Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Bioengineering (Basel) ; 11(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38790290

ABSTRACT

Type I collagen, prevalent in the extracellular matrix, is biocompatible and crucial for tissue engineering and wound healing, including angiogenesis and vascular maturation/stabilization as required processes of newly formed tissue constructs or regeneration. Sometimes, improper vascularization causes unexpected outcomes. Vascularization failure may be caused by extracellular matrix collagen and non-collagen components heterogeneously. This study compares the angiogenic potential of collagen type I-based scaffolds and collagen type I/glycosaminoglycans scaffolds by using the chick embryo chorioallantoic membrane (CAM) model and IKOSA digital image analysis. Two clinically used biomaterials, Xenoderm (containing type I collagen derived from decellularized porcine extracellular matrix) and a dual-layer collagen sponge (DLC, with a biphasic composition of type I collagen combined with glycosaminoglycans) were tested for their ability to induce new vascular network formation. The AI-based IKOSA app enhanced the research by calculating from stereomicroscopic images angiogenic parameters such as total vascular area, branching sites, vessel length, and vascular thickness. The study confirmed that Xenoderm caused a fast angiogenic response and substantial vascular growth, but was unable to mature the vascular network. DLC scaffold, in turn, produced a slower angiogenic response, but a more steady and organic vascular maturation and stabilization. This research can improve collagen-based knowledge by better assessing angiogenesis processes. DLC may be preferable to Xenoderm or other materials for functional neovascularization, according to the findings.

2.
In Vivo ; 38(2): 620-629, 2024.
Article in English | MEDLINE | ID: mdl-38418141

ABSTRACT

BACKGROUND/AIM: Biomaterials are essential in modern medicine, both for patients and research. Their ability to acquire and maintain functional vascularization is currently debated. The aim of this study was to evaluate the vascularization induced by two collagen-based scaffolds (with 2D and 3D structures) and one non-collagen scaffold implanted on the chick embryo chorioallantoic membrane (CAM). MATERIALS AND METHODS: Classical stereomicroscopic image vascular assessment was enhanced with the IKOSA software by using two applications: the CAM assay and the Network Formation Assay, evaluating the vessel branching potential, vascular area, as well as tube length and thickness. RESULTS: Both collagen-based scaffolds induced non-inflammatory angiogenesis, but the non-collagen scaffold induced a massive inflammation followed by inflammatory-related angiogenesis. Vessels branching points/Region of Interest (Px^2) and Vessel branching points/Vessel total area (Px^2), increased exponentially until day 5 of the experiment certifying a sustained and continuous angiogenic process induced by 3D collagen scaffolds. CONCLUSION: Collagen-based scaffolds may be more suitable for neovascularization compared to non-collagen scaffolds. The present study demonstrates the potential of the CAM model in combination with AI-based software for the evaluation of vascularization in biomaterials. This approach could help to reduce and replace animal experimentation in the pre-screening of biomaterials.


Subject(s)
Polymers , Tissue Scaffolds , Animals , Chick Embryo , Humans , Tissue Scaffolds/chemistry , Artificial Intelligence , Neovascularization, Physiologic , Biocompatible Materials/pharmacology , Collagen/pharmacology , Collagen/chemistry , Neovascularization, Pathologic , Tissue Engineering
3.
Article in English | MEDLINE | ID: mdl-38357717

ABSTRACT

Scar tissue is connective tissue formed on the wound during the wound-healing process. The most significant distinction between scar tissue and normal tissue is the appearance of covalent cross-linking and the amount of collagen fibers in the tissue. This study investigates the efficacy of four types of collagen scaffolds in promoting wound healing and regeneration in a Sprague-Dawley murine model-the histomorphology analysis of collagen scaffolds and developing a deep learning model for accurate tissue classification. Four female rats (n = 24) groups received collagen scaffolds prepared through physical and chemical crosslinking. Wound healing progress was evaluated by monitoring granulation tissue formation, collagen matrix organization, and collagen fiber deposition, with histological scoring for quantification-the EDC and HA groups demonstrated enhanced tissue regeneration. The EDC and HA groups observed significant differences in wound regeneration outcomes. Deep-learning CNN models with data augmentation techniques were used for image analysis to enhance objectivity. The CNN architecture featured pre-trained VGG16 layers and global average pooling (GAP) layers. Feature visualization using Grad-CAM heatmaps provided insights into the neural network's focus on specific wound features. The model's AUC score of 0.982 attests to its precision. In summary, collagen scaffolds can promote wound healing in mice, and the deep learning image analysis method we proposed may be a new method for wound healing assessment.

4.
Polymers (Basel) ; 16(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257012

ABSTRACT

Collagen is a naturally occurring polymer that can be freeze-dried to create 3D porous scaffold architectures for potential application in tissue engineering. The process comprises the freezing of water in an aqueous slurry followed by sublimation of the ice via a pre-determined temperature-pressure regime and these parameters determine the arrangement, shape and size of the ice crystals. However, ice nucleation is a stochastic process, and this has significant and inherent limitations on the ability to control scaffold structures both within and between the fabrication batches. In this paper, we demonstrate that it is possible to overcome the disadvantages of the stochastic process via the use of low-frequency ultrasound (40 kHz) to trigger nucleation, on-demand, in type I insoluble bovine collagen slurries. The application of ultrasound was found to define the nucleation temperature of collagen slurries, precisely tailoring the pore architecture and providing important new structural and mechanistic insights. The parameter space includes reduction in average pore size and narrowing of pore size distributions while maintaining the percolation diameter. A set of core principles are identified that highlight the huge potential of ultrasound to finely tune the scaffold architecture and revolutionise the reproducibility of the scaffold fabrication protocol.

5.
J Biomed Mater Res A ; 112(3): 336-347, 2024 03.
Article in English | MEDLINE | ID: mdl-37861296

ABSTRACT

Current treatments for craniomaxillofacial (CMF) defects motivate the design of instructive biomaterials that can promote osteogenic healing of complex bone defects. We report methods to promote in vitro osteogenesis of human mesenchymal stem cells (hMSCs) within a model mineralized collagen scaffold via the incorporation of ascorbic acid (vitamin C), a key factor in collagen biosynthesis and bone mineralization. An addition of 5 w/v% ascorbic acid into the base mineralized collagen scaffold significantly changes key morphology characteristics including porosity, macrostructure, and microstructure. This modification promotes hMSC metabolic activity, ALP activity, and hMSC-mediated deposition of calcium and phosphorous. Additionally, the incorporation of ascorbic acid influences osteogenic gene expression (BMP-2, RUNX2, COL1A2) and delays the expression of genes associated with osteoclast activity and bone resorption (OPN, CTSK), though it reduces the secretion of OPG. Together, these findings highlight ascorbic acid as a relevant component for mineralized collagen scaffold design to promote osteogenic differentiation and new bone formation for improved CMF outcomes.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Humans , Tissue Scaffolds/chemistry , Ascorbic Acid/pharmacology , Collagen/chemistry , Cell Differentiation , Cells, Cultured
6.
Arch Biochem Biophys ; 750: 109805, 2023 12.
Article in English | MEDLINE | ID: mdl-37913855

ABSTRACT

BACKGROUND: The extracellular matrix (ECM) is a complex tridimensional scaffold that actively participates in physiological and pathological events. The objective of this study was to test whether structural proteins of the ECM and glycosaminoglycans (GAGs) may favor the retention of human apolipoprotein A-I (apoA-I) variants associated with amyloidosis and atherosclerosis. METHODS: Biopolymeric matrices containing collagen type I (Col, a main macromolecular component of the ECM) with or without heparin (Hep, a model of GAGs) were constructed and characterized, and used to compare the binding of apoA-I having the native sequence (Wt) or Arg173Pro, a natural variant inducing cardiac amyloidosis. Protein binding was observed by fluorescence microscopy and unbound proteins quantified by a colorimetric assay. RESULTS: Both, Wt and Arg173Pro bound to the scaffolds containing Col, but the presence of Hep diminished the binding efficiency. Col-Hep matrices retained Arg173Pro more than the Wt. The retained protein was only partially removed from the matrices with saline solutions, indicating that electrostatic interactions may occur but are not the main driving force. Using in addition thermodynamic molecular simulations and size exclusion chromatography approaches, we suggest that the binding of apoA-I variants to the biopolymeric matrices is driven by many low affinity interactions. CONCLUSIONS: Under this scenario Col-Hep scaffolds contribute to the binding of Arg173Pro, as a cooperative platform which could modify the native protein conformation affecting protein folding. GENERAL SIGNIFICANCE: We show that the composition of the ECM is key to the protein retention, and well characterized biosynthetic matrices offer an invaluable in vitro model to mimic the hallmark of pathologies with interstitial infiltration such as cardiac amyloidosis.


Subject(s)
Amyloidosis , Heparin , Humans , Amyloidosis/metabolism , Apolipoprotein A-I/genetics , Apolipoprotein A-I/chemistry , Collagen/metabolism , Extracellular Matrix/metabolism , Heparin/metabolism
7.
Acta Biomater ; 172: 249-259, 2023 12.
Article in English | MEDLINE | ID: mdl-37806375

ABSTRACT

Regenerative biomaterials for musculoskeletal defects must address multi-scale mechanical challenges. Repairing craniomaxillofacial bone defects, which are often large and irregularly shaped, requires close conformal contact between implant and defect margins to aid healing. While mineralized collagen scaffolds can promote mesenchymal stem cell osteogenic differentiation in vitro and bone formation in vivo, their mechanical performance is insufficient for surgical translation. We report a generative design approach to create scaffold-mesh composites by embedding a macro-scale polymeric Voronoi mesh into the mineralized collagen scaffold. The mechanics of architected foam reinforced composites are defined by a rigorous predictive moduli equation. We show biphasic composites localize strain during loading. Further, planar and 3D mesh-scaffold composites can be rapidly shaped to aid conformal fitting. Voronoi-based composites overcome traditional porosity-mechanics relationship limits while enabling rapid shaping of regenerative implants to conformally fit complex defects unique for individual patients. STATEMENT OF SIGNIFICANCE: Biomaterial strategies for (craniomaxillofacial) bone regeneration are often limited by the size and complex geometry of the defects. Voronoi structures are open-cell foams with tunable mechanical properties which have primarily been used computationally. We describe generative design strategies to create Voronoi foams via 3D-printing then embed them into an osteogenic mineralized collagen scaffold to form a multi-scale composite biomaterial. Voronoi structures have predictable and tailorable moduli, permit stain localization to defined regions of the composite, and permit conformal fitting to effect margins to aid surgical practicality and improve host-biomaterial interactions. Multi-scale composites based on Voronoi foams represent an adaptable design approach to address significant challenges to large-scale bone repair.


Subject(s)
Biocompatible Materials , Osteogenesis , Humans , Biocompatible Materials/pharmacology , Porosity , Tissue Scaffolds/chemistry , Collagen/chemistry , Printing, Three-Dimensional
8.
Mater Today Bio ; 20: 100639, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37197743

ABSTRACT

Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.

9.
Bioeng Transl Med ; 8(3): e10467, 2023 May.
Article in English | MEDLINE | ID: mdl-37206210

ABSTRACT

Owing to the persistent inflammatory microenvironment and unsubstantial dermal tissues, chronic diabetic wounds do not heal easily and their recurrence rate is high. Therefore, a dermal substitute that can induce rapid tissue regeneration and inhibit scar formation is urgently required to address this concern. In this study, we established biologically active dermal substitutes (BADS) by combining novel animal tissue-derived collagen dermal-replacement scaffolds (CDRS) and bone marrow mesenchymal stem cells (BMSCs) for the healing and recurrence treatments of chronic diabetic wounds. The collagen scaffolds derived from bovine skin (CBS) displayed good physicochemical properties and superior biocompatibility. CBS loaded with BMSCs (CBS-MCSs) could inhibit M1 macrophage polarization in vitro. Decreased MMP-9 and increased Col3 at the protein level were detected in CBS-MSCs-treated M1 macrophages, which may be attributed to the suppression of the TNF-α/NF-κB signaling pathway (downregulating phospho-IKKα/ß/total IKKα/ß, phospho-IκB/total IκB, and phospho-NFκB/total NFκB) in M1 macrophages. Moreover, CBS-MSCs could benefit the transformation of M1 (downregulating iNOS) to M2 (upregulating CD206) macrophages. Wound-healing evaluations demonstrated that CBS-MSCs regulated the polarization of macrophages and the balance of inflammatory factors (pro-inflammatory: IL-1ß, TNF-α, and MMP-9; anti-inflammatory: IL-10 and TGF-ß3) in db/db mice. Furthermore, CBS-MSCs facilitated the noncontractile and re-epithelialized processes, granulation tissue regeneration, and neovascularization of chronic diabetic wounds. Thus, CBS-MSCs have a potential value for clinical application in promoting the healing of chronic diabetic wounds and preventing the recurrence of ulcers.

10.
Regen Biomater ; 10: rbad027, 2023.
Article in English | MEDLINE | ID: mdl-37081860

ABSTRACT

Bone tissue engineering (BTE) aims to improve the healing of bone fractures using scaffolds that mimic the native extracellular matrix. For successful bone regeneration, scaffolds should promote simultaneous bone tissue formation and blood vessel growth for nutrient and waste exchange. However, a significant challenge in regenerative medicine remains the development of grafts that can be vascularized successfully. Amongst other things, optimization of physicochemical conditions of scaffolds is key to achieving appropriate angiogenesis in the period immediately following implantation. Calcium phosphates and collagen scaffolds are two of the most widely studied biomaterials for BTE, due to their close resemblance to inorganic and organic components of bone, respectively, and their bioactivity, tunable biodegradability and the ability to produce tailored architectures. While various strategies exist to enhance vascularization of these scaffolds in vivo, further in vitro assessment is crucial to understand the relation between physicochemical properties of a biomaterial and its ability to induce angiogenesis. While mono-culture studies can provide evidence regarding cell-material interaction of a single cell type, a co-culture procedure is crucial for assessing the complex mechanisms involved in angiogenesis. A co-culture more closely resembles the natural tissue both physically and biologically by stimulating natural intercellular interactions and mimicking the organization of the in vivo environment. Nevertheless, a co-culture is a complex system requiring optimization of various parameters including cell types, cell ratio, culture medium and seeding logistics. Gaining fundamental knowledge of the mechanism behind the bioactivity of biomaterials and understanding the contribution of surface and architectural features to the vascularization of scaffolds, and the biological response in general, can provide an invaluable basis for future optimization studies. This review gives an overview of the available literature on scaffolds for BTE, and trends are extracted on the relationship between architectural features, biochemical properties, co-culture parameters and angiogenesis.

11.
Regen Biomater ; 10: rbad015, 2023.
Article in English | MEDLINE | ID: mdl-36937897

ABSTRACT

Collagen-based biomaterials are used widely as tissue engineering scaffolds because of their excellent bioactivity and their similarity to the natural ECM. The regeneration of healthy bone tissue requires simultaneous support for both osteoblasts and, where angiogenesis is intended, endothelial cells. Hence it is important to tailor carefully the biochemical and structural characteristics of the scaffold to suit the needs of each cell type. This work describes for the first time a systematic study to gain insight into the cell type-specific response of primary human osteoblast (hOBs) and human dermal microvascular endothelial cells (HDMECs) to insoluble collagen-based biomaterials. The behaviour was evaluated on both 2D films and 3D scaffolds, produced using freeze-drying. The collagen was cross-linked at various EDC/NHS concentrations and mono-cultured with hOBs and HDMECs to assess the effect of architectural features and scaffold stabilization on cell behaviour. It was observed that 3D scaffolds cross-linked at 30% of the standard conditions in literature offered an optimal combination of mechanical stiffness and cellular response for both cell types, although endothelial cells were more sensitive to the degree of cross-linking than hOBs. Architectural features have a time-dependent impact on the cell migration profile, with alignment being the most influential parameter overall.

12.
Polymers (Basel) ; 15(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36904464

ABSTRACT

Directed formation of the structure of the culture of living cells is the most important task of tissue engineering. New materials for 3D scaffolds of living tissue are critical for the mass adoption of regenerative medicine protocols. In this manuscript, we demonstrate the results of the molecular structure study of collagen from Dosidicus gigas and reveal the possibility of obtaining a thin membrane material. The collagen membrane is characterized by high flexibility and plasticity as well as mechanical strength. The technology of obtaining collagen scaffolds, as well as the results of studies of its mechanical properties, surface morphology, protein composition, and the process of cell proliferation on its surface, are shown in the given manuscript. The investigation of living tissue culture grown on the surface of a collagen scaffold by X-ray tomography on a synchrotron source made it possible to remodel the structure of the extracellular matrix. It was found that the scaffolds obtained from squid collagen are characterized by a high degree of fibril ordering and high surface roughness and provide efficient directed growth of the cell culture. The resulting material provides the formation of the extracellular matrix and is characterized by a short time to living tissue sorption.

13.
Mar Drugs ; 21(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36827128

ABSTRACT

Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Animals , Biocompatible Materials , Collagen , Regenerative Medicine , Mammals
14.
Biomaterials ; 294: 122015, 2023 03.
Article in English | MEDLINE | ID: mdl-36701999

ABSTRACT

The design of biomaterials to regenerate bone is likely to increasingly require modifications that reduce bacterial attachment and biofilm formation as infection during wound regeneration can significantly impede tissue repair and typically requires surgical intervention to restart the healing process. Further, much research on infection prevention in bone biomaterials has focused on modeling of non-resorbable metal alloy materials, whereas an expanding direction of bone regeneration has focused on development of bioresorbable materials. This represents a need for the prevention and understanding of infection in resorbable biomaterials. Here, we investigate the ability of a mineralized collagen biomaterial to natively resist infection and examine how the addition of manuka honey, previously identified as an antimicrobial agent, affects gram positive and negative bacterial colonization and mesenchymal stem cell osteogenesis and vasculature formation. We incorporate manuka honey into these scaffolds via either direct fabrication into the scaffold microarchitecture or via soaking the scaffold in a solution of manuka honey after fabrication. Direct incorporation results in a change in the surface characteristics and porosity of mineralized collagen scaffolds. Soaking scaffolds in honey concentrations higher than 10% had significant negative effects on mesenchymal stem cell metabolic activity. Soaking or incorporating 5% honey had no impact on endothelial cell tube formation. Although solutions of 5% honey reduced metabolic activity of mesenchymal stem cells, MSC-seeded scaffolds displayed increased calcium and phosphorous mineral formation, osteoprotegerin release, and alkaline phosphatase activity. Bacteria cultured on mineralized collagen scaffolds demonstrated surfaces covered in bacteria and no method of preventing infection, and using 10 times the minimal inhibitory concentration of antibiotics did not completely kill bacteria within the mineralized collagen scaffolds, indicating bioresorbable scaffold materials may act to shield bacteria from antibiotics. The addition of 5% manuka honey to scaffolds was not sufficient to prevent P. aeruginosa attachment or consistently reduce the activity of methicillin resistant staphylococcus aureus, and concentrations above 7% manuka honey are likely necessary to impact MRSA. Together, our results suggest bioresorbable scaffolds may create an environment conducive to bacterial growth, and potential trade-offs exist for the incorporation of low levels of honey in scaffolds to increase osteogenic potential of osteoprogenitors while high-levels of honey may be sufficient to reduce gram positive or negative bacteria activity but at the cost of reduced osteogenesis.


Subject(s)
Honey , Mesenchymal Stem Cells , Methicillin-Resistant Staphylococcus aureus , Osteogenesis , Tissue Scaffolds , Collagen/metabolism , Biocompatible Materials/pharmacology , Anti-Bacterial Agents/pharmacology
15.
Bioact Mater ; 23: 300-313, 2023 May.
Article in English | MEDLINE | ID: mdl-36439085

ABSTRACT

Neural stem progenitor cell (NSPC) transplantation has been regarded as a promising therapeutic method for spinal cord injury (SCI) repair. However, different NSPCs may have different therapeutic effects, and it is therefore important to identify the optimal NSPC type. In our study, we compared the transcriptomes of human fetal brain-derived NSPCs (BNSPCs), spinal cord-derived NSPCs (SCNSPCs) and H9 embryonic stem-cell derived NSPCs (H9-NSPCs) in vitro and subsequently we transplanted each NSPC type on a collagen scaffold into a T8-9 complete SCI rat model in vivo. In vitro data showed that SCNSPCs had more highly expressed genes involved in nerve-related functions than the other two cell types. In vivo, compared with BNSPCs and H9-NSPCs, SCNSPCs exhibited the best therapeutic effects; in fact, SCNSPCs facilitated electrophysiological and hindlimb functional recovery. This study demonstrates that SCNSPCs may be an appropriate candidate cell type for SCI repair, which is of great clinical significance.

16.
J Biomed Mater Res B Appl Biomater ; 111(3): 633-645, 2023 03.
Article in English | MEDLINE | ID: mdl-36262080

ABSTRACT

The development of vascularized scaffolds remains one of the major challenges in tissue engineering, and co-culturing with endothelial cells is known as one of the possible approaches for this purpose. In this approach, optimization of cell culture conditions, scaffolds, and fabrication techniques is needed to develop tissue equivalents that will enable in vitro formation of a capillary network. Prevascularized equivalents will be more physiologically comparable to the native tissues and potentially prevent insufficient vascularization after implantation. This study aimed to culture human umbilical vein endothelial cells (HUVECs), alone or in co-culture with fibroblasts, on collagen scaffolds prepared by simple fabrication approaches for in vitro prevascularization. Different concentrations and ratios of HUVECs and fibroblasts seeded on collagen gel and sponge scaffolds under several culture conditions were examined. Cell viability, scaffolds morphology, and structure were analyzed. Collagen gel scaffolds showed good cell proliferation and viability, with higher proliferation rates for cells cultured in a 2:1 (fibroblasts: HUVECs) ratio and kept in endothelial cell growth medium. However, these matrices were unable to support endothelial cell sprouting. Collagen sponges were highly porous and showed good cell viability. However, they became fragile over time in culture, and they still lack signs of vascularization. Collagen scaffolds were a good platform for cell growth and viability. However, under the experimental conditions of this study, the HUVEC/fibroblast-seeded scaffolds were not suitable platforms to generate in vitro prevascularized equivalents. Our findings will be a valuable starting point to optimize culture microenvironments and scaffolds during fabrication of prevascularized scaffolds.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Human Umbilical Vein Endothelial Cells , Collagen , Fibroblasts , Neovascularization, Physiologic
17.
J Funct Biomater ; 13(4)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36547537

ABSTRACT

(1) Background: The autologous matrix-induced chondrogenesis (AMIC) is a bio-orthopedic treatment for articular cartilage damage. It combines microfracture surgery with the application of a collagen membrane. The aim of the present study was to report a medium-term follow-up of patients treated with AMIC for focal chondral lesions. (2) Methods: Fourty-eight patients treated surgically and 21 control participants were enrolled in the study. To evaluate the functional outcomes, the proprioceptive (postural stability, postural priority) and isokinetic (peak value of maximum knee extensor and flexor torque in relation to body mass and the total work) measurements were performed. To evaluate the clinical outcomes, the Lysholm score and the IKDC score were imposed. (3) Results: Compared to the preoperative values, there was significant improvement in the first 2 years after intervention in the functional as well as subjective outcome measures. (4) Conclusions: AMIC showed durable results in aligned knees.

18.
ACS Appl Bio Mater ; 5(11): 5302-5309, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36265170

ABSTRACT

A previous study from our laboratory demonstrated the effects of in vitro three-dimensional (3D)-printed collagen scaffolds on the maintenance of cryopreserved patient-derived melanoma explants (PDMEs). However, it remains unknown whether 3D-printed collagen scaffolds (3D-PCSs) can be harmonized with any external culture conditions to increase the growth of cryopreserved PDMEs. In this study, 3D-PCSs were manufactured with a 3DX bioprinter. The 3D-printed collagen scaffold-on-frame construction was loaded with fragments of cryopreserved PDMEs (approximately 1-2 mm). 3D-PCSs loaded with patient-derived melanoma explants (3D-PCS-PDMEs) were incubated using two types of methods: (1) in transwells in the presence of a low concentration of oxygen (transwell-hypoxia method) and (2) using a traditional adherent attached to the bottom flat surface of a standard culture dish (traditional flat condition). In addition, we used six different types of media (DMEM high glucose, MEM α, DMEM/F12, RPMI1640, fibroblast basal medium (FBM), and SBM (stem cell basal medium)) for 7 days. The results reveal that the culture conditions of MEM α, DMEM/F12, and FBM using the transwell-hypoxia method show greater synergic effects on the outgrowth of the 3D-PCS-PDME compared to the traditional flat condition. In addition, the transwell-hypoxia method shows a higher expression of the MMP14 gene and the multidrug-resistant gene product 1 (MDR1) than in the typical culture method. Taken together, our findings suggest that the transwell-hypoxia method could serve as an improved, 3D alternative to animal-free testing that better mimics the skin's microenvironment using in vitro PDMEs.


Subject(s)
Melanoma , Tissue Scaffolds , Humans , Cell Differentiation , Collagen/pharmacology , Printing, Three-Dimensional , Hypoxia , Tumor Microenvironment
19.
Pharmaceutics ; 14(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36297427

ABSTRACT

The process of wound healing is a tightly controlled cascade of events, where severe skin wounds are resolved via scar tissue. This fibrotic response may be diminished by applying anti-fibrotic factors to the wound, thereby stimulating regeneration over scarring. The development of tunable biomaterials that enable spatiotemporal control over the release of anti-fibrotics would greatly benefit wound healing. Herein, harnessing the power of click-to-release chemistry for regenerative medicine, we demonstrate the feasibility of such an approach. For this purpose, one side of a bis-N-hydroxysuccinimide-trans-cyclooctene (TCO) linker was functionalized with human epidermal growth factor (hEGF), an important regulator during wound healing, whereas on the other side a carrier protein was conjugated-either type I collagen scaffolds or bovine serum albumin (BSA). Mass spectrometry demonstrated the coupling of hEGF-TCO and indicated a release following exposure to dimethyl-tetrazine. Type I collagen scaffolds could be functionalized with the hEGF-TCO complex as demonstrated by immunofluorescence staining and Western blotting. The hEGF-TCO complex was also successfully ligated to BSA and the partial release of hEGF upon dimethyl-tetrazine exposure was observed through Western blotting. This work establishes the potential of click-to-release chemistry for the development of pro-regenerative biomaterials.

20.
Bioact Mater ; 9: 475-490, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34820584

ABSTRACT

Sensory nerves promote osteogenesis through the release of neuropeptides. However, the potential application and mechanism in which sensory nerves promote healing of bone defects in the presence of biomaterials remain elusive. The present study identified that new bone formation was more abundantly produced after implantation of silicified collagen scaffolds into defects created in the distal femur of rats. The wound sites were accompanied by extensive nerve innervation and angiogenesis. Sensory nerve dysfunction by capsaicin injection resulted in significant inhibition of silicon-induced osteogenesis in the aforementioned rodent model. Application of extracellular silicon in vitro induced axon outgrowth and increased expression of semaphorin 3 A (Sema3A) and semaphorin 4D (Sema4D) in the dorsal root ganglion (DRG), as detected by the upregulation of signaling molecules. Culture medium derived from silicon-stimulated DRG cells promoted proliferation and differentiation of bone marrow mesenchymal stem cells and endothelial progenitor cells. These effects were inhibited by the use of Sema3A neutralizing antibodies but not by Sema4D neutralizing antibodies. Knockdown of Sema3A in DRG blocked silicon-induced osteogenesis and angiogenesis almost completely in a femoral defect rat model, whereas overexpression of Sema3A promoted the silicon-induced phenomena. Activation of "mechanistic target of rapamycin" (mTOR) pathway and increase of Sema3A production were identified in the DRG of rats that were implanted with silicified collagen scaffolds. These findings support the role of silicon in inducing Sema3A production by sensory nerves, which, in turn, stimulates osteogenesis and angiogenesis. Taken together, silicon has therapeutic potential in orthopedic rehabilitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...