Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.404
Filter
1.
Mol Neurobiol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985256

ABSTRACT

The bacterial pathogen, lipopolysaccharide (LPS), elicits microglial response and induces cytokine secretion that subsequently activates astrocytes. Recent findings have indicated that LPS-induced activation of postnatal glial cells has led to alterations in synapse formation in hippocampal and cortical neurons, thereby resulting in a prolonged increased risk for seizure or depression. Nevertheless, its mechanisms remain to be fully elucidated. Cellular metabolism has recently gained recognition as a critical regulatory mechanism for the activation of peripheral immune cells, as it supplies the requisite energy and metabolite for their activation. In the present study, we report that LPS did not change the expression of reported astrocyte-derived synaptogenic genes in the postnatal hippocampus; however, it induced upregulation of astrocytic complement component regulator Serping1 within the postnatal hippocampus. As a regulatory mechanism, activation of glycogen degradation (glycogenolysis) governs the expression of a subset of inflammatory-responsive genes including Serping1 through reactive oxygen species (ROS)-NF-κB axis. Our study further demonstrated that glycogenolysis is implicated in neurotoxic phenotypes of astrocytes, such as impaired neuronal synaptogenesis or cellular toxicity. These findings suggested that activation of glycogenolysis in postnatal astrocytes is an essential metabolic pathway for inducing responses in inflammatory astrocytes.

2.
Front Mol Biosci ; 11: 1387859, 2024.
Article in English | MEDLINE | ID: mdl-38948080

ABSTRACT

Acute ischemic stroke is the most common cause of neurologic dysfunction caused by focal brain ischemia and tissue injury. Diabetes is a major risk factor of stroke, exacerbating disease management and prognosis. Therefore, discovering new diagnostic markers and therapeutic targets is critical for stroke prevention and treatment. Extracellular vesicles (EVs), with their distinctive properties, have emerged as promising candidates for biomarker discovery and therapeutic application. This case-control study utilized mass spectrometry-based proteomics to compare EVs from non-diabetic stroke (nDS = 14), diabetic stroke (DS = 13), and healthy control (HC = 12) subjects. Among 1288 identified proteins, 387 were statistically compared. Statistical comparisons using a general linear model (log2 foldchange ≥0.58 and FDR-p≤0.05) were performed for nDS vs HC, DS vs HC, and DS vs nDS. DS vs HC and DS vs nDS comparisons produced 123 and 149 differentially expressed proteins, respectively. Fibrinogen gamma chain (FIBG), Fibrinogen beta chain (FIBB), Tetratricopeptide repeat protein 16 (TTC16), Proline rich 14-like (PR14L), Inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKE), Biorientation of chromosomes in cell division protein 1-like 1 (BD1L1), and protein PR14L exhibited significant differences in the DS group. The pathway analysis revealed that the complement system pathways were activated, and blood coagulation and neuroprotection were inhibited in the DS group (z-score ≥2; p ≤ 0.05). These findings underscore the potential of EVs proteomics in identifying biomarkers for stroke management and prevention, warranting further clinical investigation.

4.
Arthritis Res Ther ; 26(1): 127, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978073

ABSTRACT

BACKGROUND: Patients with rheumatoid arthritis (RA) have an increased risk of cardiovascular (CV) events and CV mortality. Subclinical carotid atherosclerosis is independently associated with rates of incident CV events among patients with RA. The complement system has been related to both the etiopathogenesis of RA and CV disease. In this study, we aimed to evaluate the association between a comprehensive assessment of the complement system and carotid intima media thickness and carotid plaque in patients with RA. METHODS: 430 patients with RA were recruited. Functional assays of the three pathways of the complement system, utilizing new-generation techniques, were assessed. Additionally, serum levels of individual components of the complement system belonging to the three pathways were measured: C1q (classical), lectin (lectin), C2, C4, and C4b (classical and lectin), factor D and properdin (alternative), C3 and C3a (common), C5, C5a, and C9 (terminal), as well as regulators factor I and C1-inhibitor. Subclinical carotid atherosclerosis was evaluated by ultrasonography. Multivariable linear regression analysis was conducted to investigate the association between the complement system and carotid intima media thickness and carotid plaque. RESULTS: After multivariable adjustment, which included traditional CV risk factors and disease-related data, C3a and C5a exhibited significant positive correlations with carotid intima media thickness. Additionally, higher values of C1-inhibitor, properdin, C3, C5, and C5a were independently associated with the presence of carotid plaque. CONCLUSION: The complement system and subclinical carotid atherosclerosis are linked in patients with RA.


Subject(s)
Arthritis, Rheumatoid , Carotid Artery Diseases , Carotid Intima-Media Thickness , Humans , Male , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/complications , Female , Carotid Artery Diseases/blood , Carotid Artery Diseases/epidemiology , Carotid Artery Diseases/diagnostic imaging , Middle Aged , Aged , Complement System Proteins/metabolism , Complement System Proteins/analysis , Adult , Cross-Sectional Studies
5.
Front Immunol ; 15: 1405597, 2024.
Article in English | MEDLINE | ID: mdl-38983846

ABSTRACT

Endometriosis (EM) is defined as the engraftment and proliferation of functional endometrial-like tissue outside the uterine cavity, leading to a chronic inflammatory condition. While the precise etiology of EM remains elusive, recent studies have highlighted the crucial involvement of a dysregulated immune system. The complement system is one of the predominantly altered immune pathways in EM. Owing to its involvement in the process of angiogenesis, here, we have examined the possible role of the first recognition molecule of the complement classical pathway, C1q. C1q plays seminal roles in several physiological and pathological processes independent of complement activation, including tumor growth, placentation, wound healing, and angiogenesis. Gene expression analysis using the publicly available data revealed that C1q is expressed at higher levels in EM lesions compared to their healthy counterparts. Immunohistochemical analysis confirmed the presence of C1q protein, being localized around the blood vessels in the EM lesions. CD68+ macrophages are the likely producer of C1q in the EM lesions since cultured EM cells did not produce C1q in vitro. To explore the underlying reasons for increased C1q expression in EM, we focused on its established pro-angiogenic role. Employing various angiogenesis assays on primary endothelial endometriotic cells, such as migration, proliferation, and tube formation assays, we observed a robust proangiogenic effect induced by C1q on endothelial cells in the context of EM. C1q promoted angiogenesis in endothelial cells isolated from EM lesions (as well as healthy ovary that is also rich in C1q). Interestingly, endothelial cells from EM lesions seem to overexpress the receptor for the globular heads of C1q (gC1qR), a putative C1q receptor. Experiments with siRNA to silence gC1qR resulted in diminished capacity of C1q to perform its angiogenic functions, suggesting that C1q is likely to engage gC1qR in the pathophysiology of EM. gC1qR can be a potential therapeutic target in EM patients that will disrupt C1q-mediated proangiogenic activities in EM.


Subject(s)
Complement C1q , Endometriosis , Neovascularization, Pathologic , Endometriosis/metabolism , Endometriosis/immunology , Endometriosis/pathology , Endometriosis/genetics , Complement C1q/genetics , Complement C1q/metabolism , Humans , Female , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Endothelial Cells/metabolism , Endothelial Cells/immunology , Endometrium/immunology , Endometrium/metabolism , Endometrium/pathology , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured , Adult , Cell Proliferation
6.
Front Immunol ; 15: 1419540, 2024.
Article in English | MEDLINE | ID: mdl-38983853

ABSTRACT

The complement system (C) is a crucial component of the innate immune system. An increasing body of research has progressively shed light on the pivotal role of C in immunological tolerance at the feto-maternal interface. Excessive C activation or impaired C regulation may determine the onset of pregnancy-related pathological conditions, including pre-eclampsia (PE). Thus, several studies have investigated the presence of C components or split products in blood matrixes (i.e., plasma, serum), urine, and amniotic fluid in PE. In the current study, we systematically reviewed the currently available scientific literature reporting measurements of C components as circulating biomarkers in PE, based on a literature search using Pubmed, Scopus, and Embase databases. A total of 41 out of 456 studies were selected after full-text analysis. Fourteen studies (34.1%) were identified as measuring the blood concentrations of the classical pathway, 5 (12.1%) for the lectin pathway, 28 (68.3%) for the alternative pathway, 17 (41.5%) for the terminal pathway components, and 16 (39%) for C regulators. Retrieved results consistently reported C4, C3, and factor H reduction, and increased circulating levels of C4d, Bb, factor D, C3a, C5a, and C5b-9 in PE compared to normal pregnancies, depicting an overall scenario of excessive C activation and aberrant C regulation. With evidence of C activation and dysregulation, C-targeted therapy is an intriguing perspective in PE management. Moreover, we also discussed emerging pitfalls in C analysis, mainly due to a lack of experimental uniformity and biased cohort selection among different studies and laboratories, aiming to raise a more comprehensive awareness for future standardization. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42024503070.


Subject(s)
Biomarkers , Complement System Proteins , Pre-Eclampsia , Humans , Pre-Eclampsia/blood , Pre-Eclampsia/immunology , Pre-Eclampsia/diagnosis , Pregnancy , Biomarkers/blood , Female , Complement System Proteins/metabolism , Complement System Proteins/immunology , Complement System Proteins/analysis , Complement Activation
7.
Medicina (Kaunas) ; 60(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38929562

ABSTRACT

The complement cascade is a vital system in the human body's defense against pathogens. During the natural aging process, it has been observed that this system is imperative for ensuring the integrity and homeostasis of the retina. While this system is critical for proper host defense and retinal integrity, it has also been found that dysregulation of this system may lead to certain retinal pathologies, including geographic atrophy and diabetic retinopathy. Targeting components of the complement system for retinal diseases has been an area of interest, and in vivo, ex vivo, and clinical trials have been conducted in this area. Following clinical trials, medications targeting the complement system for retinal disease have also become available. In this manuscript, we discuss the pathophysiology of complement dysfunction in the retina and specific pathologies. We then describe the results of cellular, animal, and clinical studies targeting the complement system for retinal diseases. We then provide an overview of complement inhibitors that have been approved by the Food and Drug Administration (FDA) for geographic atrophy. The complement system in retinal diseases continues to serve as an emerging therapeutic target, and further research in this field will provide additional insights into the mechanisms and considerations for treatment of retinal pathologies.


Subject(s)
Complement System Proteins , Retinal Diseases , Humans , Retinal Diseases/drug therapy , Retinal Diseases/physiopathology , Retinal Diseases/immunology , Complement System Proteins/physiology , Animals , Complement Inactivating Agents/therapeutic use , Complement Inactivating Agents/pharmacology , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/physiopathology , Retina/drug effects , Retina/immunology
8.
J Immunol Methods ; 531: 113709, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38862098

ABSTRACT

The complement system plays a crucial role in orchestrating the activation and regulation of inflammation within the human immune system. Three distinct activation pathways-classical, lectin, and alternative-converge to form the common lytic pathway, culminating in the formation of the membrane-attacking complex that disrupts the structure of pathogens. Dysregulated complement system activity can lead to tissue damage, autoimmune diseases, or immune deficiencies. In this study, the antimicrobial activity of human serum was investigated by using a bioluminescent microbe probe, Escherichia coli (pEGFPluxABCDEamp). This probe has previously been used to determine the antimicrobial activity of complement system and the polymorphonuclear neutrophils. In this study, blocking antibodies against key serum activators and components, including IgG, complement component 1q, factor B, and properdin, were utilized. The influence of body temperature and acute phase proteins, such as C reactive protein (CRP) and serum amyloid alpha (SAA), on the complement system was also examined. The study reveals the critical factors influencing complement system activity and pathway function. Alongside crucial factors like C1q and IgG, alternative pathway components factor B and properdin played pivotal roles. Results indicated that the alternative pathway accounted for approximately one third of the overall serum antimicrobial activity, and blocking this pathway disrupted the entire complement system. Contrary to expectations, elevated body temperature during inflammation did not enhance the antimicrobial activity of human serum. CRP demonstrated complement activation properties, but at higher physiological concentrations, it exhibited antagonistic tendencies, dampening the response. On the other hand, SAA enhanced the serum's activity. Overall, this study sheds a light on the critical factors affecting both complement system activity and pathway functionality, emphasizing the importance of a balanced immune response.

9.
Front Immunol ; 15: 1404191, 2024.
Article in English | MEDLINE | ID: mdl-38903526

ABSTRACT

Myasthenia Gravis (MG) is a chronic disabling autoimmune disease caused by autoantibodies to the neuromuscular junction (NMJ), characterized clinically by fluctuating weakness and early fatigability of ocular, skeletal and bulbar muscles. Despite being commonly considered a prototypic autoimmune disorder, MG is a complex and heterogeneous condition, presenting with variable clinical phenotypes, likely due to distinct pathophysiological settings related with different immunoreactivities, symptoms' distribution, disease severity, age at onset, thymic histopathology and response to therapies. Current treatment of MG based on international consensus guidelines allows to effectively control symptoms, but most patients do not reach complete stable remission and require life-long immunosuppressive (IS) therapies. Moreover, a proportion of them is refractory to conventional IS treatment, highlighting the need for more specific and tailored strategies. Precision medicine is a new frontier of medicine that promises to greatly increase therapeutic success in several diseases, including autoimmune conditions. In MG, B cell activation, antibody recycling and NMJ damage by the complement system are crucial mechanisms, and their targeting by innovative biological drugs has been proven to be effective and safe in clinical trials. The switch from conventional IS to novel precision medicine approaches based on these drugs could prospectively and significantly improve MG care. In this review, we provide an overview of key immunopathogenetic processes underlying MG, and discuss on emerging biological drugs targeting them. We also discuss on future direction of research to address the need for patients' stratification in endotypes according with genetic and molecular biomarkers for successful clinical decision making within precision medicine workflow.


Subject(s)
Autoantibodies , Myasthenia Gravis , Precision Medicine , Humans , Myasthenia Gravis/immunology , Myasthenia Gravis/therapy , Myasthenia Gravis/drug therapy , Myasthenia Gravis/diagnosis , Autoantibodies/immunology , Autoimmunity , Animals , Immunosuppressive Agents/therapeutic use , Neuromuscular Junction/immunology
10.
Front Immunol ; 15: 1419165, 2024.
Article in English | MEDLINE | ID: mdl-38911852

ABSTRACT

Complement activation is considered to contribute to the pathogenesis of severe SARS-CoV-2 infection, mainly by generating potent immune effector mechanisms including a strong inflammatory response. Involvement of the lectin complement pathway, a major actor of the innate immune anti-viral defense, has been reported previously. It is initiated by recognition of the viral surface Spike glycoprotein by mannose-binding lectin (MBL), which induces activation of the MBL-associated protease MASP-2 and triggers the proteolytic complement cascade. A role for the viral nucleoprotein (N) has also been reported, through binding to MASP-2, leading to protease overactivation and potentiation of the lectin pathway. In the present study, we reinvestigated the interactions of the SARS-CoV-2 N protein, produced either in bacteria or secreted by mammalian cells, with full-length MASP-2 or its catalytic domain, in either active or proenzyme form. We could not confirm the interaction of the N protein with the catalytic domain of MASP-2 but observed N protein binding to proenzyme MASP-2. We did not find a role of the N protein in MBL-mediated activation of the lectin pathway. Finally, we showed that incubation of the N protein with MASP-2 results in proteolysis of the viral protein, an observation that requires further investigation to understand a potential functional significance in infected patients.


Subject(s)
COVID-19 , Complement Pathway, Mannose-Binding Lectin , Mannose-Binding Protein-Associated Serine Proteases , SARS-CoV-2 , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Mannose-Binding Protein-Associated Serine Proteases/immunology , Humans , SARS-CoV-2/immunology , Complement Pathway, Mannose-Binding Lectin/immunology , COVID-19/immunology , COVID-19/virology , Protein Binding , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Complement Activation/immunology , Mannose-Binding Lectin/metabolism , Mannose-Binding Lectin/immunology , Phosphoproteins
11.
Front Immunol ; 15: 1410032, 2024.
Article in English | MEDLINE | ID: mdl-38938561

ABSTRACT

Nephritis is a frequent and severe complication of Systemic Lupus Erythematous (SLE). The clinical course of lupus nephritis (LN) is usually characterized by alternating phases of remission and exacerbation. Flares of LN can lead to deterioration of kidney function, necessitating timely diagnosis and therapy. The presence of autoantibodies against C1q (anti-C1qAb) in the sera of SLE patients has been reported in various studies. Some research suggests that the presence and changes in the titer of anti-C1qAb may be associated with the development of LN, as well as with LN activity and renal flares. However, the exact role of anti-C1qAb in LN remains a subject of debate. Despite variability in the results of published studies, anti-C1qAb hold promise as noninvasive markers for assessing LN activity in SLE patients. Measuring anti-C1qAb levels could aid in diagnosing and managing LN during periods of both inactive disease and renal flares. Nevertheless, larger controlled trials with standardized laboratory assays are necessary to further establish the utility of anti-C1qAb in predicting the reactivation and remission of LN and guiding treatment strategies.


Subject(s)
Autoantibodies , Biomarkers , Complement C1q , Lupus Nephritis , Lupus Nephritis/diagnosis , Lupus Nephritis/immunology , Lupus Nephritis/blood , Humans , Complement C1q/immunology , Biomarkers/blood , Autoantibodies/blood , Autoantibodies/immunology , Disease Management , Animals
12.
Biochem (Basel) ; 4(2): 126-143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894892

ABSTRACT

Glioblastoma is the most common and aggressive type of malignant brain tumor with a poor prognosis due to the lack of effective treatment options. Therefore, new treatment options are required. Sphingolipids are essential components of the cell membrane, while complement components are integral to innate immunity, and both play a critical role in regulating glioblastoma survival signaling. This review focuses on recent studies investigating the functional roles of sphingolipid metabolism and complement activation signaling in glioblastoma. It also discusses how targeting these two systems together may emerge as a novel therapeutic approach.

13.
Ren Fail ; 46(2): 2365396, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38874150

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the potential importance of complement system activation, with particular emphasis on the complement alternative pathway (AP), in the pathogenesis of hypertensive renal damage. METHODS: Serum complement C3, complement Factor H (CFH) and AP activation were assessed in 66 participants with established essential hypertension with renal damage (RD). Fifty-nine patients with age- and sex-matched essential hypertension without renal damage (NRD) and 58 healthy participants (normal) were selected. RESULTS: Our study revealed that C3 and AP50 continuously increased from normal to NRD to RD (p < 0.05, respectively), while CFH was significantly lower than that in NRD and healthy participants (p < 0.05, respectively). After multifactorial logistic regression analysis corrected for confounders, elevated serum C3 (p = 0.001) and decreased CFH (p < 0.001) were found to be independent risk factors for hypertension in healthy participants; elevated serum C3 (p = 0.034), elevated AP50 (p < 0.001), decreased CFH (p < 0.001), increased age (p = 0.011) and increased BMI (p = 0.013) were found to be independent risk factors for the progression of hypertension to hypertensive renal damage; elevated serum C3 (p = 0.017), elevated AP50 (p = 0.023), decreased CFH (p = 0.005) and increased age (p = 0.041) were found to be independent risk factors for the development of hypertensive renal damage in healthy participants. CONCLUSION: Abnormal activation of complement, particularly complement AP, may be a risk factor for the development and progression of hypertensive renal damage.


Subject(s)
Complement C3 , Complement Factor H , Humans , Male , Female , Middle Aged , Case-Control Studies , Complement C3/metabolism , Complement C3/analysis , Risk Factors , Aged , Adult , Hypertension/complications , Hypertension/blood , Complement Activation , Essential Hypertension/blood , Essential Hypertension/complications , Essential Hypertension/physiopathology , Logistic Models , Complement Pathway, Alternative , Disease Progression
14.
Mol Immunol ; 172: 1-8, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850776

ABSTRACT

Serum amyloid P component (SAP) is a member the innate immune humoral arm and participated in various processes, including the innate immune responses, tissue remodeling, and the pathogenesis of inflammatory diseases. Remarkably, SAP is a highly versatile immunomodulatory factor that can serve as a drug target for treating amyloid diseases and reduce inflammation, fibrosis degree, and respiratory disease. In this review, we focus on the biological activities of SAP and its application in different systemic immune-associated diseases. First, we reviewed the regulatory effects of SAP on innate immune cells and possible mechanisms. Second, we emphasized SAP as a diagnostic marker and therapeutic target for immune-associated diseases, including the neuropsychiatric disorders. Third, we presented several recommendations for regulating SAP in immune cell function and potential areas for future research. Some authorities consider SAP to be a pattern recognition molecule that plays multiple roles in the innate immune system and inflammation. Developing therapeutics that target SAP or its associated signaling pathways may be a promising strategy for treating immune-associated diseases.

15.
Biology (Basel) ; 13(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927311

ABSTRACT

Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.

16.
Fish Shellfish Immunol ; 151: 109712, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901682

ABSTRACT

The grass carp (Ctenopharyngodon idella) constitutes a significant economic resource within the aquaculture sector of our nation, yet it has been chronically afflicted by the Grass Carp Reovirus (GCRV) disease. The complement system, a vital component of fish's innate immunity, plays a crucial role in combating viral infections. This research investigates the potential role of MASP1, a key molecule in the lectin pathway of the complement system, in the GCRV infection in grass carp. An analysis of the molecular characteristics of MASP1 in grass carp revealed that its identity and similarity percentages range from 35.10 to 91.00 % and 35.30-91.00 %, respectively, in comparison to other species. Phylogenetically, MASP1 in C. idella aligns closely with species such as Danio rerio, Cyprinus carpio, and Carassius carassius, exhibiting chromosomal collinearity with the zebrafish. Subsequent tissue analysis in both healthy and GCRV-infected grass carp indicated that MASP1's basal expression was predominantly in the liver. Post-GCRV infection, MASP1 expression in various tissues exhibited temporal variations: peaking in the liver on day 5, spleen on day 7, and kidney on day 14. Furthermore, employing Complement Component 3 (C3) as a benchmark for complement system activation, it was observed that MASP1 could activate and cleave C3 to C3b. MASP1 also demonstrated an inhibitory effect on GCRV replication (compared with the control group, VP2 and VP7 decreased by 6.82-fold and 4.37-fold) and enhanced the expression of antiviral genes, namely IRF3, IRF7 and IFN1 (compared with the control group, increased 2.25-fold, 45.38-fold and 22.37-fold, respectively). In vivo protein injection experiments substantiated MASP1's influence on the relative mRNA expression levels of C3 in various tissues and its protein expression in serum. This study also verified that C3 could modulate the expression of antiviral genes such as IFN1 and IRF3.

17.
J Biol Chem ; 300(7): 107452, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852887

ABSTRACT

Rare variants (RVs) in the gene encoding the regulatory enzyme complement factor I (CFI; FI) that reduce protein function or levels increase age-related macular degeneration risk. A total of 3357 subjects underwent screening in the SCOPE natural history study for geographic atrophy secondary to age-related macular degeneration, including CFI sequencing and serum FI measurement. Eleven CFI RV genotypes that were challenging to categorize as type I (low serum level) or type II (normal serum level, reduced enzymatic function) were characterized in the context of pure FI protein in C3b and C4b fluid phase cleavage assays and a novel bead-based functional assay (BBFA) of C3b cleavage. Four variants predicted or previously characterized as benign were analyzed by BBFA for comparison. In all, three variants (W51S, C67R, and I370T) resulted in low expression. Furthermore, four variants (P64L, R339Q, G527V, and P528T) were identified as being highly deleterious with IC50s for C3b breakdown >1 log increased versus the WT protein, while two variants (K476E and R474Q) were ∼1 log reduced in function. Meanwhile, six variants (P50A, T203I, K441R, E548Q, P553S, and S570T) had IC50s similar to WT. Odds ratios and BBFA IC50s were positively correlated (r = 0.76, p < 0.01), while odds ratios versus combined annotation dependent depletion (CADD) scores were not (r = 0.43, p = 0.16). Overall, 15 CFI RVs were functionally characterized which may aid future patient stratification for complement-targeted therapies. Pure protein in vitro analysis remains the gold standard for determining the functional consequence of CFI RVs.

18.
Clin Immunol ; 263: 110232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701960

ABSTRACT

IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.


Subject(s)
COVID-19 , Glomerulonephritis, IGA , SARS-CoV-2 , Humans , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/blood , COVID-19/immunology , COVID-19/complications , Female , Male , Adult , SARS-CoV-2/immunology , Middle Aged , Complement Activation/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Immunoglobulin A/blood , Immunoglobulin A/immunology , Kidney Glomerulus/pathology , Kidney Glomerulus/immunology , Complement C5a/immunology , Complement C5a/metabolism
19.
Kidney Med ; 6(6): 100823, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38741947

ABSTRACT

C3 glomerulopathy is a rare disease caused by fluid phase dysregulation of the alternative complement pathway. Currently, treatment depends on clinical and histological severity and includes nephroprotection, unspecific immunosuppression, and terminal complement blockers (C5), without having an etiological treatment approved. C3 glomerulopathy has high recurrence rates after kidney transplantation with a high risk of graft loss. Fortunately, new molecules are being developed that specifically target the proximal alternative complement pathway, such as iptacopan, a factor B inhibitor that showed promising results in native kidneys and cases of transplant recurrence in a phase 2 clinical trial. We present 2 "real-world" cases of C3 glomerulopathy recurrence in kidney allografts treated with iptacopan, with initial excellent clinical response and safety profile, especially with early introduction. We also present follow-up biopsies that showed no C3 deposition during factor B inhibition. Our cases suggest that proximal blockade of the alternative complement pathway can be effective and safe in the treatment of C3 glomerulopathy recurrence in kidney transplantation, bringing other questions such as dual blockade (eg, in C3 and C5), the optimal patient profile to benefit from factor B inhibition or treatment duration and its potential use in other forms of membranoproliferative glomerulonephritis (eg, immune complex-mediated).

20.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786086

ABSTRACT

Although Chronic Obstructive Pulmonary Disease (COPD) is highly prevalent, it is often underdiagnosed. One of the main characteristics of this heterogeneous disease is the presence of periods of acute clinical impairment (exacerbations). Obtaining blood biomarkers for either COPD as a chronic entity or its exacerbations (AECOPD) will be particularly useful for the clinical management of patients. However, most of the earlier studies have been characterized by potential biases derived from pre-existing hypotheses in one or more of their analysis steps: some studies have only targeted molecules already suggested by pre-existing knowledge, and others had initially carried out a blind search but later compared the detected biomarkers among well-predefined clinical groups. We hypothesized that a clinically blind cluster analysis on the results of a non-hypothesis-driven wide proteomic search would determine an unbiased grouping of patients, potentially reflecting their endotypes and/or clinical characteristics. To check this hypothesis, we included the plasma samples from 24 clinically stable COPD patients, 10 additional patients with AECOPD, and 10 healthy controls. The samples were analyzed through label-free liquid chromatography/tandem mass spectrometry. Subsequently, the Scikit-learn machine learning module and K-means were used for clustering the individuals based solely on their proteomic profiles. The obtained clusters were confronted with clinical groups only at the end of the entire procedure. Although our clusters were unable to differentiate stable COPD patients from healthy individuals, they segregated those patients with AECOPD from the patients in stable conditions (sensitivity 80%, specificity 79%, and global accuracy, 79.4%). Moreover, the proteins involved in the blind grouping process to identify AECOPD were associated with five biological processes: inflammation, humoral immune response, blood coagulation, modulation of lipid metabolism, and complement system pathways. Even though the present results merit an external validation, our results suggest that the present blinded approach may be useful to segregate AECOPD from stability in both the clinical setting and trials, favoring more personalized medicine and clinical research.


Subject(s)
Biomarkers , Proteomics , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/blood , Proteomics/methods , Male , Female , Cluster Analysis , Aged , Biomarkers/blood , Middle Aged , Disease Progression , Proteome/metabolism , Case-Control Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...