Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38891750

ABSTRACT

Hatchery rearing significantly influences the phenotypic development of fish, with potential adverse effects for the post-release performance of hatchery-reared individuals in natural environments, especially when targeted for stock enhancement. To assess the suitability of releasing hatchery-reared fish, a comprehensive understanding of the phenotypic effects of captive rearing, through comparisons with their wild conspecifics, is essential. In this study, we investigated the divergence in body coloration between wild and hatchery-reared marbled rockfish Sebastiscus marmoratus. We examined the selection preferences for different light colors and assessed the impact of different ambient light colors on the morphological color-changing ability of juvenile marbled rockfish. Our findings revealed significant differences in body color between wild and hatchery-reared marbled rockfish. The hue and saturation values of wild marbled rockfish were significantly higher than those of their hatchery-reared counterparts, indicative of deeper and more vibrant body coloration in the wild population. Following a ten-day rearing period under various light color environments, the color of wild marbled rockfish remained relatively unchanged. In contrast, hatchery-reared marbled rockfish tended to change their color, albeit not reaching wild-like coloration. Light color preference tests demonstrated that wild juvenile marbled rockfish exhibited a preference for a red-light environment, while hatchery-reared individuals showed a similar but weaker response. Both wild and hatchery-reared marbled rockfish displayed notable negative phototaxis in the presence of yellow and blue ambient light. These results highlight the impact of hatchery rearing conditions on the body color and morphological color-changing ability, and provide insight into light color selection preferences of marbled rockfish. To mitigate the divergence in phenotypic development and produce more wild-like fish for stocking purposes, modifications to the hatchery environment, such as the regulation of ambient light color, should be considered.

2.
Plant Mol Biol ; 114(3): 51, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691187

ABSTRACT

Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.


Subject(s)
Anthocyanins , Fruit , Gene Expression Regulation, Plant , Pomegranate , Transcriptome , Fruit/genetics , Fruit/metabolism , Anthocyanins/metabolism , Anthocyanins/genetics , Pomegranate/genetics , Pomegranate/metabolism , Pigmentation/genetics , Gene Expression Profiling , Color , Metabolomics , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant Cell Rep ; 43(6): 157, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819475

ABSTRACT

KEY MESSAGE: CmMYB308 was identified as a key regulator in chrysanthemum flower color variation from purple to pink by conducting transcriptome and metabolome analysis. CmMYB308 can inhibit anthocyanin biosynthesis by suppressing the expression of CmPAL, CmC4H, and Cm4CL. Flower color variation is a widespread natural occurrence that plays a significant role in floral breeding. We discovered a variation in the flower of the chrysanthemum cultivar 'Dante Purple' (abbreviated as 'DP'), where the flower color shifted from purple to pink. We successfully propagated these pink flowers through tissue culture and designated them as DPM. By conducting transcriptome and metabolome analysis, we identified a reduction in the expression of critical genes involved in anthocyanin biosynthesis-CmPAL, CmC4H, and Cm4CL-in the DPM. This downregulation led to an accumulation of phenylalanine and cinnamic acid within the general phenylpropanoid pathway (GPP), which prevented their conversion into cyanidin and cyanidin 3-glucoside. As a result, the flowers turned pink. Additional transformation and biochemical experiments confirmed that the upregulation of CmMYB308 gene expression in the DPM directly suppressed CmPAL-1 and CmC4H genes, which indirectly affected Cm4CL-3 expression and ultimately inhibited anthocyanin biosynthesis in the DPM. This study offers a preliminary insight into the molecular mechanism underlying chrysanthemum flower color mutation, paving the way for genetic improvements in chrysanthemum flower color breeding.


Subject(s)
Anthocyanins , Chrysanthemum , Flowers , Gene Expression Regulation, Plant , Pigmentation , Plant Proteins , Chrysanthemum/genetics , Chrysanthemum/metabolism , Flowers/genetics , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Anthocyanins/metabolism , Pigmentation/genetics , Transcriptome/genetics , Metabolomics/methods , Metabolome/genetics , Gene Expression Profiling , Color , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Proc Natl Acad Sci U S A ; 121(11): e2317430121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437540

ABSTRACT

Brown-and-white giant pandas (hereafter brown pandas) are distinct coat color mutants found exclusively in the Qinling Mountains, Shaanxi, China. However, its genetic mechanism has remained unclear since their discovery in 1985. Here, we identified the genetic basis for this coat color variation using a combination of field ecological data, population genomic data, and a CRISPR-Cas9 knockout mouse model. We de novo assembled a long-read-based giant panda genome and resequenced the genomes of 35 giant pandas, including two brown pandas and two family trios associated with a brown panda. We identified a homozygous 25-bp deletion in the first exon of Bace2, a gene encoding amyloid precursor protein cleaving enzyme, as the most likely genetic basis for brown-and-white coat color. This deletion was further validated using PCR and Sanger sequencing of another 192 black giant pandas and CRISPR-Cas9 edited knockout mice. Our investigation revealed that this mutation reduced the number and size of melanosomes of the hairs in knockout mice and possibly in the brown panda, further leading to the hypopigmentation. These findings provide unique insights into the genetic basis of coat color variation in wild animals.


Subject(s)
Ursidae , Animals , Mice , Ursidae/genetics , Peptide Hydrolases , Amyloid beta-Protein Precursor , Animals, Wild , Mice, Knockout
5.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38466135

ABSTRACT

In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-ß-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.


Subject(s)
Lizards , Skin Pigmentation , Animals , Female , Male , Lizards/genetics , Carotenoids/metabolism , Pteridines , Reproduction , Pigmentation/genetics , Color
6.
Genes (Basel) ; 15(3)2024 02 23.
Article in English | MEDLINE | ID: mdl-38540336

ABSTRACT

The flower's color is regarded as one of the most outstanding features of the rose. Rosa praelucens Byhouwer, an endemic and critically endangered decaploid wild rose species, is abundant in phenotypic diversity, especially in flower color variation, from white to different degrees of pink. The mechanism underlying this variation, e.g., the level of petal-color-related genes, is worth probing. Seven candidate reference genes for qRT-PCR analysis, including tubulin α chain (TUBA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H2B (Histone2A), eukaryotic translation elongation factor 1-α (EEF1A), 60S ribosomal protein (RPL37), eukaryotic translation initiation factor 1-α (EIF1A), and aquaporins (AQP), were detected from the transcriptome datasets of full blooming flowers of white-petaled and pink-petaled individuals, and their expression stabilities were evaluated through qRT-PCR analysis. According to stability rankings analysis, EEF1A showed the highest stability and could be chosen as the most suitable reference gene. Moreover, the reliability of EEF1A was demonstrated via qRT-PCR analysis of six petal-color-related target genes, the expression patterns of which, through EEF1A normalization, were found to be consistent with the findings of transcriptome analysis. The result provides an optimal reference gene for exploring the expression level of petal-color-related genes in R. praelucens, which will accelerate the dissection of petal-color-variation mechanisms in R. praelucens.


Subject(s)
Rosa , Humans , Rosa/genetics , Reproducibility of Results , Gene Expression Profiling , Transcriptome , Polymerase Chain Reaction
7.
Ecol Evol ; 14(2): e11029, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38390002

ABSTRACT

Leucism, in which pigmentation is lost over part or the entire body of an animal, has a range of possible genetic causes. Here, we report leucism in an individual tiger keelback (Rhabdophis tigrinus) found on Jeung Island, Shinan-gun, Jeollanam-do, South Korea, during a survey of the distribution of reptiles in the area. The individual was observed sunbathing in the bushes next to a pond. This individual exhibited ecdysis, thus it considered that have normal feeding activity. Our report represents the first observation of leucism in R. tigrinus, and thus, further analysis is needed of this phenotype to more clearly understand its impact on the species and its natural history.

8.
Curr Issues Mol Biol ; 46(2): 1503-1515, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38392215

ABSTRACT

The diversity of leaf characteristics, particularly leaf color, underscores a pivotal area of inquiry within plant science. The synthesis and functionality of chlorophyll, crucial for photosynthesis, largely dictate leaf coloration, with varying concentrations imparting different shades of green. Complex gene interactions regulate the synthesis and degradation of chlorophyll, and disruptions in these pathways can result in abnormal chlorophyll production, thereby affecting leaf pigmentation. This study focuses on Bambusa multiplex f. silverstripe, a natural variant distinguished by a spectrum of leaf colors, such as green, white, and green-white, attributed to genetic variations influencing gene expression. By examining the physiological and molecular mechanisms underlying chlorophyll anomalies and genetic factors in Silverstripe, this research sheds light on the intricate gene interactions and regulatory networks that contribute to leaf color diversity. The investigation includes the measurement of photosynthetic pigments and nutrient concentrations across different leaf color types, alongside transcriptomic analyses for identifying differentially expressed genes. The role of key genes in pathways such as ALA biosynthesis, chlorophyll synthesis, photosynthesis, and sugar metabolism is explored, offering critical insights for advancing research and plant breeding practices.

9.
Mitochondrial DNA B Resour ; 9(1): 15-19, 2024.
Article in English | MEDLINE | ID: mdl-38187012

ABSTRACT

The complete mitochondrial genomes of two spine-color individuals, red and white, of the tropical sea urchin species Tripneustes gratilla (Linnaeus, 1758) were sequenced on Illumina system platform. The red-spined species had a genome size of 15,774 bp, while the white-spined species had a genome size of 15,723 bp. Both genomes contained 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. The GC composition in both species was above 40%. In order to investigate the phylogenetic relationships of two different spine-color individuals, a comprehensive analysis was conducted using eight complete mitochondrial genomic sequences of the genus Tripneustes on the software MEGA X. It was observed that the two spine color types of T. gratilla species showed a high similarity of 98.91%. However, different color-spined species of T. gratilla were found in separate branches of the phylogenetic tree of the same sea urchin species.

10.
Genes Genet Syst ; 98(2): 73-87, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37558462

ABSTRACT

We analyzed 196 haplotype sequences from a gene-rich region (250 kb) that includes Mc1r, a gene involved in coat color regulation, to gain insight into the evolution of coat color variation in subspecies of the house mouse Mus musculus. Phylogenetic networks revealed haplotype groups from the major subspecies of M. m. castaneus (CAS), M. m. domesticus (DOM), and M. m. musculus (MUS). Using haplotype sequences assigned to each of CAS and MUS through phylogenetic analysis, we proposed migration routes associated with prehistoric humans from west to east across Eurasia. Comparing nucleotide diversity among subspecies-specific haplotypes in different geographic areas showed a marked reduction during migration, particularly in MUS-derived haplotypes from Korea and Japan, suggesting intensive population bottlenecks during migration. We found that a C>T polymorphism at site 302 (c.302C>T) in the Mc1r coding region correlated with a darkening of dorsal fur color in both CAS and MUS. However, C/C homozygous mice in MUS showed marked variation in lightness, indicating the possibility of another genetic determinant that affects the lightness of dorsal fur color. Detailed sequence comparisons of haplotypes revealed that short fragments assigned to DOM were embedded in CAS-assigned fragments, indicating ancient introgression between subspecies. The estimated age of c.302C>T also supports the hypothesis that genetic interaction between subspecies occurred in ancient times. This suggests that the genome of M. musculus evolved through gene flow between subspecies over an extended period before the movement of the species in conjunction with prehistoric humans.


Subject(s)
Polymorphism, Genetic , Animals , Mice , Humans , Phylogeny , Haplotypes , Asia , Japan
11.
BMC Biol ; 21(1): 122, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226197

ABSTRACT

BACKGROUND: The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. RESULTS: The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. CONCLUSIONS: This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow.


Subject(s)
Transcription Factors , Trichomes , Transcription Factors/genetics , Trichomes/genetics , Gene Expression Regulation , Alleles , Genomics
12.
Int J Biol Macromol ; 242(Pt 3): 124907, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37230451

ABSTRACT

Reptiles can evolve adaptive colors in different environments, but relatively little is known about the genetic mechanisms. Here, we identified the MC1R gene and its association with intraspecific color variation in the lizard Phrynocephalus erythrurus. Analysis of the MC1R sequence in 143 individuals from dark South Qiangtang Plateau (SQP) and light North Qiangtang plateau (NQP) populations, revealed two amino acid sites that showed significant differences in frequency between two areas. One SNP, corresponding to Glu183Lys residue, was found to be a highly significant outlier and differentially fixed for SQP and NQP populations. This residue is located in an extracellular area in the second small extracellular loop within the secondary structure of MC1R, which represents an "attachment pocket" part of the 3D structure. Cytological expression of MC1R alleles with the Glu183Lys replacement showed a 39 % increase in intracellular agonist-induced cyclic AMP levels and a 23.18 % greater cell surface expression of MC1R protein in the SQP relative to the NQP allele. Further in silico 3D modeling and in vitro binding experiments indicated a higher MC1R-α-MSH binding for the SQP allele, and elevated melanin synthesis. We provide an overview of how a single amino acid replacement leads to fundamental changes in MC1R function, and hence shapes variation in dorsal pigmentation in lizards from different environments.


Subject(s)
Lizards , Animals , Humans , Lizards/genetics , Amino Acids/metabolism , Tibet , Pigmentation/genetics , Alleles
13.
Polymers (Basel) ; 15(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36987120

ABSTRACT

The use of chlorhexidine-based mouthwashes on resin composites with rough surfaces can cause discoloration which compromises the esthetic of patients. The present study aimed to evaluate the in vitro color stability of Forma (Ultradent Products, Inc., South Jordan), Tetric N-Ceram (Ivoclar Vivadent, Schaan, Liechtenstein) and Filtek Z350XT (3M, ESPE, St. Paul, MN, USA) resin composites, with and without polishing, after being immersed in a 0.12% chlorhexidine (CHX)-based mouthwash at different times. The present in vitro experimental and longitudinal study used 96 nanohybrid resin composite blocks (Forma, Tetric N-Ceram and Filtek Z350XT) 8 mm in diameter and 2 mm thick, evenly distributed. Each resin composite group was divided into two subgroups (n = 16) with and without polishing and then immersed in a 0.12% CHX-based mouthwash for 7, 14, 21 and 28 days. Color measurements were performed with a calibrated digital spectrophotometer. Nonparametric tests were used to compare independent (Mann-Whitney U and Kruskal-Wallis) and related (Friedman) measures. In addition, the Bonferroni post hoc correction was used considering a significance level of p < 0.05. All polished and unpolished resin composites presented color variation < 3.3 when immersed for up to 14 days in 0.12% CHX-based mouthwash. The polished resin composite with the lowest color variation (ΔE) values over time was Forma, and the one with the highest values was Tetric N-Ceram. When comparing the color variation (ΔE) over time, it was observed that the three resin composites, with and without polishing, presented a significant change (p < 0.001), although these changes in color variation (ΔE) were evident from 14 days between each color acquisition (p < 0.05). The unpolished Forma and Filtek Z350XT resin composites showed significantly more color variation than the same polished ones at all times when immersed in a 0.12% CHX-based mouthwash for 30 s daily. In addition, every 14 days, all three resin composites with and without polishing showed a significant color change, while, every 7 days, color stability was maintained. All the resin composites showed clinically acceptable color stability when exposed for up to 14 days to the above-mentioned mouthwash.

14.
Plants (Basel) ; 12(4)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36840294

ABSTRACT

Hydrogen gas (H2) is an important molecular messenger in animal and plant cells and is involved in various aspects of plant processes, including root organogenesis induction, stress tolerance and postharvest senescence. This study investigated the effect of H2 fumigation on the quality of Lanzhou lily scales. The results indicated the H2 remarkably declined the color variation and browning degree in Lanzhou lily scales by suppressing the activity of phenylalanine ammonia-lyase (PAL), peroxidase (POD) and polyphenol oxidase (PPO). Moreover, H2 significantly alleviated the degradation of soluble proteins and soluble sugars in Lanzhou lily scales during postharvest storage, mitigating the decline in nutritional quality. This alleviating effect of H2 might be achieved by increasing the endogenous H2 concentration. Collectively, our data provide new insights into the postharvest quality reduction of Lanzhou lily scales mitigated by H2 fumigation.

15.
MethodsX ; 10: 101967, 2023.
Article in English | MEDLINE | ID: mdl-36593762

ABSTRACT

Color sensing is a technique for identifying physical changes in materials based on appearance assessment. Dirt deposition on solar panels can change their physical appearance and performance. Considering that dirt accumulation on solar panels needs monitoring to make efficient cleaning schedules, reduce unnecessary costs, and optimize solar panel output generation. Color sensing can achieve fast, accurate, and economical dirt detection, unlike the use of robotic cameras, mathematical formulae, and considering varying output current and voltage methods. Here, we introduce a method that detects and removes dirt on solar panels based on TCS3200 and Arduino Uno components. The approach targets (i.) Panel color measurement, calibration, threshold selection process, (ii.) comparison of color measurement values, and (iii.) align further calibration in response to discoloration of solar panels. This method aims to correct the dirt detection methods previously in use. Hence, a high-speed rolling brush arrangement is designed to improve the cleaning of the solar panel without using water. Further investigations of the panel's color may require some improvement in terms of increasing the sensitivity of the color sensor even with increased distance from the solar panel. Combining multiple color sensors may also be necessary.

16.
Toxicol Pathol ; 51(6): 313-328, 2023 08.
Article in English | MEDLINE | ID: mdl-38288712

ABSTRACT

Digital pathology workflows in toxicologic pathology rely on whole slide images (WSIs) from histopathology slides. Inconsistent color reproduction by WSI scanners of different models and from different manufacturers can result in different color representations and inter-scanner color variation in the WSIs. Although pathologists can accommodate a range of color variation during their evaluation of WSIs, color variability can degrade the performance of computational applications in digital pathology. In particular, color variability can compromise the generalization of artificial intelligence applications to large volumes of data from diverse sources. To address these challenges, we developed a process that includes two modules: (1) assessing the color reproducibility of our scanners and the color variation among them and (2) applying color correction to WSIs to minimize the color deviation and variation. Our process ensures consistent color reproduction across WSI scanners and enhances color homogeneity in WSIs, and its flexibility enables easy integration as a post-processing step following scanning by WSI scanners of different models and from different manufacturers.


Subject(s)
Artificial Intelligence , Pathologists , Humans , Reproducibility of Results
17.
Front Plant Sci ; 13: 1018846, 2022.
Article in English | MEDLINE | ID: mdl-36466294

ABSTRACT

Bracts are the metamorphic non-flower organ in angiosperm plants. The variation of the color and shape of bracts was found to be neo-functionalized (i.e., similar to petals), garnering research interest as a pollinator attractor. Bougainvillea is known for its specialized, large, and colorful bracts, which contrast with its tiny colorless flowers. As a plant whose bracts vary greatly in terms of coloration, the molecular mechanisms for Bougainvillea bract coloration and polychroism are largely unknown. The lack of genomic information for Bougainvillea largely hinders studies into the evolution and genetic basis of bract color variation. In this study, a pan-transcriptome of bracts obtained from 18 Bougainvillea glabra accessions was employed to investigate the global population-level germplasm kinship and the gene regulation network for bract color variation. Our results showed that the bracts of B. glabra accessions have largely differentiated International Commission on Illumination (CIE) L-a-b values. Moreover, germplasm kinship detected using principal component analysis, phylogeny, and admixture analysis showed three optimal subgroups, two of them distinctly clustered, which were not directly correlated with bract color variation at the population level. Differentially expressed genes (DEGs) between accessions of high vs. low L-a-b values revealed several considerable upregulated genes related to bract color L-a-b variation. A weighted gene co-expression network was constructed, and eight co-expressed regulation modules were identified that were highly correlated with variation in bract CIE L-a-b color values. Several candidate DEGs and co-expressed hub genes (e.g., GERD, SGR, ABCA3, GST, CYP76AD1, CYP76C, and JAZ) that were tightly associated with bract color variation were eventually determined responsible for L-a-b colorations, which might be the core regulation factors contributing to the B. glabra bract color variation. This study provides valuable insights into the research on germplasm kinship, population-level pan-transcriptome expression profiles, and the molecular basis of color variation of key innovative bracts in horticultural Bougainvillea.

18.
Plant Mol Biol ; 110(1-2): 187-197, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35943640

ABSTRACT

Flower color variation is ubiquitous in many plant species, and several studies have been conducted to elucidate the underlying molecular mechanism. There are two flower color variants (yellowish-white and fuchsia) in the Rheum palmatum complex, however, few studies have investigated this phenomenon. Here, we used transcriptome sequencing of the two color variants to shed light on the molecular and biochemical basis for these color morphs. Comparison of the two transcriptomes identified 9641 differentially expressed unigenes (DEGs), including 6477 up-regulated and 3163 down-regulated genes. Functional analyses indicated that several DEGs were related to the anthocyanin biosynthesis pathway, and the expression profiles of these DEGs were coincident with the qRT-PCR validation results, indicating that expression levels of structural genes have a profound effect on the color variation in the R. palmatum complex. Our results suggested that the interaction of transcription factors (MYB, bHLH and WRKY) also regulated the anthocyanin biosynthesis in the R. palmatum complex. Estimation of selection pressures using the dN/dS ratio showed that 1106 pairs of orthologous genes have undergone positive selection. Of these positively selected genes, 21 were involved in the anthocyanin biosynthetic pathway, indicating that they may encode the proteins for structural alteration and affect flower color in the R. palmatum complex.


Subject(s)
Rheum , Transcriptome , Anthocyanins , Color , Flowers/genetics , Flowers/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Rheum/genetics , Rheum/metabolism
19.
Genes Genet Syst ; 96(6): 271-284, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35283410

ABSTRACT

While the house mouse (Mus musculus), widely distributed in Eurasia, is known to have substantial coat color variation between and within local populations, in both primary and secondary distribution areas, including the Japanese archipelago, the evolutionary history of the color variation is poorly understood. To address the ventral fur color variation, we quantified the lightness of museum skin specimens, and found that the southern subspecies, M. m. castaneus (CAS), has high and low lightness in dry and rainy geographic regions, respectively. The northern subspecies, M. m. musculus (MUS), has low and high levels of lightness in the high and middle latitudes of northern Eurasia, respectively. We examined sequence variation of the agouti signaling protein gene (Asip), which is known to be responsible for the ventral fur color. We performed phylogenetic analyses with 196 haplotype sequences of Asip (~180 kb) generated by phasing the whole-genome data of 98 wild mice reported previously. Network and phylogenetic tree construction revealed clustering of haplotypes representing the two subspecies, MUS and CAS. A number of subclusters with geographic affinities appeared within the subspecies clusters, in which the essential results were consistent with those reconstructed with whole mitochondrial genome data, indicating that the phased haplotype genome sequences of the nuclear genome can be a useful tool for tracing the dispersal of geographical lineages. The results of phylogeographic analysis showed that CAS mice with darker ventral fur possessed similar Asip haplotypes across the geographic distribution, suggesting that these haplotypes are major causes of the historical introduction of Asip haplotypes for darker ventral fur in mice from northern India to the peripheral areas, including the Japanese archipelago. Similarly, MUS in East Asia, which has a white abdomen, formed an Asip haplogroup with that from northern Iran, also with a white abdomen.


Subject(s)
Agouti Signaling Protein , Genome, Mitochondrial , Hair Color , Mice , Agouti Signaling Protein/genetics , Animal Fur , Animals , Hair Color/genetics , Haplotypes , Mice/genetics , Phylogeny , Phylogeography
20.
PeerJ ; 10: e12796, 2022.
Article in English | MEDLINE | ID: mdl-35070510

ABSTRACT

BACKGROUND: The clumping bamboo Bambusa oldhamii Munro, known as "green bamboo", is famous for its edible bamboo shoots and fast-growing timber. The green and yellow striped-culm B. oldhamii variety, named B. oldhamii f. revoluta W.T. Lin & J. Y. Lin, is an attractive system for researching the culm color variation of B. oldhamii. METHODS: Millions of clean reads were generated and assembled into 604,900 transcripts, and 383,278 unigenes were acquired with RNA-seq technology. The quantification of ABA, IAA, JA, GA1, GA3, GA4, and GA7 was performed using HPLC-MS/MS platforms. RESULTS: Differential expression analysis showed that 449 unigenes were differentially expressed genes (DEGs), among which 190 DEGs were downregulated and 259 DEGs were upregulated in B. oldhamii f. revoluta. Phytohormone contents, especially GA1 and GA7, were higher in B. oldhamii. Approximately 21 transcription factors (TFs) were differentially expressed between the two groups: the bZIP, MYB, and NF-YA transcription factor families had the most DEGs, indicating that those TFs play important roles in B. oldhamii culm color variation. RNA-seq data were confirmed by quantitative RT-PCR analysis of the selected genes; moreover, phytohormone contents, especially those of ABA, GA1 and GA7, were differentially accumulated between the groups. Our study provides a basal gene expression and phytohormone analysis of B. oldhamii culm color variation, which could provide a solid fundamental theory for investigating bamboo culm color variation.


Subject(s)
Bambusa , Bambusa/genetics , Plant Growth Regulators/metabolism , RNA-Seq , Tandem Mass Spectrometry , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...