Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Am Nat ; 204(2): E28-E41, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39008841

ABSTRACT

AbstractIndividual variability in mortality is widespread in nature. The general rule is that larger organisms have a greater chance of survival than smaller conspecifics. There is growing evidence that differential mortality between developmental stages has important consequences for the ecology and evolution of populations and communities. However, we know little about how it can influence diversification. Using an eco-evolutionary model of diversification that considers individual variability in mortality, I show that commonly observed differences in mortality between juveniles and adults can facilitate adaptive diversification. In particular, diversification is expected to be less restricted when mortality is more biased toward juveniles. Additionally, I find stage-specific differences in metabolic cost and foraging capacity to further facilitate diversification when adults are slightly superior competitors, due to either a lower metabolic cost or a higher foraging capacity, than juveniles. This is because by altering the population composition, differential stage-specific mortality and competitive ability can modulate the strength of intraspecific competition, which in turn determines the outcome of diversification. These results demonstrate the strong influence that ecological differences between developmental stages have on diversification and highlight the need for integrating developmental processes into diversification theory.


Subject(s)
Biological Evolution , Models, Biological , Animals , Mortality , Biodiversity
2.
Ecol Evol ; 14(3): e11153, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505180

ABSTRACT

The global shift of species' distributions has led to high numbers of noninvasive naturalized plants and the accumulation of invasive species within ecosystems. Competition between species may influence population dynamics, but little is known about the impacts of competition between conspecifics of naturalized and invasive populations. We investigated several plant traits at initial growth and regrowth following artificial defoliation in intra and interpopulation competition. Therefore, we used plants of Bunias orientalis from one noninvasive naturalized and one invasive population grown alone or in competition of two or three. Plants from the naturalized population were expected to be less competitive than plants from the invasive population, reflecting their differential impact in the introduced range. Independent of status, intrapopulation competition was expected to have less negative impacts on plants than interpopulation competition. Our results show that competition impacted mostly growth- rather than physiology-related traits. The relative magnitude of intra and interpopulation competition differed among plant traits at the first and second harvest. Plants of the invasive population outperformed the naturalized population by allocating relatively more resources to the aboveground biomass and producing more and longer leaves particularly when grown in competition against two plants. Moreover, plants of the invasive population were more competitive, which may influence their successful establishment and range expansion in the introduced range, but growth patterns differed after artificial defoliation. Although evolution of intrapopulation competition in naturalized and invasive ranges may be expected, interpopulation competition seems to adversely impact the performance of the naturalized plant population of B. orientalis studied here. Apart from the status (naturalized vs. invasive), other factors may have had an influence on plant performance. Thus, further research is needed with more naturalized and invasive populations to test the generality of our findings and to isolate the specific mechanisms driving differences in competitiveness.

3.
Plants (Basel) ; 13(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38475474

ABSTRACT

Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.

4.
Plants (Basel) ; 13(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38202439

ABSTRACT

When colonizing new ranges, plant populations may benefit from the absence of the checks imposed by the enemies, herbivores, and pathogens that regulated their numbers in their original range. Therefore, rates of plant damage or infestation by natural enemies are expected to be lower in the new range. Exposing both non-native and native plant populations in the native range, where native herbivores are present, can be used to test whether resistance mechanisms have diverged between populations. Datura stramonium is native to the Americas but widely distributed in Spain, where populations show lower herbivore damage than populations in the native range. We established experiments in two localities in the native range (Mexico), exposing two native and two non-native D. stramonium populations to natural herbivores. Plant performance differed between the localities, as did the abundance of the main specialist herbivore, Lema daturaphila. In Teotihuacán, where L. daturaphila is common, native plants had significantly more adult beetles and herbivore damage than non-native plants. The degree of infestation by the specialist seed predator Trichobaris soror differed among populations and between sites, but the native Ticumán population always had the lowest level of infestation. The Ticumán population also had the highest concentration of the alkaloid scopolamine. Scopolamine was negatively related to the number of eggs deposited by L. daturaphila in Teotihuacán. There was among-family variation in herbivore damage (resistance), alkaloid content (scopolamine), and infestation by L. daturaphila and T. soror, indicating genetic variation and potential for further evolution. Although native and non-native D. stramonium populations have not yet diverged in plant resistance/constitutive defense, the differences between ranges (and the two experimental sites) in the type and abundance of herbivores suggest that further research is needed on the role of resource availability and adaptive plasticity, specialized metabolites (induced, constitutive), and the relationship between genealogical origin and plant defense in both ranges.

5.
Ecol Lett ; 27(1): e14337, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38069515

ABSTRACT

The effect of climate warming on community composition is expected to be contingent on competitive outcomes, yet approaches to projecting ecological outcomes often rely on measures of density-independent performance across temperatures. Recent theory suggests that the temperature response of competitive ability differs in shape from that of population growth rate. Here, we test this hypothesis empirically and find thermal performance curves of competitive ability in aquatic microorganisms to be systematically left-shifted and flatter compared to those of exponential growth rate. The minimum resource requirement for growth, R*-an inverse indicator of competitive ability-changes with temperature following a U-shaped pattern in all four species tested, contrasting from their left-skewed density-independent growth rate thermal performance curves. Our results provide new evidence that exploitative competitive success is highest at temperatures that are sub-optimal for growth, suggesting performance estimates of density-independent variables might underpredict performance in cooler competitive environments.


Subject(s)
Climate Change , Phytoplankton , Temperature , Population Growth , Climate
6.
Glob Chang Biol ; 30(1): e17049, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37988188

ABSTRACT

Nanoparticle pollution has been shown to affect various organisms. However, the effects of nanoparticles on species interactions, and the role of species traits, such as body size, in modulating these effects, are not well-understood. We addressed this issue using competing freshwater phytoplankton species exposed to copper oxide nanoparticles. Increasing nanoparticle concentration resulted in decreased phytoplankton species growth rates and community productivity (both abundance and biomass). Importantly, we consistently found that nanoparticles had greater negative effects on species with smaller cell sizes, such that nanoparticle pollution weakened the competitive dominance of smaller species and promoted species diversity. Moreover, nanoparticles reduced the growth rate differences and competitive ability differences of competing species, while having little effect on species niche differences. Consequently, nanoparticle pollution reduced the selection effect on phytoplankton community abundance, but increased the selection effect on community biomass. Our results suggest cell size as a key functional trait to consider when predicting phytoplankton community structure and ecosystem functioning in the face of increasing nanopollution.


Subject(s)
Ecosystem , Phytoplankton , Biodiversity , Biomass , Fresh Water
7.
Rice (N Y) ; 16(1): 45, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37831291

ABSTRACT

Direct seeding of rice (Oryza sativa L.) is a low-labor and sustainable cultivation method that is used worldwide. Seed vigor and early vigor are important traits associated with seedling stand density (SSD) and weed competitive ability (WCA), which are key factors in direct-seeded rice (DSR) cultivation systems. Here, we developed a set of chromosome segment substitution lines with Xiushui134 as receptor parent and Yangdao6 as donor parent and used these lines as a mapping population to identify quantitative trait loci (QTLs) for seed vigor, which we evaluated based on germinability-related indicators (germination percentage (GP), germination energy (GE), and germination index (GI)) and seedling vigor-related indicators (root number (RN), root length (RL), and shoot length (SL) at 14 days after imbibition) under controlled conditions in an incubator. Ten QTLs were detected across four chromosomes, of which a cluster of QTLs (qGP11, qGE11, qGI11, and qRL11) co-localized on Chr. 11 with high LOD values (12.03, 8.13, 7.14, and 8.75, respectively). Fine mapping narrowed down the QTL cluster to a 0.7-Mb interval between RM26797 and RM6680. Further analysis showed that the QTL cluster has a significant effect (p < 0.01) on early vigor under hydroponic culture (root length, total dry weight) and direct seeding conditions (tiller number, aboveground dry weight). Thus, our combined analysis revealed that the QTL cluster influenced both seed vigor and early vigor. Identifying favorable alleles at this QTL cluster could facilitate the improvement of SSD and WCA, thereby addressing both major factors in DSR cultivation systems.

8.
Plants (Basel) ; 12(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836161

ABSTRACT

BACKGROUND: Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. RESULTS: Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. CONCLUSIONS: Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.

9.
Plants (Basel) ; 12(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37299065

ABSTRACT

The rhizosphere plays a vital role in the exchange of materials in the soil-plant ecosystem, and rhizosphere microorganisms are crucial for plant growth and development. In this study, we isolated two strains of Pantoea rhizosphere bacteria separately from invasive Alternanthera philoxeroides and native A. sessilis. We conducted a control experiment to test the effects of these bacteria on the growth and competition of the two plant species using sterile seedlings. Our findings showed that the rhizobacteria strain isolated from A. sessilis significantly promoted the growth of invasive A. philoxeroides in monoculture compared to native A. sessilis. Both strains significantly enhanced the growth and competitiveness of invasive A. philoxeroides under competition conditions, regardless of their host source. Our study suggests that rhizosphere bacteria, including those from different host sources, can contribute to the invasion of A. philoxeroides by significantly enhancing its competitiveness.

10.
Pestic Biochem Physiol ; 193: 105427, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37248005

ABSTRACT

Botrytis cinerea is the causal agent of devastating disease gray mold on numerous crops worldwide. To control gray mold, anilinopyrimidine (AP) fungicides have been widely applied since the 1990s. However, the development of resistance in B. cinerea brought a new challenge to this disease control. Due to the unknown mode of action, the mechanism of AP resistance is still ambiguous. In our previous study, mutation E407K in Bcmdl1 was identified to be associated with AP resistance. Since this mutation is the major mechanism of AP resistance in our cases, it is essential to investigate the fitness of E407K strains before designing anti-resistance management strategies. Besides using field-resistant isolates with the E407K mutation, strains with E407K substitution obtained by site-directed mutagenesis were also used to estimate the specific effect of this mutation or substitution on fitness. The fitness of E407K strains were evaluated by determining mycelial growth, sporulation, conidial germination, virulence, acid production, osmotic and oxidative sensitivity, and sclerotial production and viability. Field resistant isolates with E407K mutation produced fewer sclerotia on intermediate medium (IM) but more conidia on PDA when compared with sensitive isolates, whereas site-directed transformants with E407K substitution did not show any fitness costs. The competitive ability of E407K strains was also evaluated on apple fruit using conidial mixtures at three initial ratios of resistant and sensitive isolates at 1:9, 1:1, and 9:1, respectively. Similar with fitness, impaired competitive ability was observed in field resistant isolates but not site-directed transformants at all initial ratios tested. These results indicated that field strains associated with AP resistance suffer a fitness penalty not linked directly to the E407K substitution in Bcmdl1.


Subject(s)
Drug Resistance, Fungal , Fungicides, Industrial , Drug Resistance, Fungal/genetics , Plant Diseases , Fruit , Mutation , Fungicides, Industrial/pharmacology , Botrytis , Spores, Fungal
11.
Front Plant Sci ; 14: 1169317, 2023.
Article in English | MEDLINE | ID: mdl-37143880

ABSTRACT

Introduction: Atmospheric nitrogen (N) deposition has often been considered as a driver of exotic plant invasions. However, most related studies focused on the effects of soil N levels, and few on those of N forms, and few related studies were conducted in the fields. Methods: In this study, we grew Solanum rostratum, a notorious invader in arid/semi-arid and barren habitats, and two coexisting native plants Leymus chinensis and Agropyron cristatum in mono- and mixed cultures in the fields in Baicheng, northeast China, and investigated the effects of N levels and forms on the invasiveness of S. rostratum. Results: Compared with the two native plants, S. rostratum had higher aboveground and total biomass in both mono- and mixed monocultures under all N treatments, and higher competitive ability under almost all N treatments. N addition enhanced the growth and competitive advantage of the invader under most conditions, and facilitated invasion success of S. rostratum. The growth and competitive ability of the invader were higher under low nitrate relative to low ammonium treatment. The advantages of the invader were associated with its higher total leaf area and lower root to shoot ratio compared with the two native plants. The invader also had a higher light-saturated photosynthetic rate than the two native plants in mixed culture (not significant under high nitrate condition), but not in monoculture. Discussion: Our results indicated that N (especially nitrate) deposition may also promote invasion of exotic plants in arid/semi-arid and barren habitats, and the effects of N forms and interspecific competition need to be taken into consideration when studying the effects of N deposition on invasion of exotic plants.

12.
Ecol Lett ; 26(6): 942-954, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37078102

ABSTRACT

Release from enemies can lead to rapid evolution in invasive plants, including reduced metabolic investment in defence. Conversely, reassociation with enemies leads to renewed evolution of defence, but the potential costs of this evolution are poorly documented. We report increased resistance of the invader Ambrosia artemisiifolia after reassociation with a coevolved specialist herbivore, and that this increase corresponds with reduced abiotic stress tolerance. Herbivore resistance was higher, but drought tolerance was lower in plants from populations with a longer reassociation history, and this corresponded with changes in phenylpropanoids involved in insect resistance and abiotic stress tolerance. These changes were corroborated by shifts in the expression of underlying biosynthetic genes and plant anti-oxidants. Together, our findings suggest rapid evolution of plant traits after reassociation with coevolved enemies, resulting in genetically based shifts in investment between abiotic and biotic stress responses, providing insights into co-evolution, plant invasion and biological control.


Subject(s)
Biological Evolution , Herbivory , Animals , Herbivory/physiology , Plants , Insecta , Stress, Physiological
13.
Front Zool ; 19(1): 31, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482394

ABSTRACT

BACKGROUND: House mice are commensal animals with a nearly global distribution, structured into well differentiated local populations. Besides genetic differences between the populations, they have also diverged behaviorally over time, whereby it remains open how fast general behavioral characteristics can change. Here we study the competitive potential of two very recently separated populations of the Western house mouse (Mus musculus domesticus) by using two different approaches-one under controlled cage conditions, the other under more natural conditions in enclosures mimicking a secondary encounter condition. RESULTS: We observe a clear bias in the competitive ability towards one of the populations for both tests. The measured behavioral bias is also reflected in the number of hybrid offspring produced in the enclosures. CONCLUSION: Our data suggest that key behavioral characteristics with a direct influence on relative fitness can quickly change during the evolution of populations. It seems possible that the colonization situation in Western Europe, with a rapid spread of the mice after their arrival, would have favored more competitive populations at the expansion front. The study shows the possible impact of behavioral changes on the evolution of populations.

14.
Ecol Lett ; 25(10): 2289-2302, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35986512

ABSTRACT

An important hypothesis for how plants respond to introduction to new ranges is the evolution of increased competitive ability (EICA). EICA predicts that biogeographical release from natural enemies initiates a trade-off in which exotic species in non-native ranges become larger and more competitive, but invest less in consumer defences, relative to populations in native ranges. This trade-off is exceptionally complex because detecting concomitant biogeographical shifts in competitive ability and consumer defence depends upon which traits are targeted, how competition is measured, the defence chemicals quantified, whether defence chemicals do more than defend, whether 'herbivory' is artificial or natural, and where consumers fall on the generalist-specialist spectrum. Previous meta-analyses have successfully identified patterns but have yet to fully disentangle this complexity. We used meta-analysis to reevaluate traditional metrics used to test EICA theory and then expanded on these metrics by partitioning competitive effect and competitive tolerance measures and testing Leaf-Specific Mass in detail as a response trait. Unlike previous syntheses, our meta-analyses detected evidence consistent with the classic trade-off inherent to EICA. Plants from non-native ranges imposed greater competitive effects than plants from native ranges and were less quantitatively defended than plants from native ranges. Our results for defence were not based on complex leaf chemistry, but instead were estimated from tannins, toughness traits and primarily Leaf-Specific Mass. Species specificity occurred but did not influence the general patterns. As for all evidence for EICA-like trade-offs, we do not know if the biogeographical differences we found were caused by trade-offs per se, but they are consistent with predictions derived from the overarching hypothesis. Underestimating physical leaf structure may have contributed to two decades of tepid perspectives on the trade-offs fundamental to EICA.


Subject(s)
Herbivory , Plant Leaves , Introduced Species , Phenotype , Species Specificity , Tannins
15.
Ecol Lett ; 25(10): 2091-2106, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962483

ABSTRACT

Community ecology typically assumes that competitive exclusion and species coexistence are unaffected by evolution on the time scale of ecological dynamics. However, recent studies suggest that rapid evolution operating concurrently with competition may enable species coexistence. Such findings necessitate general theory that incorporates the coexistence contributions of eco-evolutionary processes in parallel with purely ecological mechanisms and provides metrics for quantifying the role of evolution in shaping competitive outcomes in both modelling and empirical contexts. To foster the development of such theory, here we extend the interpretation of the two principal metrics of modern coexistence theory-niche and competitive ability differences-to systems where competitors evolve. We define eco-evolutionary versions of these metrics by considering how invading and resident species adapt to conspecific and heterospecific competitors. We show that the eco-evolutionary niche and competitive ability differences are sums of ecological and evolutionary processes, and that they accurately predict the potential for stable coexistence in previous theoretical studies of eco-evolutionary dynamics. Finally, we show how this theory frames recent empirical assessments of rapid evolution effects on species coexistence, and how empirical work and theory on species coexistence and eco-evolutionary dynamics can be further integrated.


Subject(s)
Biological Evolution , Models, Theoretical , Adaptation, Physiological , Ecosystem , Population Dynamics
16.
J Plant Res ; 135(5): 637-646, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35668243

ABSTRACT

Comparative studies with taxonomically and geographically paired alien species that exhibit different degrees of success in their invasions may help to identify the factors that determine invasiveness. Examples of such species in Europe include the noninvasive Impatiens balfourii and invasive I. glandulifera. We tested whether the low invasiveness of I. balfourii in Europe may be explained by strong pressure from local enemies. Earlier studies of these two species provided support for their hybridization. We tested this phenomenon as the potential occurrence of I. glandulifera × I. balfourii hybrids might promote the evolution of the invasiveness of I. balfourii. Both species were germinated from seeds collected in 2015 on the Swiss-Italian border in Insubria and utilized in three experiments: (1) a common garden enemy release test (leaf damage or pest pressure), (2) a test of the pressure exerted by a generalist enemy and (3) hybridization test. In the first test, the effect of enemies was assessed by the level of leaf damage and the number of pests. In the second test, a food choice experiment with a generalist herbivore (Cepaea snails) was performed. In the hybridization test, the plants were placed in a climatic chamber for self-pollination and hand cross-pollination. Analyses of enemy release and Cepaea snail preference revealed that I. balfourii experienced higher enemy pressure than I. glandulifera; however, this was not reflected in the performance of the plants. Although I. glandulifera was larger, I. balfourii had greater fecundity. Thus, the invasion success of I. glandulifera could not be unambiguously attributed to its greater degree of release from enemies compared with the noninvasive I. balfourii. Additionally, we did not obtain any evidence of hybridization between the two species. Thus, we obtained no support for the hypothesis that the evolution of the invasiveness of I. balfourii could be enhanced through hybridization with I. glandulifera.


Subject(s)
Impatiens , Herbivory , Introduced Species , Plants , Pollination , Seeds/genetics
17.
Phytopathology ; 112(11): 2321-2328, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35731021

ABSTRACT

Previous studies in Botrytis cinerea showed that resistance to methyl benzimidazole carbamates (MBCs) was mainly related to E198A/V/K and F200Y mutations of the ß-tubulin gene, and E198V was the dominant mutation in the resistant subpopulation in Hubei Province of China, indicating that resistant mutations might influence fitness. However, little is known about the effect of each E198A/V/K mutation on fitness. In this study, the fitness and competitive ability of isolates with E198A/V/K mutations were investigated. Results showed that E198A/V/K isolates and wild-type isolates shared similar fitness components in terms of virulence, sporulation, conidial germination, oxidative sensitivity, and sclerotial production and viability. However, slower mycelial growth at 4°C, higher sensitivity to 4% NaCl, and increased sclerotial production percentage at 4°C were observed in the isolates with E198V, E198K, and E198A mutations, respectively. Competitive analysis showed that the wild-type subpopulation became dominant after three disease cycles in the absence of fungicide selection pressure, whereas the resistant subpopulation seized the space of the sensitive subpopulation upon MBC application. Unexpectedly, the frequency of E198V isolates decreased dramatically after the first disease cycle with or without fungicide selection pressure. These results suggest that MBC-resistant isolates suffer little fitness penalty but possess competitive disadvantages in the absence of fungicide selection pressure. Under fungicide selection pressure, E198V isolates could not compete with E198A/K isolates. According to the current results, there is a great possibility that the E198V mutation will lose dominance in the future in China.


Subject(s)
Ascomycota , Fungicides, Industrial , Fungicides, Industrial/pharmacology , Tubulin/genetics , Drug Resistance, Fungal/genetics , Plant Diseases , Botrytis , Benzimidazoles/pharmacology , Mutation
18.
Ecol Lett ; 25(7): 1629-1639, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35596732

ABSTRACT

Historical contingency, such as the order of species arrival, can modify competitive outcomes via niche modification or pre-emption. However, how these mechanisms ultimately modify stabilising niche and average fitness differences remains largely unknown. By experimentally assembling two congeneric spider mite species feeding on tomato plants during two generations, we show that order of arrival affects species' competitive ability and changes the outcome of competition. Contrary to expectations, order of arrival did not cause positive frequency dependent priority effects. Instead, coexistence was predicted when the inferior competitor (Tetranychus urticae) arrived first. In that case, T. urticae colonised the preferred feeding stratum (leaves) of T. evansi leading to spatial niche pre-emption, which equalised fitness and reduced niche differences, driving community assembly to a close-to-neutrality scenario. Our study demonstrates how the order of species arrival and the spatial context of competitive interactions may jointly determine whether species can coexist.


Subject(s)
Solanum lycopersicum , Tetranychidae , Animals , Plant Leaves , Plants
19.
Front Plant Sci ; 13: 815011, 2022.
Article in English | MEDLINE | ID: mdl-35392523

ABSTRACT

Nitrogen addition and clipping can exert substantial impact on species diversity but their interactions and the underlying mechanisms still remain unclear. Resource competition theory holds that sufficiently strong competitive ability of dominant species can lead to the losses of subordinate species through competitive exclusion, while niche differentiation theory suggests that the persistence of subordinate species in competitive systems can be promoted by guaranteeing positive growth rates of rare species. Taking advantage of a field experiment with nitrogen addition (10 g N m-2 year-1) and different clipping intensities (2, 15, and 30 cm) treatments in a Tibetan alpine meadow across 2015-2020, we assessed the relative importance of competitively dominant species and niche differentiation in driving species diversity changes via using community weighted mean (CWM) and variation coefficient of nearest neighbor distance (CV_NND) of functional traits including height, specific leaf area (SLA) and leaf dry matter content (LDMC). We show that nitrogen enrichment drove a strong plant diversity loss (P < 0.001). Clipping at different intensities had little effect on species diversity, but it can reduce the N-induced diversity loss. Nitrogen addition and clipping caused changes in community diversity were mainly indirectly attributed to their effects on community functional composition, and the competitive ability of dominant species. Nitrogen increased the CWM of functional traits to improve the competitive ability of dominant species. In contrast, clipping influenced species diversity positively by decreasing CWMheight (P < 0.001), and also negatively by increasing CWMSLA (P < 0.001) and decreasing CV_NNDSLA (P < 0.05). Interacting with N addition, clipping resulted in a neutral effect on species diversity, because clipping could offset the negative effects of nitrogen addition through an opposite effect on CWMheight. This study provides new insights into the mechanisms of diversity maintenance with respect to nitrogen addition and clipping. Thus, clipping is recommended as a useful management strategy to alleviate the species loss caused by nutrients enrichment and maintain the diversity of grassland ecosystems.

20.
New Phytol ; 233(2): 588-591, 2022 01.
Article in English | MEDLINE | ID: mdl-34780086

Subject(s)
Introduced Species , Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...