Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.485
Filter
1.
Ecol Evol ; 14(7): e11614, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952650

ABSTRACT

Janzen-Connell (JC) effects, hypothesized to be partially driven by negative plant-soil feedbacks (PSFs), are considered to be a key mechanism that regulates tropical forest plant diversity and coexistence. However, intraspecific variation in JC effects may weaken this mechanism, with the strength of PSFs being a potentially key variable process. We conducted a manipulated experiment with seedlings from two populations of Pometia pinnata (Sapindaceae), a tropical tree species in southwest China. We aimed to measure the intraspecific difference in PSF magnitude caused by inoculating the soil from different P. pinnata source populations and growing seedlings under differing light intensity and water availability treatments, and at varying plant densities. We found negative PSFs for both populations with the inoculum soil originating from the same sites, but PSFs differed significantly with the inoculum soil from different sites. PSF strength responded differently to biotic and abiotic drivers; PSF strength was weaker in low moisture and high light treatments than in high moisture and low light treatments. Our study documents intraspecific variation in JC effects: specifically, P. pinnata have less defenses to their natively-sourced soil, but are more defensive to the soil feedbacks from soil sourced from other populations. Our results imply that drought and light intensity tended to weaken JC effects, which may result in loss of species diversity with climate change.

2.
Ecol Evol ; 14(7): e11619, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952665

ABSTRACT

Access to high-quality food is critical for long-distance migrants to provide energy for migration and arrival at breeding grounds in good condition. We studied effects of changing abundance and availability of a marine food, common eelgrass (Zostera marina L.), on an arctic-breeding, migratory goose, black brant (Brant bernicla nigricans Lawrence 1846), at a key non-breeding site, Bahía San Quintín, Mexico. Eelgrass, the primary food of brant, is consumed when exposed by the tide or within reach from the water's surface. Using an individual-based model, we predicted effects of observed changes (1991-2013) in parameters influencing food abundance and availability: eelgrass biomass (abundance), eelgrass shoot length (availability, as longer shoots more within reach), brant population size (availability, as competition greater with more birds), and sea level (availability, as less food within reach when sea level higher). The model predicted that the ability to gain enough energy to migrate was most strongly influenced by eelgrass biomass (threshold January biomass for migration = 60 g m-2 dry mass). Conversely, annual variation in population size (except for 1998), was relatively low, and variation in eelgrass shoot length and sea level were not strongly related to ability to migrate. We used observed data on brant body mass at Bahía San Quintín and annual survival to test for effects of eelgrass biomass in the real system. The lowest observed values of body mass and survival were in years when biomass was below 60 g m-2, although in some years of low biomass body mass and/or survival was higher. This suggests that the real birds may have some capacity to compensate to meet their energy demands when eelgrass biomass is low. We discuss consequences for brant population trends and conservation.

3.
Biol Sport ; 41(3): 223-230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952912

ABSTRACT

This study compared the most common absolute sprint threshold (> 25.2 km/h) with relative and individualized thresholds (> 70%, > 75%, > 80%, > 85% and > 90% of peak match speed). Twenty elite soccer players, competing in the first division of the Portuguese League, were monitored using GNSS equipment during thirty-four official matches. Peak match speed was retrieved as the individual maximal speed reached during the full season. Distances were registered when speed overcame the absolute and the relative thresholds. Mean ± SD of peak speeds and distances covered were calculated, and Pearson correlation (r) and mean paired differences were performed to analyze relationships and differences between thresholds. The peak match speed was 32.9 ± 1.4 km/h. Correlations between distances covered using the absolute and relative thresholds varied from very strong (> 70%: r = 0.84, p < .001; > 75%: r = 0.89, p < .001; and > 80%: r = 0.88, p < .001), strong (> 85%: r = 0.79, p < .001), to moderate (> 90%: r = 0.59, p < .001). Overall, the > 75% (ES: 0.23 [95% CI: 0.16, 0.31]) and the > 90% (ES: -1.65 [95%CI: -1.85, -1.48]) relative thresholds presented the smallest and largest differences, respectively, with the absolute threshold. Differences were also found when considering the playing positions. While the distances covered by central midfielders were similar between the absolute and > 80% thresholds (-0.03 [-0.16, 0.10]), fullbacks covered largely more distance -1.88 [-2.42 -1.50]) in the absolute threshold than in the > 80% threshold. The distances covered by players varied based on the selected threshold, affecting the distances covered by different playing positions. Being the highest speed threshold within displacements thresholds, the absolute sprint threshold showed greater similarity to lower rather than higher relative thresholds.

4.
Int J Food Microbiol ; 422: 110808, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38955022

ABSTRACT

Salmonella contamination of pork products is a significant public health concern. Temperature abuse scenarios, such as inadequate refrigeration or prolonged exposure to room temperature, can enhance Salmonella proliferation. This study aimed to develop and validate models for Salmonella growth considering competition with background microbiota in raw ground pork, under isothermal and dynamic conditions of temperature abuse between 10 and 40 °C. The maximum specific growth rate (µmax) and maximum population density (MPD) were estimated to quantitatively describe the growth behavior of Salmonella. To reflect more realistic microbial interactions in Salmonella-contaminated product, our model considered competition with the background microbiota, measured as mesophilic aerobic plate counts (APC). Notably, the µmax of Salmonella in low-fat samples (∼5 %) was significantly higher (p < 0.05) than that in high-fat samples (∼25 %) at 10, 20, and 30 °C. The average doubling time of Salmonella was 26, 4, 2, 1.5, 0.8, and 1.1 h at 10, 15, 20, 25, 30, and 40 °C, respectively. The initial concentration of Salmonella minimally impacted its growth in ground pork at any temperature. The MPD of APC consistently exceeded that of Salmonella, indicating the growth of APC without competition from Salmonella. The competition model exhibited excellent fit with the experimental data, as 95 % (627/660) of residual errors fell within the desired acceptable prediction zone (pAPZ >0.70). The theoretical minimum and optimum growth temperatures for Salmonella ranged from 5 to 6 °C and 35 to 36 °C, respectively. The dynamic model displayed strong predictive performance, with 90 % (57/63) of residual errors falling within the APZ. Dynamic models could be valuable tools for validating and refining simpler static or isothermal models, ultimately improving their predictive capabilities to enhance food safety.

5.
ACS Nano ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959157

ABSTRACT

Peptide design and drug development offer a promising solution for combating serious diseases or infections. In this study, using an AI-human negotiation approach, we have designed a class of minimal model peptides against tuberculosis (TB), among which K7W6 exhibits potent efficacy attributed to its assembly-induced function. Comprising lysine and tryptophan with an amphiphilic α-helical structure, the K7W6 sequence exhibits robust activity against various infectious bacteria causing TB (including clinically isolated and drug-resistant strains) both in vitro and in vivo. Moreover, it synergistically enhances the effectiveness of the first-line antibiotic rifampicin while displaying low potential for inducing drug resistance and minimal toxicity toward mammalian cells. Biophysical experiments and simulations elucidate that K7W6's exceptional performance can be ascribed to its highly selective and efficient membrane permeabilization activity induced by its distinctive self-assembly behavior. Additionally, these assemblies regulate the interplay between enthalpy and entropy during K7W6-membrane interaction, leading to the peptide's two-step mechanism of membrane interaction. These findings provide valuable insights into rational design principles for developing advanced peptide-based drugs while uncovering the functional role played by assembly.

6.
Adv Protein Chem Struct Biol ; 141: 563-650, 2024.
Article in English | MEDLINE | ID: mdl-38960486

ABSTRACT

Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.


Subject(s)
Computer Simulation , Molecular Motor Proteins , Molecular Motor Proteins/metabolism , Molecular Motor Proteins/chemistry , Humans , Animals , Models, Biological
7.
Alp Bot ; 134(1): 15-27, 2024.
Article in English | MEDLINE | ID: mdl-38966403

ABSTRACT

Deciphering how plants interact with each other across environmental gradients is important to understand plant community assembly, as well as potential future plant responses to environmental change. Plant-plant interactions are expected to shift from predominantly negative (i.e. competition) to predominantly positive (i.e. facilitation) along gradients of environmental severity. However, most experiments examine the net effects of interactions by growing plants in either the presence or absence of neighbours, thereby neglecting the interplay of both negative and positive effects acting simultaneously within communities. To partially unravel these effects, we tested how the seedling establishment of 10 mountain grassland plants varied in the presence versus absence of plant communities at two sites along an elevation gradient. We created a third experimental treatment (using plastic plant mats to mimic surrounding vegetation) that retained the main hypothesised benefits of plant neighbours (microsite amelioration), while reducing a key negative effect (competition for soil resources). In contrast to our expectations, we found evidence for net positive effects of vegetation at the low elevation site, and net negative effects at the high elevation site. Interestingly, the negative effects of plant neighbours at high elevation were driven by high establishment rates of low elevation grasses in bare soil plots. At both sites, establishment rates were highest in artificial vegetation (after excluding two low elevation grasses at the high elevation site), indicating that positive effects of above-ground vegetation are partially offset by their negative effects. Our results demonstrate that both competition and facilitation act jointly to affect community structure across environmental gradients, while emphasising that competition can be strong also at higher elevations in temperate mountain regions. Consequently, plant-plant interactions are likely to influence the establishment of new, and persistence of resident, species in mountain plant communities as environments change. Supplementary Information: The online version contains supplementary material available at 10.1007/s00035-023-00302-8.

8.
Mar Pollut Bull ; 205: 116661, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968743

ABSTRACT

Although marine invasions are increasingly a matter of concern, the impact of invasive species in the ecosystem and their ability to replace native taxa is still little understood. Data from 2011 to 2021 in marinas of the Southern Iberian Peninsula supported that the invasive amphipod Caprella scaura is replacing the resident Caprella equilibra over time. Six marinas where C. equilibra was abundant in 2011 and C. scaura was absent, are now dominated by C. scaura. Although this displacement is more evident in Mediterranean shores than in Atlantic coasts, it is very variable between marinas. The spreading of the invasive species in marinas of the Alboran Sea mainly occurred from 2011 to 2017, preventing C. equilibra from regaining its former distribution. The ultimate factors responsible for the displacement, such as the aggressive behaviour of C. scaura, environmental influences or physiological performance in a global warming context, should be further investigated experimentally.

9.
ISME Commun ; 4(1): ycae077, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38962494

ABSTRACT

Staphylococcus aureus (Sa) and Acinetobacter baumannii (Ab) are frequently co-isolated from polymicrobial infections that are severe and refractory to therapy. Here, we apply a combination of wet-lab experiments and in silico modeling to unveil the intricate nature of the Ab/Sa interaction using both, representative laboratory strains and strains co-isolated from clinical samples. This comprehensive methodology allowed uncovering Sa's capability to exert a partial interference on Ab by the expression of phenol-soluble modulins. In addition, we observed a cross-feeding mechanism by which Sa supports the growth of Ab by providing acetoin as an alternative carbon source. This study is the first to dissect the Ab/Sa interaction dynamics wherein competitive and cooperative strategies can intertwine. Through our findings, we illuminate the ecological mechanisms supporting their coexistence in the context of polymicrobial infections. Our research not only enriches our understanding but also opens doors to potential therapeutic avenues in managing these challenging infections.

10.
J Chromatogr A ; 1730: 465114, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38964160

ABSTRACT

Protein chromatography is the dominant method of purification of biopharmaceuticals. Although all practical chromatography involves competitive absorption and separation of M. species, competitive protein absorption has remained inadequately understood. We previously introduced the measurement of equilibrium protein adsorption isotherms with all intensive variables held constant, including competitor concentration. In this work, we introduce isocratic chromatographic retention measurements of dynamic protein adsorption in the presence of a constant concentration of a competitor protein. These measurements are achieved by establishing a dynamic equilibrium with a constant concentration of competitor (insulin) in the mobile phase flowing through an ion exchange adsorbent column and following the behavior of a test protein (α-lactalbumin) injected into this environment. We observed decreased retention times for α-lactalbumin in presence of the competitor. The presence of competitor also reduces the heterogeneity of the sites available for adsorption of the test protein. This investigation provides an approach to fundamental understanding of competitive dynamics of multicomponent protein chromatography.

11.
Environ Entomol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965911

ABSTRACT

Interspecific competition is an important ecological concept which can play a major role in insect population dynamics. In the southeastern United States, a complex of stink bugs (Hemiptera: Pentatomidae), primarily the brown stink bug, Euschistus servus (Say), and corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), are the 2 most common pests of field corn, Zea mays L. (Poales: Poaceae). Stink bugs have the greatest potential for economic injury during the late stages of vegetative corn development when feeding can result in deformed or "banana-shaped" ears and reduced grain yield. Corn earworm moths lay eggs on corn silks during the first stages of reproductive development. A 2-year field study was conducted to determine the impact of feeding by the brown stink bug during late-vegetative stages on subsequent corn earworm oviposition, larval infestations, and grain yield. Brown stink bug feeding prior to tasseling caused deformed ears and reduced overall grain yield by up to 92%. Across all trials, varying levels of brown stink bug density and injury reduced the number of corn earworm larvae by 29-100% and larval feeding by 46-85%. Averaged across brown stink bug densities, later planted corn experienced a 9-fold increase in number of corn earworm larvae. This is the first study demonstrating a competitive interaction between these major pests in a field corn setting, and these results have potential implications for insect resistance management.

12.
New Phytol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970455

ABSTRACT

The primary mechanisms contributing to nitrogen (N) addition induced grassland biodiversity loss, namely light competition and soil cation toxicity, are often examined separately in various studies. However, their relative significance in governing biodiversity loss along N addition gradient remains unclear. We conducted a 4-yr field experiment with five N addition rates (0, 2, 10, 20, and 50 g N m-2 yr-1) and performed a meta-analysis using global data from 239 observations in N-fertilized grassland ecosystems. Results from our field experiment and meta-analysis indicate that both light competition and soil cation (e.g. Mn2+ and Al3+) toxicity contribute to plant diversity loss under N enrichment. The relative importance of these mechanisms varied with N enrichment intensity. Light competition played a more significant role in influencing species richness under low N addition (≤ 10 g m-2 yr-1), while cation toxicity became increasingly dominant in reducing biodiversity under high N addition (>10 g m-2 yr-1). Therefore, a transition from light competition to cation toxicity occurs with increasing N availability. These findings imply that the biodiversity loss along the N gradient is regulated by distinct mechanisms, necessitating the adoption of differential management strategies to mitigate diversity loss under varying intensities of N enrichment.

13.
Water Res ; 261: 122018, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38971077

ABSTRACT

The continuous increase in sulfate (SO42-) concentrations discharged by anthropogenic activities lacks insights into their dynamics and potential impact on CH4 budgets in freshwater lakes. Here we conducted a field investigation in the lakes along the highly developed Yangtze River basin, China, additionally, we analyzed long-term data (1950-2020) from Lake Taihu, a typical eutrophic lake worldwide. We observed a gradual increase in SO42- concentrations up to 100 mg/L, which showed a positive correlation with the trophic state of the lakes. The annual variations indicated that eutrophication intensified the fluctuation of SO42- concentrations. A random forest model was applied to assess the impact of SO42- concentrations on CH4 emissions, revealing a significant negative effect. Synchronously, a series of microcosms with added SO42- were established to simulate cyanobacteria decomposition processes and explore the coupling mechanism between sulfate reduction and CH4 production. The results showed a strong negative correlation between CH4 concentrations and initial SO42- levels (R2 = 0.83), indicating that higher initial SO42- concentrations led to lower final CH4 concentrations. This was attributed to the competition for cyanobacteria-supplied substrates between sulfate reduction bacteria (SRB) and methane production archaea (MPA). Our study highlights the importance of considering the unexpectedly increasing SO42- concentrations in eutrophic lakes when estimating global CH4 emission budgets.

14.
J Math Biol ; 89(2): 27, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970664

ABSTRACT

Cancer, a disease intimately linked to cellular mutations, is commonly believed to exhibit a positive association with the cell count and lifespan of a species. Despite this assumption, the observed uniformity in cancer rates across species, referred to as the Peto's paradox, presents a conundrum. Recognizing that tumour progression is not solely dependent on cancer cells but involves intricate interactions among various cell types, this study employed a Lotka-Volterra (LV) ordinary differential equation model to analyze the evolution of cancerous cells and the cancer incidence in an immune environment. As a result, this study uncovered the sufficient conditions underlying the absence of correlation in Peto's paradox and provide insights into the reasons for the equitable distribution of cancer incidence across diverse species by applying nondimensionalization and drawing an analogy between the characteristic time interval for the variation of cell populations in the ODE model and that of cell cycles of a species.


Subject(s)
Mathematical Concepts , Models, Biological , Neoplasms , Humans , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/epidemiology , Mutation , Disease Progression , Tumor Microenvironment/immunology , Cell Cycle , Animals , Cell Count/statistics & numerical data , Incidence , Computer Simulation
15.
Sci Rep ; 14(1): 14710, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926592

ABSTRACT

Heterozygous de novo mutations in the Activity-Dependent Neuroprotective Homeobox (ADNP) gene underlie Helsmoortel-Van der Aa syndrome (HVDAS). Most of these mutations are situated in the last exon and we previously demonstrated escape from nonsense-mediated decay by detecting mutant ADNP mRNA in patient blood. In this study, wild-type and ADNP mutants are investigated at the protein level and therefore optimal detection of the protein is required. Detection of ADNP by means of western blotting has been ambiguous with reported antibodies resulting in non-specific bands without unique ADNP signal. Validation of an N-terminal ADNP antibody (Aviva Systems) using a blocking peptide competition assay allowed to differentiate between specific and non-specific signals in different sample materials, resulting in a unique band signal around 150 kDa for ADNP, above its theoretical molecular weight of 124 kDa. Detection with different C-terminal antibodies confirmed the signals at an observed molecular weight of 150 kDa. Our antibody panel was subsequently tested by immunoblotting, comparing parental and homozygous CRISPR/Cas9 endonuclease-mediated Adnp knockout cell lines and showed disappearance of the 150 kDa signal, indicative for intact ADNP. By means of both a GFPSpark and Flag-tag N-terminally fused to a human ADNP expression vector, we detected wild-type ADNP together with mutant forms after introduction of patient mutations in E. coli expression systems by site-directed mutagenesis. Furthermore, we were also able to visualize endogenous ADNP with our C-terminal antibody panel in heterozygous cell lines carrying ADNP patient mutations, while the truncated ADNP mutants could only be detected with epitope-tag-specific antibodies, suggesting that addition of an epitope-tag possibly helps stabilizing the protein. However, western blotting of patient-derived hiPSCs, immortalized lymphoblastoid cell lines and post-mortem patient brain material failed to detect a native mutant ADNP protein. In addition, an N-terminal immunoprecipitation-competent ADNP antibody enriched truncating mutants in overexpression lysates, whereas implementation of the same method failed to enrich a possible native mutant protein in immortalized patient-derived lymphoblastoid cell lines. This study aims to shape awareness for critical assessment of mutant ADNP protein analysis in Helsmoortel-Van der Aa syndrome.


Subject(s)
Homeodomain Proteins , Nerve Tissue Proteins , Humans , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mutation , HEK293 Cells , Autism Spectrum Disorder , Heart Diseases , Facies , Neurodevelopmental Disorders
16.
mBio ; : e0119824, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832773

ABSTRACT

Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).

17.
Ecology ; 105(7): e4325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38859696

ABSTRACT

Ecological interactions among hosts are critical to consider when predicting disease dynamics. Most theory predicts that intraguild predation (IGP) and cannibalism negatively impact parasite populations, but this is based primarily on assumptions of simple or single-host life cycles. Here we investigate the effects of cannibalism in a size-structured host population on two digenean trematodes that have complex, multihost life cycles. A high incidence of cannibalism among paratenic hosts produced higher parasite infection loads and abundance, whereas cannibalism among obligate hosts reduced parasite abundances. We attributed this difference to trophic transmission aggregating parasites in larger, potentially fitter hosts and also to transmission among paratenic hosts via cannibalism. Moreover, we found evidence of indirect competitive interactions between parasites that can also increase infections at small scales. Our results show there are multiple mechanisms through which high cannibalism environments can benefit parasites that use paratenic hosts and trophic transfer to complete their life cycles.


Subject(s)
Cannibalism , Host-Parasite Interactions , Animals , Trematoda/physiology , Food Chain , Fish Diseases/parasitology
18.
Insects ; 15(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921102

ABSTRACT

The dispersal strategies of a species can affect its invasion success. Investigations into the dispersal strategies of invasive species in relation to different factors help improve our understanding of invasion mechanisms and provide knowledge for population management and invasion evaluation. Tetranychus ludeni Zacher (Acari: Tetranychidae) is an invasive species which is native to Europe but is now cosmopolitan. Here, we examined the effects of age and density on dispersal in mated females. Our results show that older females that are capable of producing more eggs within 24 h were more likely to disperse and moved longer distances than younger ones with fewer eggs. Older females spread most of their eggs out of their natal habitats and over longer distances, which reduced competition and increased offspring fitness. Females exhibited significantly increased dispersal probability and distances with an increase in population density to avoid crowding. The synchronization of dispersal and reproduction, along with the positive density-dependent dispersal strategy, may facilitate the habitat colonization and invasion speed of T. ludeni.

19.
Biomimetics (Basel) ; 9(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921241

ABSTRACT

The crayfish optimization algorithm (COA), proposed in 2023, is a metaheuristic optimization algorithm that is based on crayfish's summer escape behavior, competitive behavior, and foraging behavior. COA has a good optimization performance, but it still suffers from the problems of slow convergence speed and sensitivity to the local optimum. To solve these problems, an improved multi-strategy crayfish optimization algorithm for solving numerical optimization problems, called IMCOA, is proposed to address the shortcomings of the original crayfish optimization algorithm for each behavioral strategy. Aiming at the imbalance between local exploitation and global exploration in the summer heat avoidance and competition phases, this paper proposes a cave candidacy strategy and a fitness-distance balanced competition strategy, respectively, so that these two behaviors can better coordinate the global and local optimization capabilities and escape from falling into the local optimum prematurely. The directly foraging formula is modified during the foraging phase. The food covariance learning strategy is utilized to enhance the population diversity and improve the convergence accuracy and convergence speed. Finally, the introduction of an optimal non-monopoly search strategy to perturb the optimal solution for updates improves the algorithm's ability to obtain a global best solution. We evaluated the effectiveness of IMCOA using the CEC2017 and CEC2022 test suites and compared it with eight algorithms. Experiments were conducted using different dimensions of CEC2017 and CEC2022 by performing numerical analyses, convergence analyses, stability analyses, Wilcoxon rank-sum tests and Friedman tests. Experiments on the CEC2017 and CEC2022 test suites show that IMCOA can strike a good balance between exploration and exploitation and outperforms the traditional COA and other optimization algorithms in terms of its convergence speed, optimization accuracy, and ability to avoid premature convergence. Statistical analysis shows that there is a significant difference between the performance of the IMCOA algorithm and other algorithms. Additionally, three engineering design optimization problems confirm the practicality of IMCOA and its potential to solve real-world problems.

20.
Ecol Evol ; 14(6): e11583, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919646

ABSTRACT

Phylogenetic diversity offers critical insights into the ecological dynamics shaping species composition and ecosystem function, thereby informing conservation strategies. Despite its recognized importance in ecosystem management, the assessment of phylogenetic diversity in endangered habitats, such as vernal pools, remains limited. Vernal pools, characterized by cyclical inundation and unique plant communities, present an ideal system for investigating the interplay between ecological factors and phylogenetic structure. This study aims to characterize the phylogenetic patterns of vernal pools and their associated vegetation zones, addressing questions about taxonomic and phylogenetic community discreteness, the role of flooding as a habitat filter, the influence of invasive species on phylogenetic structure, and the impact of seasonal variation on phylogenetic diversity. I find that zones-of-vegetation exhibit high between zone taxonomic and phylogenetic beta diversity whereas each zone forms a unique cluster, suggesting that zones are taxonomically and phylogenetically discrete units. Regions of high-inundation pressure exhibit phylogenetic clustering, indicating that flooding is a habitat filter in vernal pool habitats. Competition between native species conform to the 'competitive relatedness hypothesis' and, conversely, communities dominated by invasive Eurasian grass species are phylogenetically clustered. In addition, I find that phylogenetic diversity within zones fluctuates across the spring season in response to changing water levels, precipitation, and temperature. By analyzing three pools within the Merced Vernal Pool and Grassland Reserve, this research elucidates the phylogenetic dynamics of vernal pools. The findings underscore the need for tailored conservation strategies that account for the unique ecological characteristics of each vegetation zone within vernal pool habitats.

SELECTION OF CITATIONS
SEARCH DETAIL
...