/genetics , Transcriptome , Ribosome Profiling
9.
Int J Sports Physiol Perform ; 19(10): 1128-1136, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39179221

ABSTRACT

PURPOSE: This study both investigated and compared Gaelic games players' and practitioners' perceptions of the importance of postexercise recovery strategies. METHODS: Gaelic players (n = 1178 [n = 574 female], age 24.6 [6.6] y) and practitioners (n = 148 [n = 29 female], age 35.9 [8.7] y) completed a questionnaire assessing their perceptions of various postexercise recovery strategies (importance ranked out of 5 [1 "not important at all" to 5 "extremely important"]). Players were further categorized by playing standard into developmental (club/collegiate; n = 869) and national (intercounty; n = 309) levels and by sport: Gaelic football (n = 813), camogie/hurling (n = 342), and Gaelic handball (n = 23). Practitioners were categorized as sport coaches (n = 67), strength and conditioning staff (n = 34), nutrition staff (n = 15), and athletic rehabilitation staff (n = 32). RESULTS: Gaelic players prevalently perceived sleep (76.4%), rehydration (72.5%), postexercise meal (48.4%), stretching (47.6%), active cool-down (25.1%), foam rolling (23.1%), and massage by therapist (22.6%) as "extremely important." Practitioners prevalently perceived sleep (90.1%), rehydration (83.6%), postexercise meal (76.6%), daytime naps (36.2%), stretching (25.4%), discussion with teammates (24.6%), and getting into nature (19.4%) as "extremely important." CONCLUSIONS: While strategies with well-documented efficacy such as sleep, nutrition, and rehydration were rated as most important, a distinct and possibly problematic disconnect exists between the perceived importance of many strategies and their empirically demonstrated effectiveness. For instance, active cool-downs and stretching were perceived as highly important despite prevailing evidence suggesting that their effects are often small in magnitude. Collectively, work promoting optimal recovery practices and aligning player-practitioner perspectives would be beneficial to maximize time and resource allocation and enhance player buy-in.


Subject(s)
Perception , Humans , Female , Male , Adult , Perception/physiology , Young Adult , Sleep , Surveys and Questionnaires , Fluid Therapy , Recovery of Function , Sports/psychology , Muscle Stretching Exercises , Meals
10.
Mar Pollut Bull ; 206: 116741, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39089204

ABSTRACT

This study explores microplastic and cellulosic microparticle occurrences in the NE Atlantic, focusing on the Porcupine Bank Canyon and Porcupine Seabight. Water samples from depths ranging between 605 and 2126 m and Lophelia pertusa coral samples from 950 m depth were analysed. Microparticles were detected in deep-water habitats, with concentrations varying from 2.33 to 9.67 particles L-1 in the Porcupine Bank Canyon, notably lower at greater depths. This challenges the assumption of deeper habitats solely acting as microplastic sinks. We also found evidence of microparticle adsorption and ingestion by L. pertusa. The presence of microparticles in cold-water corals underscores their vulnerability to pollutants. Furthermore, the dominance of rayon microparticles in both water and coral samples raises questions about marine pollution sources, potentially linked to terrestrial origins. This research emphasises the critical need for comprehensive exploration and conservation efforts in deep-sea environments, especially to protect vital ecosystems like L. pertusa reefs.


Subject(s)
Anthozoa , Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Animals , Microplastics/analysis , Water Pollutants, Chemical/analysis , Atlantic Ocean , Ecosystem , Cellulose/analysis , Coral Reefs
11.
J Therm Biol ; 123: 103926, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39094403

ABSTRACT

This study investigated the effects of cold water immersion (CWI) and partial body cryotherapy (PBC) applied within a 15-min post-exercise recovery period on thermoregulatory responses, subjective perceptions, and exercise performance under hot conditions (39 °C). Twelve male soccer players participated in team-sports-specific assessments, including Agility T-test (T-test), 20-m sprint test (20M-ST), and Yo-Yo Intermittent Endurance Test Level 1 (YY-T), during two exercise bouts (1st bout and 2nd bout) with a 15-min post-exercise recovery period. Within the recovery period, a 3-min of PBC at -110 °C or CWI at 15 °C or a seated rest (CON) was performed. Mean skin temperature (Tskin) decreased by 4.3 ± 1.08°C (p < 0.001) immediately after PBC, while CWI induced a reduction of 2.5 ± 0.21°C (p < 0.01). Furthermore, PBC and CWI consistently reduced Tskin for 15 and 33 min, respectively (p < 0.05). During the 2nd bout, core temperature (Tcore) was significantly lower in PBC compared to CON (p < 0.05). Heart rate (HR) was significantly lower in CWI compared to CON and PBC during the intervention period. Thermal sensation (TS) was significantly greater in PBC compared to CON and CWI (p < 0.05). Compared to the 1st bout, PBC alleviated the declines in T-test (p < 0.05) and 20M-ST (p < 0.05), while CWI alleviated the decreases in T-test (p < 0.05) and YY-T (p < 0.05), concurrently significantly enhancing 20M-ST (p < 0.05). 20M-ST and YY-T was greater from PBC (p < 0.05) and CWI (p < 0.05) compared with CON in 2nd bout. Additionally, the T-test in CWI was significantly greater than CON (p < 0.05). These results indicate that both PBC and CWI, performed between two exercise bouts, have the potential to improve thermoregulatory strain, reduce thermal perceptual load, and thereby attenuate the subsequent decline in exercise performance.


Subject(s)
Athletic Performance , Body Temperature Regulation , Cold Temperature , Cryotherapy , Exercise , Hot Temperature , Immersion , Humans , Male , Cryotherapy/methods , Young Adult , Athletic Performance/physiology , Skin Temperature , Heart Rate , Adult , Water
12.
Exp Physiol ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190835

ABSTRACT

The experience of pain that is induced by extremely cold temperatures can exert a modulatory effect on motor cortex circuitry. Although it is known that immersion of a single limb in very cold water can increase corticomotor excitability it is unknown how afferent input to the cortex shapes excitatory and inhibitory processes. Therefore, the purpose of this study was to examine motor-evoked potentials (MEP), short-latency afferent inhibition (SAI) and long-latency afferent inhibition (LAI) in response to immersion of a single hand in cold water. Transcranial magnetic stimulation (TMS) was used to assess MEPs, and peripheral nerve stimulation of the median nerve paired with TMS was used to measure SAI and LAI in motor circuits of the ipsilateral hemisphere. Measurements were obtained from electromyography (EMG) of the first dorsal interosseous (FDI) at baseline, during cold-water immersion, and during recovery from cold-water immersion. The intervention caused unconditioned MEPs to increase during exposure to the cold stimulus (P = 0.008) which then returned to baseline levels once the hand was removed from the cold water. MEP responses were decoupled from SAI responses, where SAI was reduced during exposure to the cold stimulus (P = 0.005) and remained reduced compared to baseline when the hand was removed from the cold water (P = 0.002). The intervention had no effect on LAI. The uncoupling of SAI from MEPs during the recovery period suggests that the mechanisms underlying the modulation of corticospinal excitability by sensory input may be distinct from those affecting intracortical inhibitory circuits. HIGHLIGHTS: What is the central question of this study? Does immersion of a limb in very cold water influence corticospinal excitability and the level of afferent inhibition exerted on motor cortical circuits? What is the main finding and its importance? In additional to perception of temperature, immersion in 6°C water also induced perceptions of pain. Motor evoked potential (MEP) amplitude increased during immersion, and short-latency afferent inhibition (SAI) of the motor cortex was reduced during immersion; however, these responses differed after the limb was removed from the cold stimulus, as MEPs returned to normal levels while SAI remained suppressed.

13.
Comput Biol Med ; 180: 108935, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096610

ABSTRACT

The cold-induced vasodilation (CIVD) response of the human body to Arctic-like environments helps delay or prevent cold injuries to peripheral regions, such as the hands and feet. To more comprehensively predict the thermal responses of these body regions to cold stress, here we extended our previously developed and validated anatomically accurate three-dimensional whole-body thermoregulatory human model by incorporating a new phenomenological formulation of the CIVD mechanism. In this formulation, we modulated the cyclic vasodilation and vasoconstriction flow of warm blood from the body core to the peripheral regions solely by determining the heat-transfer exchange between the skin and the surrounding environment, and deactivated it when the core body temperature decreased to 36.5 °C. In total, we calibrated and validated the model using eight distinct studies involving 153 unique male subjects exposed to 10 diverse experimental conditions, including cold-air exposure of the whole body as well as air exposure and cold-water immersion of the hand or the foot. With CIVD incorporated, the model predictions generally yielded root mean square errors (RMSEs) of <3.0 °C for skin temperature, which represented a reduction of up to 3.6 °C compared to when we did not consider CIVD. Similarly, the incorporation of CIVD increased the fraction of predictions within two standard errors of the measured data by up to 63 %. The model predictions yielded RMSEs for core body temperature of <0.2 °C. The model can be used to provide guidelines to reduce the risk of cold-related injuries during prolonged exposures to very-cold environments.


Subject(s)
Body Temperature Regulation , Cold Temperature , Foot , Hand , Vasodilation , Humans , Male , Vasodilation/physiology , Foot/physiology , Foot/blood supply , Body Temperature Regulation/physiology , Hand/physiology , Hand/blood supply , Adult , Models, Biological , Skin Temperature/physiology
14.
Geroscience ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078461

ABSTRACT

Healthy aging is a crucial goal in aging societies of the western world, with various lifestyle strategies being employed to achieve it. Among these strategies, hydrotherapy stands out for its potential to promote cardiovascular and mental health. Cold water therapy, a hydrotherapy technique, has emerged as a lifestyle strategy with the potential capacity to evoke a wide array of health benefits. This review aims to synthesize the extensive body of research surrounding cold water therapy and its beneficial effects on various health systems as well as the underlying biological mechanisms driving these benefits. We conducted a search for interventional and observational cohort studies from MEDLINE and EMBASE up to July 2024. Deliberate exposure of the body to cold water results in distinct physiological responses that may be linked to several health benefits. Evidence, primarily from small interventional studies, suggests that cold water therapy positively impacts cardiometabolic risk factors, stimulates brown adipose tissue and promotes energy expenditure-potentially reducing the risk of cardiometabolic diseases. It also triggers the release of stress hormones, catecholamines and endorphins, enhancing alertness and elevating mood, which may alleviate mental health conditions. Cold water therapy also reduces inflammation, boosts the immune system, promotes sleep and enhances recovery following exercise. The optimal duration and temperature needed to derive maximal benefits is uncertain but current evidence suggests that short-term exposure and lower temperatures may be more beneficial. Overall, cold water therapy presents a potential lifestyle strategy to enhancing physical and mental well-being, promoting healthy aging and extending the healthspan, but definitive interventional evidence is warranted.

15.
J Environ Manage ; 367: 121926, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39074429

ABSTRACT

Climate change at the global scale affects the watershed's hydrology and the river's hydrodynamic, water temperature (WT), and habitat conditions of organisms. This article proposes a quantitative assessment methodology framework for analyzing the impact of GCC on the cold-water fish habitat. This framework integrated GCC, downscaling, hydrological, hydrodynamic, water temperature, and habitat models and was applied to the source region of the Yellow River (SRYR), where there are Gymnocypris eckloni (G. eckloni) resource reduction problems. In this study, we developed a high-precision, loosely integrated hydrological, hydrodynamic, WT coupling model for SWAT-MIKE21 in the SRYR. The optimal latitude and longitude range (6° × 6°) covering the SRYR was established for downscaling, and future meteorological data under three GCC models was obtained. The main results present the discharge of spawning, and juvenile G. eckloni indicates an increasing trend from the radiation forcing low to high and from the near now to the future term. The WT increased (decreased) in April and June (May), with a maximum increase/decrease of 3.1°C (SSP370 in 2100)/1.4°C (SSP585 in 2050). The weighted useable area (WUA) demonstrated a trend of severe fluctuations in May, June, and October, and other months are equal to the base year. Total WUA (TWUA) displayed an increasing trend, with the maximum increase in spawning and juvenile period being 134.46% and 270.89%, respectively. Ultimately, the rise in confluence discharge and WT caused by GCC in the SRYR benefits spawning and juvenile G. eckloni. The results have guiding significance for the development of long-term and adaptive protection and restoration measures for G. eckloni, and provide a plan for predicting the impact of climate change on other organisms in river ecosystems in high-altitude cold regions.


Subject(s)
Climate Change , Ecosystem , Fishes , Rivers , Animals
16.
Front Microbiol ; 15: 1415931, 2024.
Article in English | MEDLINE | ID: mdl-38952450

ABSTRACT

Exploring the effects of seasonal variation on the gut microbiota of cold-water fish plays an important role in understanding the relationship between seasonal variation and cold-water fish. Gut samples of cold-water fish and environmental samples were collected during summer and winter from the lower reaches of the Yalong River. The results of the 16S rRNA sequencing showed that significant differences were identified in the composition and diversity of gut bacteria of cold-water fish. Co-occurrence network complexity of the gut bacteria of cold-water fish was higher in summer compared to winter (Sum: nodes: 256; edges: 20,450; Win: nodes: 580; edges: 16,725). Furthermore, from summer to winter, the contribution of sediment bacteria (Sum: 5.3%; Win: 23.7%) decreased in the gut bacteria of cold-water fish, while the contribution of water bacteria (Sum: 0%; Win: 27.7%) increased. The normalized stochastic ratio (NST) and infer community assembly mechanisms by phylogenetic bin-based null model analysis (iCAMP) showed that deterministic processes played a more important role than stochastic processes in the microbial assembly mechanism of gut bacteria of cold-water fish. From summer to winter, the contribution of deterministic processes to gut bacteria community assembly mechanisms decreased, while the contribution of stochastic processes increased. Overall, these results demonstrated that seasonal variation influenced the gut bacteria of cold-water fish and served as a potential reference for future research to understand the adaptation of fish to varying environments.

18.
Food Technol Biotechnol ; 62(2): 254-263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39045305

ABSTRACT

Research background: Preparation of medicinal fungi for experimental purposes usually involves the extraction and determination of the quality and quantity of bioactive compounds prior to the biological experiment. Water, a common polar solvent, is usually used for traditional preparations for consumption. The application of high temperatures during water extraction can affect the chemical composition and functional properties of the extracts. Therefore, the aim of this study is to compare the differences in composition between extracts obtained with heat-assisted and cold water extractions of six selected species of fungi (Lignosus rhinocerus, Ophiocordyceps sinensis, Inonotus obliquus, Antrodia camphorata, Phellinus linteus and Monascus purpureus) and their cytotoxicity against human lung and breast cancer cells. Experimental approach: The extracts obtained with heat-assisted and cold water extraction of six species of fungi were analysed to determine their protein, carbohydrate and phenolic contents. Their cytotoxicity was tested against lung (A549) and breast (MCF-7 and MDA-MB-231) cancer cell lines. The most potent extract was further separated into its protein and non-protein fractions to determine their respective cytotoxicity. Results and conclusions: The cytotoxicity of the different extracts obtained with heat-assisted and cold water extraction varied. Comparing the two extractions, the cold water extraction resulted in a significantly higher yield of proteins (except M. purpureus) and phenolic compounds (except A. camphorata), while the extracts of I. obliquus and M. purpureus obtained with heat-assisted extraction had a significantly higher carbohydrate mass fraction. Notably, the cold water extract of I. obliquus showed cytotoxicity (IC50=(701±35) µg/mL), which was one of the highest of the extracts tested against A549 cells. The cold water extract of I. obliquus was selected for further studies. Our results showed that cold water extracts generally have higher cytotoxicity against selected human cancer cell lines, with the exception of O. sinensis and A. camphorata extracts. Novelty and scientific contribution: This study reports the advantage of cold water extracts of fungi over those obtained with heat-assisted extraction in terms of cytotoxicity against human cancer cell lines and emphasises the role of extraction conditions, particularly heat, in influencing chemical composition and cytotoxic effects.

19.
Cureus ; 16(5): e59603, 2024 May.
Article in English | MEDLINE | ID: mdl-38826884

ABSTRACT

Transient global amnesia (TGA) is an uncommon neurologic disorder that consists of a sudden and temporary loss of memory, both present and past. Its causes and risk factors are not well known. We describe a case of a 58-year-old woman who was brought to the emergency department (ED) with sudden onset loss of memory and disorientation after a dive in the ocean. She presented memory deficits with incapacity to retain new memories and amnesia for the previous 24 hours. All exams ordered were normal, including computed tomography of the brain and laboratory analysis. After six hours of close monitoring in the ED, she gradually started to retain short-term memories and was discharged after 48 hours with no memory or other deficits. The diagnosis of TGA was made based on the clinical presentation and the patient's rapid improvement. Follow-up neurology consultation and further testing did not demonstrate any evidence to exclude this diagnosis. Further research is needed on this topic to allow the identification of risk factors and causes to prevent it.

20.
Temperature (Austin) ; 11(2): 137-156, 2024.
Article in English | MEDLINE | ID: mdl-38846524

ABSTRACT

Thermogenesis is well understood, but the relationships between cold water immersion (CWI), the post-CWI rewarming and the associated physiological changes are not. This study investigated muscle and systemic oxygenation, cardiorespiratory and hemodynamic responses, and gastrointestinal temperature during and after CWI. 21 healthy men completed randomly 2 protocols. Both protocols consisted of a 48 minutes heating cycling exercise followed by 3 recovery periods (R1-R3), but they differed in R2. R1 lasted 20 minutes in a passive semi-seated position on a physiotherapy table at ambient room temperature. Depending on the protocol, R2 lasted 15 minutes at either ambient condition (R2_AMB) or in a CWI condition at 10°C up to the iliac crest (R2_CWI). R3 lasted 40 minutes at AMB while favoring rewarming after R2_CWI. This was followed by 10 minutes of cycling. Compared to R2_AMB, R2_CWI ended at higher V ˙ O2 in the non-immersed body part due to thermogenesis (7.16(2.15) vs. 4.83(1.62) ml.min-1.kg-1) and lower femoral artery blood flow (475(165) vs. 704(257) ml.min-1) (p < 0.001). Only after CWI, R3 showed a progressive decrease in vastus and gastrocnemius medialis O2 saturation, significant after 34 minutes (p < 0.001). As blood flow did not differ from the AMB protocol, this indicated local thermogenesis in the immersed part of the body. After CWI, a lower gastrointestinal temperature on resumption of cycling compared to AMB (36.31(0.45) vs. 37.30(0.49) °C, p < 0.001) indicated incomplete muscle thermogenesis. In conclusion, the rewarming period after CWI was non-linear and metabolically costly. Immersion and rewarming should be considered as a continuum rather than separate events.

SELECTION OF CITATIONS
SEARCH DETAIL