Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.129
Filter
1.
BMC Pregnancy Childbirth ; 24(1): 488, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033123

ABSTRACT

BACKGROUND: Maternal rectovaginal colonization by group B Streptococcus (GBS) increases the risk of perinatal GBS disease that can lead to death or long-term neurological impairment. Factors that increase the risk of rectovaginal GBS carriage are incompletely understood resulting in missed opportunities for detecting GBS in risk-based clinical approaches. There is a lacking consensus on whether gestational diabetes mellitus (GDM) is a risk factor for rectovaginal GBS. This systematic review and meta-analysis aims to address current conflicting findings and determine whether GDM should be clinically considered as a risk factor for maternal GBS colonization. METHODS: Peer-reviewed studies that provided GDM prevalence and documented GBS vaginal and/or rectal colonization in women with and without GDM were included in this analysis. From study inception to October 30, 2023, we identified 6,275 relevant studies from EMBASE and PUBMED of which 19 were eligible for inclusion. Eligible studies were analyzed and thoroughly assessed for risk of bias with a modified Newcastle-Ottawa Scale that interrogated representativeness and comparability of cohorts, quality of reporting for GDM and GBS status, and potential bias from other metabolic diseases. Results were synthesized using STATA 18 and analyzed using random-effects meta-analyses. RESULTS: Studies encompassed 266,706 women from 10 different countries, with study periods spanning from 1981 to 2020. Meta-analysis revealed that gestational diabetes is associated with a 16% increased risk of rectovaginal GBS carriage (OR 1.16, CI 1.07-1.26, P = 0.003). We also performed subgroup analyses to assess independent effects of pregestational vs. gestational diabetes on risk of maternal GBS carriage. Pregestational diabetes (Type 1 or Type 2 diabetes mellitus) was also associated with an increased risk of 76% (pooled OR 1.76, CI 1.27-2.45, P = 0.0008). CONCLUSIONS: This study achieved a consensus among previously discrepant observations and demonstrated that gestational diabetes and pregestational diabetes are significant risk factors for maternal rectovaginal carriage of GBS. Recognition of GDM as a risk factor during clinical decisions about GBS screening and intrapartum antibiotic prophylaxis may decrease the global burden of GBS on maternal-perinatal health.


Subject(s)
Diabetes, Gestational , Pregnancy Complications, Infectious , Rectum , Streptococcal Infections , Streptococcus agalactiae , Vagina , Humans , Diabetes, Gestational/epidemiology , Female , Pregnancy , Risk Factors , Streptococcal Infections/epidemiology , Vagina/microbiology , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/microbiology , Rectum/microbiology
2.
Chemosphere ; 363: 142948, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059633

ABSTRACT

Esteya vermicola has shown promise as an efficient biological control agent against pine wilt disease, a devastating disease in pine forests caused by the pinewood nematode (PWN, Bursaphelenchus xylophilus). However, the in vivo interactions among E. vermicola, PWN, and pine hosts are less understood, both at the population and molecular levels. In this study, we performed a series of bioassays to investigate E. vermicola colonization patterns in pine xylem and its population responses to PWN invasion in healthy and PWN-induced wilting trees. Our results demonstrated that although E. vermicola exhibits slow growth, its conidia germinate and grew along the pine tracheid, even producing lunate conidia capable of initiating PWN infections within the xylem. Interestingly, while fungal hyphae became undetectable in pine sapling xylem after inoculation, the E. vermicola population increased immediately in response to PWN invasion. Furthermore, we observed a "leap-frog" dispersal pattern of fungal colonization in PWN-induced wilting pines, facilitated by the migration of fungal-infected nematodes. Moreover, we explored the molecular mechanisms underlying fungal tolerance to pine defense systems using transcriptomic analysis. Comparative transcriptomics revealed that carbohydrate metabolism and abiotic stress-induced oxidoreductive activities are involved in the fungal tolerance to the pine defense compound ß-pinene. This study enhances our understanding of how E. vermicola colonizes and persists within pine xylem, its molecular responses to plant defense compounds, and its population dynamics upon PWN invasion, validating its efficacy as a biocontrol agent against pine wilt disease.

3.
Antibiotics (Basel) ; 13(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39061296

ABSTRACT

Venous leg ulcers (VLUs) are hard-to-heal wounds and are prone to microbial colonization. Innovative and improved therapies are thus required to resolve local infection and enhance the wound healing process. The objective of this study was to evaluate the effectiveness of medical-grade honey (MGH) for the treatment of clinically infected and non-healing VLUs. This prospective case series included nine patients with an average age of 83.4 years (range: 75-91 years) with a total of eleven VLUs, previously ineffectively treated with various products. Major risk factors for the appearance of VLUs were chronic venous insufficiency, advanced age, multiple comorbidities (particularly cardiovascular diseases), and impaired mobility. All wounds presented with local signs of infection. Upon presentation, treatment was commenced with a range of MGH-based products (L-Mesitran®). Clinical signs of infection were eliminated by MGH after 2.2 weeks on average (range: 1-4 weeks), and wounds were completely healed after 7 weeks on average (range: 3-18 weeks). No further complications or recurrences were observed. MGH has a broad-spectrum antimicrobial activity and promotes rapid healing, thus improving patients' quality of life. Moreover, MGH-based products are safe, easy to use, cost-effective, and can effectively treat VLUs alone or in combination with standard-of-care therapies.

4.
Antibiotics (Basel) ; 13(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39061314

ABSTRACT

Substantial knowledge gaps exist concerning the varying durations of peripherally inserted central catheter (PICC) placements that lead to either central line-associated bloodstream infection (CLABSI) or catheter colonization. We aimed to compare PICCs dwell time between patients who developed CLABSIs due to multidrug-resistant microorganisms (MDROs) and patients with catheter colonization by MDROs. Data from 86 patients admitted consecutively to a tertiary-care hospital from 2017 to 2020 were retrospectively analyzed. The mean dwell time was 25.73 ± 16.19 days in the PICC-CLABSI group and 16.36 ± 10.28 days in the PICC-colonization group (p = 0.002). The mean dwell time was 17.38 ± 9.5 days in the PICC-MDRO group and 22.48 ± 15.64 days in the PICC-non-MDRO group (p = 0.005). Within the PICC-CLABSI group, the mean dwell time for CLABSIs caused by MDROs was 21.50 ± 12.31 days, compared to 27.73 ± 16.98 days for CLABSIs caused by non-MDROs (p = 0.417). Within the PICC-colonization group, the mean dwell time was 15.55 ± 7.73 days in PICCs colonized by MDROs and 16.92 ± 11.85 days in PICCs colonized by non-MDROs (p = 0.124). The findings of the present study suggest that CLABSIs caused by MDROs in PICCs are associated with a shorter mean catheter dwell time compared to those caused by non-MDROs, underscoring the importance of considering infections by MDROs when evaluating PICC dwell times.

5.
Biomedicines ; 12(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062142

ABSTRACT

Dose-intensive cytostatic therapy and antibiotic treatment in allogeneic hematopoietic stem cell transplantation (allo-HSCT) cause severe abnormalities in a composition of gut microbiota as well as the emergence of antibiotic resistance. The data on the longitudinal recovery of major bacterial phyla and the expansion of genes associated with antibiotic resistance are limited. We collected regular stool samples during the first year after allo-HSCT from 12 adult patients with oncohematological disorders after allo-HSCT and performed 16SrRNA sequencing, multiplex PCR, conventional bacteriology and CHROMagar testing. We observed a decline in Shannon microbiota diversity index as early as day 0 of allo-HSCT (p = 0.034) before any administration of antibiotics, which persisted up to 1 year after transplantation, when the Shannon index returned to pre-transplant levels (p = 0.91). The study confirmed the previously shown decline in Bacillota (Firmicutes) genera and the expansion of E. coli/Shigella, Klebsiella and Enterococci. The recovery of Firmicutes was slower than that of other phyla and occurred only a year post-transplant. A positive correlation was observed between the expansion of E. coli/Shigella genera and blaKPC, blaCTX-M-1 and blaTEM (p < 0.001), Klebsiella spp. and blaOXA-48-like, blaNDM, blaCTX-M-1, blaTEM, and blaSHV (p < 0.001), Pseudomonas spp. and blaNDM (p = 0.002), Enterococcus spp. and blaOXA-48-like, blaNDM, blaCTX-M-1, blaSHV (p < 0.01). The correlation was observed between the expansion of Enterobacterales and and carbapenemase-positive CHROMagar samples (p < 0.001). Samples positive for carbapenem-resitant bacteria were at their maximum levels on day +30, and were gradually diminishing one year after allo-HSCT. From day +30 to +60, all isolated K. pneumoniae strains in fecal samples proved to be resistant to the main antibiotic groups (carbapenems, aminoglycosides, fluoroquinolones, third-generation cephalosporins). One year after HSCT, we documented the spontaneous decolonization of K. pneumoniae. The sensitivity of molecular biology techniques in the search for total and antibiotic-resistant Klebsiella seems to be superior to common bacteriological cultures. Future studies should be focused on searching for novel approaches to the efficient reconstitution and/or maintenance of strictly anaerobic microbiota in oncological patients.

6.
Methods Mol Biol ; 2811: 207-220, 2024.
Article in English | MEDLINE | ID: mdl-39037661

ABSTRACT

Tumor cells often leave the primary tumor mass and get settled in a foreign tissue years before the development of overt metastases, exhibiting the highly inefficient nature of metastatic colony formation. In fact, the tumor cells that disseminate into distant organs and subsequently invade the parenchyma of these organs rarely proceed to found actively growing metastatic colonies. Instead, the majority of these tumor cells undergo prolonged proliferative arrest unless they are swiftly eliminated by the immune system. Together, these observations indicate that the proliferative capacity of the disseminated tumor cells (DTCs) serves as a key determinant of the efficiency of metastasis, highlighting the need to better understand the mechanism governing the proliferation of these cells. Recent studies are unveiling the importance of the interactions between DTCs and the microenvironment of the host tissue in regulating the proliferation of DTCs. However, the details of such interactions remain to be fully delineated. Here I describe the methods for visualizing and analyzing the interactions between DTCs and the extracellular matrix (ECM) components of the host tissue as well as the cytoskeleton of the DTCs that support these interactions. The methods described here will facilitate the study of how DTCs interact with the ECM of their host tissue, which will be crucial for elucidating the mechanism that underlies the regulation of DTC proliferation by the DTC-ECM interactions.


Subject(s)
Cytoskeleton , Extracellular Matrix , Cytoskeleton/metabolism , Humans , Extracellular Matrix/metabolism , Animals , Cell Line, Tumor , Tumor Microenvironment , Mice , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Cell Proliferation , Neoplasms/pathology , Neoplasms/metabolism , Neoplasm Metastasis , Cell-Matrix Junctions/metabolism
7.
Int J Infect Dis ; : 107171, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025202

ABSTRACT

INTRODUCTION: Candida infections can be serious in ICU patients, as Candida is an organism that specially colonizes the digestive system. In immunocompromised patients, treatment is protocolized but in non-neutropenic patients it is not well established. On the other hand, the treatment of this type of infection is not absent of adverse effects. DISSEMINATED VERSUS INVASIVE CANDIDIASIS: The prevalence of fungal infections, especially Candidiasis and its mortality in the ICU is high, mainly due to the lack of diagnosis and absence of treatment criteria, because they are often detected in the Disseminated Candidiasis phase, such as candidemia. One of the indicators of the progression of the disease is the presence of Candida in more than two different foci, named Candida Multifocality, within the concept of Invasive Candidiasis. In fact, Fundicu Project was created to optimize the management of Candidiasis. APPROACH TO THE CLINICAL MANAGEMENT OF CANDIDIASIS: The management of Candidiasis in ICU patients first requires the identification of patients at high risk of Candidiasis, which must be performed based on the evidence of immune dysregulation, higher severity index (APACHE, MODS), long ICU stays or other factors such as mechanical ventilation or use of broad-spectrum antibiotics. In order to increase detection and dispense the appropriate anti-fungal at an early stage, it is necessary to include the concept of Multifocality in Invasive Candidiasis with screening of different foci. Anti-fungal treatment reduces mortality both overall and attributable to Candida. CONCLUSIONS: Detecting a high Invasive Candidiasis risk is a patient safety concept and should be treated as such. Identifying patients (critically non-neutropenic adult patients with severe MODS and the first isolation of Candida species in a study sample of possible secondary infection) and demonstrating Invasive Candidiasis (Multifocal or Disseminated) require urgent initiation of anti-fungal treatment to minimize mortality attributable to Invasive Candidiasis in ICU and eliminate mortality rates above 50%.

9.
Vet Res Commun ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972932

ABSTRACT

The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum ß-lactamase (ESßL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESßL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESßL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESßL variants by PCR and sequencing. The presence of ESßL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESßL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESßL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.

10.
Ecol Evol ; 14(7): e11624, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966248

ABSTRACT

Astydamia latifolia is the only species of the genus Astydamia, which forms an early-diverging lineage of Apiaceae, subfamily Apioideae. This species is subendemic to the Canary Islands and one of the most representative species of the coastal environments of this archipelago. Astydamia displays diplochory, that is, diaspores with two long-distance dispersal (LDD) syndromes. In particular, A. latifolia has both anemochorous and thalassochorous fruit traits (corky and winged mericarps). Although we expect this species to have a high dispersal capacity, there is no genetic study addressing it. The divergence time of this species from its sister taxon is also unknown. In this study, we aimed (i) to unveil the phylogenetic relationships and divergence times of A. latifolia; (ii) to reconstruct its phylogeographic structure across the Canary Islands; and (iii) to estimate the number of inter-island colonization events. To these ends, we first sequenced the internal transcribed spacer (ITS) region for A. latifolia, reconstructed the phylogenetic relationships of Astydamia and Apiaceae relatives and estimated divergence times. Then, two plastid DNA regions (psaI-aacD and psbK-trnS) were sequenced for 158 individuals (from 36 Canarian population and one NW African population) to reconstruct a haplotype network. The recently developed method Phylogeographic Analysis of Island Colonization Events (PAICE) was used to estimate the number of inter-island colonization events. Results show that A. latifolia is a phylogenetically isolated lineage that diverged from the most closely related genus (Molopospermum) in the Eocene-Miocene. It displays a low plastid DNA diversity (only four haplotypes detected), which is accompanied by a high degree of haplotype sharing between islands and highly linear rarefaction curves of colonization obtained in PAICE. These findings suggest a high colonization ability for this species, most likely related to the availability of two LDD syndromes.

11.
Microbiol Spectr ; : e0087924, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012111

ABSTRACT

Most pneumococcal disease occurs among infants and older adults and is thought to be driven by the transmission of Streptococcus pneumoniae from young children to these vulnerable age groups. However, pneumococcal disease outbreaks also affect non-elderly adults living or working in congregate, close-contact settings. Little is known about pneumococcal carriage in such populations. From July to November 2020, we collected saliva from low-income adult farmworkers in Monterey County, California, and tested for pneumococcal carriage following culture enrichment via quantitative PCR assays targeting the pneumococcal lytA and piaB genes. Participants were considered to carry pneumococci if lytA and piaB cycle threshold values were both below 40. Among 1,283 participants enrolled in our study, 117 (9.1%) carried pneumococci. Carriers tended more often than non-carriers to be exposed to children aged <5 years [odds ratio (OR) = 1.45 (0.95-2.20)] and overcrowding [OR = 1.48 (0.96-2.30) and 2.84 (1.20-6.73), respectively, for participants in households with >2-4 and >4 persons per bedroom vs ≤2 persons per bedroom]. Household overcrowding remained associated with increased risk of carriage among participants not exposed to children aged <5 years [OR = 2.05 (1.18-3.59) for participants living in households with >2 vs ≤2 persons per bedroom]. Exposure to children aged <5 years and overcrowding were each associated with increased pneumococcal density among carriers [piaB cT difference of 2.04 (0.36-3.73) and 2.44 (0.80-4.11), respectively]. While exposure to young children was a predictor of pneumococcal carriage, associations of overcrowding with increased prevalence and density of carriage in households without young children suggest that transmission also occurs among adults in close-contact settings.IMPORTANCEAlthough infants and older adults are the groups most commonly affected by pneumococcal disease, outbreaks are known to occur among healthy, working-age populations exposed to overcrowding, including miners, shipyard workers, military recruits, and prisoners. Carriage of Streptococcus pneumoniae is the precursor to pneumococcal disease, and its relation to overcrowding in adult populations is poorly understood. We used molecular methods to characterize pneumococcal carriage in culture-enriched saliva samples from low-income adult farmworkers in Monterey County, CA. While exposure to children in the household was an important risk factor for pneumococcal carriage, living in an overcrowded household without young children was an independent predictor of carriage as well. Moreover, participants exposed to children or overcrowding carried pneumococci at higher density than those without such exposures, suggesting recent transmission. Our findings suggest that, in addition to transmission from young children, pneumococcal transmission may occur independently among adults in overcrowded settings.

12.
J Clin Med ; 13(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38999378

ABSTRACT

Introduction: Patients with chronic pancreatitis (CP) as well as with pancreatic head carcinoma (CA) undergo the surgical intervention named "pylorus-preserving pancreatoduodenectomy according to Traverso-Longmire (PPPD)", which allowed a comparative analysis of the postoperative courses. The hypothesis was that patients with CA would have worse general as well as immune status than patients with CP due to the severity of the tumor disease and that this would be reflected in the more disadvantageous early postoperative outcome after PPPD. Methods: With the aim of eliciting the influence of the different diagnoses, the surgical outcome of all consecutive patients who underwent surgery at the Dept. of General, Abdominal, Vascular and Transplant Surgery at the University Hospital at Magdeburg between 2002 and 2015 (inclusion criterion) was recorded and comparatively evaluated. Early postoperative outcome was characterized by general and specific complication rate indicating morbidity, mortality, and microbial colonization rate, in particular surgical site infection (SSI, according to CDC criteria). In addition, microbiological findings of swabs and cultures from all compartments as well as preoperative and perioperative parameters from patient records were retrospectively documented and used for statistical comparison in this systematic retrospective unicenter observational study (design). Results: In total, 192 cases with CA (68.1%) and 90 cases with CP (31.9%) met the inclusion criteria of this study. Surprisingly, there were similar specific complication rates of 45.3% (CA) vs. 45.6% (CP; p = 0.97) and in-hospital mortality, which differed only slightly at 3.65% (CA) vs. 3.3% (CP; p = 0.591); the overall complication rate tended to be higher for CA at 23.4% vs. 14.4% (CP; p = 0.082). Overall, potentially pathogenic germs were detected in 28.9% of all patients in CP compared to 32.8% in CA (p = 0.509), and the rate of SSI was 29.7% (CA) and 24.4% (CP; p = 0.361). In multivariate analysis, CA was found to be a significant risk factor for the development of SSI (OR: 2.025; p = 0.048); the underlying disease had otherwise no significant effect on early postoperative outcome. Significant risk factors in the multivariate analysis were also male sex for SSI and microbial colonization, and intraoperatively transfused red cell packs for mortality, general and specific complications, and surgical revisions. Conclusions: Based on these results, a partly significant, partly trending negative influence of the underlying disease CA, compared to CP, on the early postoperative outcome was found, especially with regard to SSI after PPPD. This influence is corroborated by the international literature.

13.
Nutrients ; 16(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999794

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.


Subject(s)
Colon , Diet, Western , Enterohemorrhagic Escherichia coli , Feces , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Diet, Western/adverse effects , Colon/microbiology , Feces/microbiology , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Fatty Acids, Volatile/metabolism , Bile Acids and Salts/metabolism , Escherichia coli O157
14.
Cell Rep ; 43(7): 114432, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38963762

ABSTRACT

The human pathogen Streptococcus pneumoniae (Spn) encodes several cell-cell communication systems, notably multiple members of the Rgg/SHP and the Tpr/Phr families. Until now, members of these diverse communication systems were thought to work independently. Our study reveals that the ABC transporter PptAB and the transmembrane enzyme Eep act as a molecular link between Rgg/SHP and TprA/PhrA systems. We demonstrate that PptAB/Eep activates the Rgg/SHP systems and represses the TprA/PhrA system. Specifically, they regulate the respective precursor peptides (SHP and PhrA) before these leave the cell. This dual mode of action leads to temporal coordination of these systems, producing an overlap between their respective regulons during host cell infection. Thus, we have identified a single molecular mechanism that targets diverse cell-cell communication systems in Spn. Moreover, these molecular components are encoded by many gram-positive bacteria, suggesting that this mechanism may be broadly conserved.

15.
Proc Natl Acad Sci U S A ; 121(28): e2302924121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38950368

ABSTRACT

The human colonization of the Canary Islands represents the sole known expansion of Berber communities into the Atlantic Ocean and is an example of marine dispersal carried out by an African population. While this island colonization shows similarities to the populating of other islands across the world, several questions still need to be answered before this case can be included in wider debates regarding patterns of initial colonization and human settlement, human-environment interactions, and the emergence of island identities. Specifically, the chronology of the first human settlement of the Canary Islands remains disputed due to differing estimates of the timing of its first colonization. This absence of a consensus has resulted in divergent hypotheses regarding the motivations that led early settlers to migrate to the islands, e.g., ecological or demographic. Distinct motivations would imply differences in the strategies and dynamics of colonization; thus, identifying them is crucial to understanding how these populations developed in such environments. In response, the current study assembles a comprehensive dataset of the most reliable radiocarbon dates, which were used for building Bayesian models of colonization. The findings suggest that i) the Romans most likely discovered the islands around the 1st century BCE; ii) Berber groups from western North Africa first set foot on one of the islands closest to the African mainland sometime between the 1st and 3rd centuries CE; iii) Roman and Berber societies did not live simultaneously in the Canary Islands; and iv) the Berber people rapidly spread throughout the archipelago.


Subject(s)
Human Migration , Humans , Spain , Human Migration/history , Bayes Theorem , History, Ancient , Radiometric Dating
16.
Acta Med Indones ; 56(2): 191-198, 2024 Apr.
Article in English | MEDLINE | ID: mdl-39010776

ABSTRACT

BACKGROUND: Antibiotic resistance is the main problem in infectious disease management. Multidrug-resistant (MDR) bacteria could be carried by admitted patients and become a source of spread in the hospital, causing infections in other patients or the patients themselves. However, the screening of MDR bacteria has not been a standard in developing countries. This study aimed to get the prevalence of MDR bacteria colonization in patients on admission to Dr. Cipto Mangunkusumo Hospital. METHODS: Selective liquid media with added antibiotics were used for culturing the MDR bacteria. While admitted to the hospital, subjects were sampled and interviewed to fill out a questionnaire. The screening specimens used for this study were throat, navel, rectal, nasal, and armpit swabs. During hospitalization, hospital-acquired infections (HAIs) were recorded. RESULTS: Of 100 patients included in the study, the prevalence of MDR bacteria colonization on admission was 63% (n=63) with the prevalence of CR-GNB, ESBL-PE, and MRSA were 11%, 54%, and 11%, respectively. Two-thirds of the patients with HAIs (n=8/12) were colonized with MDR bacteria. Factors associated with MDR bacteria colonization were the recent use of invasive medical devices and comorbidity, while a factor associated with CR-GNB colonization was the recent use of antibiotics. CONCLUSION: The prevalence of MDR bacteria colonization in patients on admission to Dr. Cipto Mangunkusumo Hospital in 2022 was 63% (n=63), of which 12.68% (n=8) experienced HAIs during hospitalization. MDR bacteria colonization was associated with the recent use of invasive medical devices and comorbidity. History of antibiotic use was associated with CR-GNB colonization.


Subject(s)
Anti-Bacterial Agents , Cross Infection , Drug Resistance, Multiple, Bacterial , Humans , Indonesia/epidemiology , Male , Female , Middle Aged , Adult , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/drug therapy , Aged , Prevalence , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Young Adult , Hospitalization , Cross-Sectional Studies , Adolescent , Risk Factors
17.
Microbiol Res ; 286: 127832, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39013300

ABSTRACT

The gut commensals, which are usually symbiotic or non-harmful bacteria that live in the gastrointestinal tract, have a positive impact on the health of the host. This review, however, specifically discuss distinct conditions where commensals aid in the development of pathogenic opportunistic infections. We discuss that the categorization of gut bacteria as either pathogens or non-pathogens depends on certain circumstances, which are significantly affected by the tissue microenvironment and the dynamic host-microbe interaction. Under favorable circumstances, commensals have the ability to transform into opportunistic pathobionts by undergoing overgrowth. These conditions include changes in the host's physiology, simultaneous infection with other pathogens, effective utilization of nutrients, interactions between different species of bacteria, the formation of protective biofilms, genetic mutations that enhance pathogenicity, acquisition of genes associated with virulence, and the ability to avoid the host's immune response. These processes allow commensals to both initiate infections themselves and aid other pathogens in populating the host. This review highlights the need of having a detailed and sophisticated knowledge of the two-sided nature of gut commensals. Although commensals mostly promote health, they may also become harmful in certain changes in the environment or the body's functioning. This highlights the need of acknowledging the intricate equilibrium in interactions between hosts and microbes, which is crucial for preserving intestinal homeostasis and averting diseases. Finally, we also emphasize the further need of research to better understand and anticipate the behavior of gut commensals in different situations, since they play a crucial and varied role in human health and disease.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Gastrointestinal Tract , Host-Pathogen Interactions , Opportunistic Infections , Symbiosis , Humans , Dysbiosis/microbiology , Opportunistic Infections/microbiology , Gastrointestinal Tract/microbiology , Bacteria/genetics , Bacteria/classification , Bacteria/pathogenicity , Animals , Biofilms/growth & development , Virulence , Homeostasis
18.
J Med Life ; 17(3): 296-304, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39044935

ABSTRACT

Oral care is a crucial challenge of nursing care in orally intubated patients. Oropharyngeal colonization with microorganisms is probably the first step in the pathogenesis of most bacterial pulmonary infections. This study aimed to investigate the effect of different oral care solutions on the oral health status of critically ill patients. We conducted a quasi-experimental study involving a convenience sample of 60 adult orally intubated patients, distributed equally into three groups: 20 patients received 0.12% chlorhexidine gluconate (CHX) solution as an oral rinse; 20 patients received 0.1% hexetidine (HEX) solution as an oral rinse; and a control group of 20 patients received routine hospital oral care with 0.9% normal saline (NS) solution. Oropharyngeal and tracheal cultures were obtained from patients within 24-48 h of admission, before the administration of topical oral antimicrobial solutions and then repeated on day 4 and day 7 after the oral solutions. The study revealed that CHX has a more powerful effect than HEX and NS in improving the oral mucosa and decreasing colonization of both the oropharynx and trachea. On day 7, the improvements were statistically significant in the CHX group and the HEX group (P = 0.02 and P = 0.03, respectively), but not in the NS group. This research confirms the effect of CHX and HEX in lowering the risk of tracheal and oropharyngeal colonization, and recommends the use of a CHX solution as oral mouth care in critically ill patients.


Subject(s)
Chlorhexidine , Critical Illness , Oral Health , Humans , Chlorhexidine/analogs & derivatives , Chlorhexidine/therapeutic use , Male , Female , Middle Aged , Adult , Mouthwashes/therapeutic use , Anti-Infective Agents, Local/therapeutic use , Anti-Infective Agents, Local/administration & dosage
19.
Front Microbiol ; 15: 1423352, 2024.
Article in English | MEDLINE | ID: mdl-38979542

ABSTRACT

Introduction: The rapid spread of plasmid-mediated tet(X4) conferring high tigecycline resistance poses a significant threat to public health. Escherichia coli as the most common pathogen which carries tet(X4) has been widely disseminated in China. Thus, comprehensive investigations are required to understand the mechanism of transmission of tet(X4)-positive E. coli. Methods: In this study, a total of 775 nonduplicate samples were collected in Guangdong, China from 2019 to 2020. We screened for tet(X4)-positive E. coli by PCR amplification and species identification. Furthermore, we analyzed the phylogenetics and genetic context of tet(X4)-positive E. coli through whole-genome sequencing and long-reads sequencing. Results: Overall, 146 (18.84%) tet(X4)-positive E. coli were isolated, comprising 2 isolates from humans and 144 isolates from pigs. The majority of tet(X4)-positive E. coli exhibited resistance to multiple antibiotics but all of them were susceptible to amikacin and colistin. Phylogenetic analysis showed that ST877, ST871, and ST195 emerged as the predominant sequence types in tet(X4)-positive E. coli. Further analysis revealed various genetic environments associated with the horizontal transfer of tet(X4). Notably, a 100-kbp large fragment insertion was discovered downstream of tet(X4), containing a replicon and a 40-kbp gene cluster for the bacterial type IV secretion system. Discussion: The high colonization rate of tet(X4)-positive E. coli in animals suggests that colonization as a key factor in its dissemination to humans. Diverse genetic context may contribute to the transfer of tet(X4). Our findings underline the urgent need for controlling the spread of plasmid-mediated tigecycline resistance.

20.
Sci Rep ; 14(1): 15387, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965339

ABSTRACT

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Subject(s)
Biofilms , Lactobacillus , Probiotics , Tryptamines , Uropathogenic Escherichia coli , Vagina , Biofilms/drug effects , Biofilms/growth & development , Humans , Tryptamines/pharmacology , Female , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/physiology , Probiotics/pharmacology , Vagina/microbiology , Lactobacillus/drug effects , Lactobacillus/metabolism , Lactobacillus/physiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli Infections/prevention & control , Adult , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...