Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 410
Filter
1.
Plant Cell Physiol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988201

ABSTRACT

Classic genome-wide association studies (GWAS) look for associations between individual SNPs and phenotypes of interest. With the rapid progress of high-throughput genotyping and phenotyping technologies, GWAS have become increasingly powerful for detecting genetic determinants and their molecular mechanisms underpinning natural phenotypic variation. However, GWAS frequently yield results with neither expected nor promising loci, nor any significant associations. This is often because associations between SNPs and a single phenotype are confounded, for example with the environment, other traits, or complex genetic structures. Such confounding can mask true genotype-phenotype associations, or inflate spurious associations. To address these problems, numerous methods have been developed that go beyond the standard model. Such advanced GWAS models are flexible and can offer improved statistical power for understanding the genetics underlying complex traits. Despite this advantage, these models have not been widely adopted and implemented compared to the standard GWAS approach, partly because this literature is diverse and often technical. In this review, our aim is to provide an overview of the application and the benefits of various advanced GWAS models for handling complex traits and genetic structures, targeting plant biologists who wish to carry out GWAS more effectively.

2.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892420

ABSTRACT

Genome-wide association studies (GWAS) significantly enhance our ability to identify trait-associated genomic variants by considering the host genome. Moreover, the hologenome refers to the host organism's collective genetic material and its associated microbiome. In this study, we utilized the hologenome framework, called Hologenome-wide association studies (HWAS), to dissect the architecture of complex traits, including milk yield, methane emissions, rumen physiology in cattle, and gut microbial composition in pigs. We employed four statistical models: (1) GWAS, (2) Microbial GWAS (M-GWAS), (3) HWAS-CG (hologenome interaction estimated using COvariance between Random Effects Genome-based restricted maximum likelihood (CORE-GREML)), and (4) HWAS-H (hologenome interaction estimated using the Hadamard product method). We applied Bonferroni correction to interpret the significant associations in the complex traits. The GWAS and M-GWAS detected one and sixteen significant SNPs for milk yield traits, respectively, whereas the HWAS-CG and HWAS-H each identified eight SNPs. Moreover, HWAS-CG revealed four, and the remaining models identified three SNPs each for methane emissions traits. The GWAS and HWAS-CG detected one and three SNPs for rumen physiology traits, respectively. For the pigs' gut microbial composition traits, the GWAS, M-GWAS, HWAS-CG, and HWAS-H identified 14, 16, 13, and 12 SNPs, respectively. We further explored these associations through SNP annotation and by analyzing biological processes and functional pathways. Additionally, we integrated our GWA results with expression quantitative trait locus (eQTL) data using transcriptome-wide association studies (TWAS) and summary-based Mendelian randomization (SMR) methods for a more comprehensive understanding of SNP-trait associations. Our study revealed hologenomic variability in agriculturally important traits, enhancing our understanding of host-microbiome interactions.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Cattle/genetics , Swine/genetics , Gastrointestinal Microbiome/genetics , Rumen/microbiology , Rumen/metabolism , Phenotype , Methane/metabolism , Milk/metabolism , Genome
3.
Proc Natl Acad Sci U S A ; 121(24): e2404364121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833469

ABSTRACT

Sex difference (SD) is ubiquitous in humans despite shared genetic architecture (SGA) between the sexes. A univariate approach, i.e., studying SD in single traits by estimating genetic correlation, does not provide a complete biological overview, because traits are not independent and are genetically correlated. The multivariate genetic architecture between the sexes can be summarized by estimating the additive genetic (co)variance across shared traits, which, apart from the cross-trait and cross-sex covariances, also includes the cross-sex-cross-trait covariances, e.g., between height in males and weight in females. Using such a multivariate approach, we investigated SD in the genetic architecture of 12 anthropometric, fat depositional, and sex-hormonal phenotypes. We uncovered sexual antagonism (SA) in the cross-sex-cross-trait covariances in humans, most prominently between testosterone and the anthropometric traits - a trend similar to phenotypic correlations. 27% of such cross-sex-cross-trait covariances were of opposite sign, contributing to asymmetry in the SGA. Intriguingly, using multivariate evolutionary simulations, we observed that the SGA acts as a genetic constraint to the evolution of SD in humans only when selection is sexually antagonistic and not concordant. Remarkably, we found that the lifetime reproductive success in both the sexes shows a positive genetic correlation with anthropometric traits, but not with testosterone. Moreover, we demonstrated that genetic variance is depleted along multivariate trait combinations in both the sexes but in different directions, suggesting absolute genetic constraint to evolution. Our results indicate that testosterone drives SA in contemporary humans and emphasize the necessity and significance of using a multivariate framework in studying SD.


Subject(s)
Phenotype , Sex Characteristics , Testosterone , Humans , Male , Female , Multivariate Analysis
4.
Am J Hum Genet ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38866020

ABSTRACT

Understanding the contribution of gene-environment interactions (GxE) to complex trait variation can provide insights into disease mechanisms, explain sources of heritability, and improve genetic risk prediction. While large biobanks with genetic and deep phenotypic data hold promise for obtaining novel insights into GxE, our understanding of GxE architecture in complex traits remains limited. We introduce a method to estimate the proportion of trait variance explained by GxE (GxE heritability) and additive genetic effects (additive heritability) across the genome and within specific genomic annotations. We show that our method is accurate in simulations and computationally efficient for biobank-scale datasets. We applied our method to common array SNPs (MAF ≥1%), fifty quantitative traits, and four environmental variables (smoking, sex, age, and statin usage) in unrelated white British individuals in the UK Biobank. We found 68 trait-E pairs with significant genome-wide GxE heritability (p<0.05/200) with a ratio of GxE to additive heritability of ≈6.8% on average. Analyzing ≈8 million imputed SNPs (MAF ≥0.1%), we documented an approximate 28% increase in genome-wide GxE heritability compared to array SNPs. We partitioned GxE heritability across minor allele frequency (MAF) and local linkage disequilibrium (LD) values, revealing that, like additive allelic effects, GxE allelic effects tend to increase with decreasing MAF and LD. Analyzing GxE heritability near genes highly expressed in specific tissues, we find significant brain-specific enrichment for body mass index (BMI) and basal metabolic rate in the context of smoking and adipose-specific enrichment for waist-hip ratio (WHR) in the context of sex.

5.
HGG Adv ; 5(3): 100319, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872309

ABSTRACT

Since the first genome-wide association studies (GWASs), thousands of variant-trait associations have been discovered. However, comprehensively mapping the genetic determinant of complex traits through univariate testing can require prohibitive sample sizes. Multi-trait GWAS can circumvent this issue and improve statistical power by leveraging the joint genetic architecture of human phenotypes. Although many methodological hurdles of multi-trait testing have been solved, the strategy to select traits has been overlooked. In this study, we conducted multi-trait GWAS on approximately 20,000 combinations of 72 traits using an omnibus test as implemented in the Joint Analysis of Summary Statistics. We assessed which genetic features of the sets of traits analyzed were associated with an increased detection of variants compared with univariate screening. Several features of the set of traits, including the heritability, the number of traits, and the genetic correlation, drive the multi-trait test gain. Using these features jointly in predictive models captures a large fraction of the power gain of the multi-trait test (Pearson's r between the observed and predicted gain equals 0.43, p < 1.6 × 10-60). Applying an alternative multi-trait approach (Multi-Trait Analysis of GWAS), we identified similar features of interest, but with an overall 70% lower number of new associations. Finally, selecting sets based on our data-driven models systematically outperformed the common strategy of selecting clinically similar traits. This work provides a unique picture of the determinant of multi-trait GWAS statistical power and outlines practical strategies for multi-trait testing.

6.
Plant Commun ; : 101002, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872306

ABSTRACT

Despite considerable advancements in extracting crucial insights from bio-omics data to unravel the intricate mechanisms underlying complex traits, the absence of a universal multimodal computational tool with robust interpretability for accurate phenotype prediction and identification of trait-associated genes remains a challenge. This study introduces the Dual-Extraction Modeling (DEM) approach, a multimodal deep learning architecture designed to extract representative features from heterogeneous omics datasets, enabling the prediction of complex trait phenotypes. Through comprehensive benchmarking experiments, we demonstrate DEM's efficacy in classification and regression prediction of complex traits. DEM consistently exhibits superior accuracy, robustness, generalizability, and flexibility. Notably, we establish its effectiveness in predicting pleiotropic genes influencing both flowering time and rosette leaf number, underscoring its commendable interpretability. Additionally, user-friendly software has been developed to facilitate the seamless utilization of DEM's functions. In summary, this study presents a state-of-the-art approach with the capability to effectively predict qualitative and quantitative traits, as well as identify functional genes, affirming its potential as a valuable tool in exploring the genetic basis of complex traits. Source code and software of DEM are available at https://github.com/cma2015/DEM/.

7.
Genome Biol ; 25(1): 125, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760657

ABSTRACT

BACKGROUND: Telomeres form repeated DNA sequences at the ends of chromosomes, which shorten with each cell division. Yet, factors modulating telomere attrition and the health consequences thereof are not fully understood. To address this, we leveraged data from 326,363 unrelated UK Biobank participants of European ancestry. RESULTS: Using linear regression and bidirectional univariable and multivariable Mendelian randomization (MR), we elucidate the relationships between leukocyte telomere length (LTL) and 142 complex traits, including diseases, biomarkers, and lifestyle factors. We confirm that telomeres shorten with age and show a stronger decline in males than in females, with these factors contributing to the majority of the 5.4% of LTL variance explained by the phenome. MR reveals 23 traits modulating LTL. Smoking cessation and high educational attainment associate with longer LTL, while weekly alcohol intake, body mass index, urate levels, and female reproductive events, such as childbirth, associate with shorter LTL. We also identify 24 traits affected by LTL, with risk for cardiovascular, pulmonary, and some autoimmune diseases being increased by short LTL, while longer LTL increased risk for other autoimmune conditions and cancers. Through multivariable MR, we show that LTL may partially mediate the impact of educational attainment, body mass index, and female age at childbirth on proxied lifespan. CONCLUSIONS: Our study sheds light on the modulators, consequences, and the mediatory role of telomeres, portraying an intricate relationship between LTL, diseases, lifestyle, and socio-economic factors.


Subject(s)
Mendelian Randomization Analysis , Telomere , Humans , Male , Female , Telomere/metabolism , Telomere/genetics , Telomere Shortening , Middle Aged , Leukocytes/metabolism , Aged , Telomere Homeostasis , Life Style , Adult , Body Mass Index
8.
medRxiv ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38798434

ABSTRACT

Genome-wide association studies (GWAS) have been predominantly conducted in populations of European ancestry, limiting opportunities for biological discovery in diverse populations. We report GWAS findings from 153,950 individuals across 36 quantitative traits in the Korean Cancer Prevention Study-II (KCPS2) Biobank. We discovered 616 novel genetic loci in KCPS2, including an association between thyroid-stimulating hormone and CD36. Meta-analysis with the Korean Genome and Epidemiology Study, Biobank Japan, Taiwan Biobank, and UK Biobank identified 3,524 loci that were not significant in any contributing GWAS. We describe differences in genetic architectures across these East Asian and European samples. We also highlight East Asian specific associations, including a known pleiotropic missense variant in ALDH2, which fine-mapping identified as a likely causal variant for a diverse set of traits. Our findings provide insights into the genetic architecture of complex traits in East Asian populations and highlight how broadening the population diversity of GWAS samples can aid discovery.

9.
Biol Lett ; 20(5): 20230585, 2024 May.
Article in English | MEDLINE | ID: mdl-38746983

ABSTRACT

Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here, we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii, transfer sulfate in vitro to the luciferin substrate, vargulin. We find luciferin sulfotransferases (LSTs) of ostracods are not orthologous to known LSTs of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Reuse of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.


Subject(s)
Crustacea , Sulfotransferases , Animals , Sulfotransferases/metabolism , Sulfotransferases/genetics , Crustacea/enzymology , Crustacea/genetics , Crustacea/metabolism , Phylogeny , Evolution, Molecular , Luminescence
10.
Genetics ; 227(1)2024 05 07.
Article in English | MEDLINE | ID: mdl-38506092

ABSTRACT

Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants within the genes that control this trait is of high importance if we want to better comprehend thermal physiology. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource as a model system. First, we used quantitative genetics and Quantitative Trait Loci mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to (1) alter tissue-specific gene expression and (2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.


Subject(s)
Drosophila melanogaster , Quantitative Trait Loci , Thermotolerance , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Thermotolerance/genetics , Genetic Variation
11.
J Pers Med ; 14(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38541061

ABSTRACT

Genomics has been forecasted to revolutionise human health by improving medical treatment through a better understanding of the molecular mechanisms of human diseases. Despite great successes of the last decade's genome-wide association studies (GWAS), the results have been translated to genomic medicine to a limited extent. One route to get closer to improved medical treatment could be by understanding the genetics of medication use. Current medication profiles from 335,744 individuals from the UK Biobank were obtained, and a GWAS was conducted to identify common genetic variants associated with current medication use. In total, 59 independent loci were identified for medication use, and approximately 18% of the total variation was attributable to common genetic variation. The largest fraction of genetic variance for current medication use was captured by variants with low-to-medium minor allele frequency, with coding, conserved genomic regions and transcription start sites being enriched for associated variants. The average correlation (R) between medication use and the polygenic score was 0.14. The results further demonstrated that individuals with higher polygenic burden for medication use were, on average, sicker and had a higher risk for adverse drug reactions. These results provide an insight into the genetic contribution of medication use and pave the way for developments of novel multiple trait polygenic scores, which include the genetically informed medication use.

12.
Am J Hum Genet ; 111(4): 680-690, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38490208

ABSTRACT

We propose TetraHer, a method for estimating the liability heritability of binary phenotypes. TetraHer has five key features. First, it can be applied to data from complex pedigrees that contain multiple types of relationships. Second, it can correct for ascertainment of cases or controls. Third, it can accommodate covariates. Fourth, it can model the contribution of common environment. Fifth, it produces a likelihood that can be used for significance testing. We first demonstrate the validity of TetraHer on simulated data. We then use TetraHer to estimate liability heritability for 229 codes from the tenth International Classification of Diseases (ICD-10). We identify 107 codes with significant heritability (p < 0.05/229), which can be used in future analyses for investigating the genetic architecture of human diseases.


Subject(s)
Genome-Wide Association Study , Models, Genetic , Humans , Pedigree , Phenotype , Polymorphism, Single Nucleotide
13.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464142

ABSTRACT

Single Nucleotide Polymorphisms (SNPs) associated with traits typically explain a small part of the trait genetic heritability-with the remainder thought to be distributed throughout the genome. Such SNPs are likely to alter expression levels of biologically relevant genes. Expression Quantitative Trait Locus (eQTL) networks analysis has helped to functionally characterize such variants. We systematically analyze the distribution of SNP heritability for ten traits across 29 tissue-specific eQTL networks. We find that heritability is clustered in a small number or tissue-specific, functionally relevant SNP-gene modules and that the greatest occurs in local "hubs" that are both the cornerstone of the network's modules and tissue-specific regulatory elements. The network structure could thus both amplify the genotype-phenotype connection and buffer the deleterious effect of the genetic variations on other traits. Together, these results define a conceptual framework for understanding complex trait architecture and identifying key mutations carrying most of the heritability.

14.
Curr Protoc ; 4(2): e981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314955

ABSTRACT

Transcriptome-wide association study (TWAS) methodologies aim to identify genetic effects on phenotypes through the mediation of gene transcription. In TWAS, in silico models of gene expression are trained as functions of genetic variants and then applied to genome-wide association study (GWAS) data. This post-GWAS analysis identifies gene-trait associations with high interpretability, enabling follow-up functional genomics studies and the development of genetics-anchored resources. We provide an overview of commonly used TWAS approaches, their advantages and limitations, and some widely used applications. © 2024 Wiley Periodicals LLC.


Subject(s)
Genome-Wide Association Study , Transcriptome , Transcriptome/genetics , Genome-Wide Association Study/methods , Quantitative Trait Loci , Computer Simulation , Phenotype
15.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352467

ABSTRACT

Genome editing technologies have the potential to transform our understanding of how genetic variation gives rise to complex traits through the systematic engineering and phenotypic characterization of genetic variants. However, there has yet to be a system with sufficient efficiency, fidelity, and throughput to comprehensively identify causal variants at the genome scale. Here we explored the ability of templated CRISPR editing systems to install natural variants genome-wide in budding yeast. We optimized several approaches to enhance homology-directed repair (HDR) with donor DNA templates, including donor recruitment to target sites, single-stranded donor production by bacterial retrons, and in vivo plasmid assembly. We uncovered unique advantages of each system that we integrated into a single superior system named MAGESTIC 3.0. We used MAGESTIC 3.0 to dissect causal variants residing in 112 quantitative trait loci across 32 environmental conditions, revealing an enrichment for missense variants and loci with multiple causal variants. MAGESTIC 3.0 will facilitate the functional analysis of the genome at single-nucleotide resolution and provides a roadmap for improving template-based genome editing systems in other organisms.

17.
Dev Cell ; 59(1): 91-107.e6, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38091997

ABSTRACT

Genomic regulation of cardiomyocyte differentiation is central to heart development and function. This study uses genetic loss-of-function human-induced pluripotent stem cell-derived cardiomyocytes to evaluate the genomic regulatory basis of the non-DNA-binding homeodomain protein HOPX. We show that HOPX interacts with and controls cardiac genes and enhancer networks associated with diverse aspects of heart development. Using perturbation studies in vitro, we define how upstream cell growth and proliferation control HOPX transcription to regulate cardiac gene programs. We then use cell, organoid, and zebrafish regeneration models to demonstrate that HOPX-regulated gene programs control cardiomyocyte function in development and disease. Collectively, this study mechanistically links cell signaling pathways as upstream regulators of HOPX transcription to control gene programs underpinning cardiomyocyte identity and function.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Animals , Humans , Myocytes, Cardiac/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Zebrafish/metabolism , Cell Differentiation/genetics , Cell Proliferation
18.
Gene ; 894: 147973, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37949418

ABSTRACT

INTRODUCTION: The selection of single nucleotide polymorphisms (SNPs) to evaluate the genetic susceptibility in complex traits is often conducted in isolation, without considering the entire set of genes. Incorporating signaling pathways or gene-gene interaction search may provide a more comprehensive approach to selecting SNP candidates for further study. OBJECTIVE: To propose a systematic procedure for identifying SNPs candidates with complex traits such as hypertension and blood pressure. METHODS: Sequential stages to SNPs selection: 1) literature review to identify SNPs, following the PRISMA methodology, 2) identification and selection of signaling pathways and selection of gene-gene interaction networks using the STRING software, and 3) application of specific criteria for SNPs candidates, including: a) SNPs with minor allele frequency > 5% in the target population, b) SNPs located within genes involved in three or more signaling pathways, and c) SNPs that are not in linkage disequilibrium, with a D'or r2 value < 0.8. RESULTS: Stage 1) A total of 44 publications were selected, providing information on 230 genes evaluated with blood pressure. Stage 2) Using the STRING software, we selected 7 signaling pathways with a false discovery rate < 0.0001 and strength ≥ 0.8; and we identified 16 genes belonging to gene-gene interaction networks, six of them share ≥ 3 signaling pathways. Stage 3) Finally, 7 SNPs were selected for genotyping in the Health Workers Cohort Study. We observed a positive association between SNPs with hypertension incidence in males (rs1130214, rs3807989) and females (rs5051, rs2493123). CONCLUSION: Our methodological proposal may be a reliable way for selecting SNPs candidates to study complex traits.


Subject(s)
Epistasis, Genetic , Hypertension , Male , Female , Humans , Cohort Studies , Linkage Disequilibrium , Hypertension/genetics , Signal Transduction/genetics , Polymorphism, Single Nucleotide
19.
Anim Genet ; 55(1): 55-65, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38112158

ABSTRACT

This study aimed to build gene-biological process networks with differentially expressed genes associated with economically important traits of Nelore cattle from 17 previous studies. The genes were clustered into three groups by evaluated traits: group 1, production traits; group 2, carcass traits; and group 3, meat quality traits. For each group, a gene-biological process network analysis was performed with the differentially expressed genes in common. For production traits, 37 genes were found in common, of which 13 genes were enriched for six Gene Ontology (GO) terms; these terms were not functionally grouped. However, the enriched GO terms were related to homeostasis, the development of muscles and the immune system. For carcass traits, four genes were found in common. Thus, it was not possible to functionally group these genes into a network. For meat quality traits, the analysis revealed 222 genes in common. CSRP3 was the only gene differentially expressed in all three groups. Non-redundant biological terms for clusters of genes were functionally grouped networks, reflecting the cross-talk between all biological processes and genes involved. Many biological processes and pathways related to muscles, the immune system and lipid metabolism were enriched, such as striated muscle cell development and triglyceride metabolic processes. This study provides insights into the genetic mechanisms of production, carcass and meat quality traits of Nelore cattle. This information is fundamental for a better understanding of the complex traits and could help in planning strategies for the production and selection systems of Nelore cattle.


Subject(s)
Gene Regulatory Networks , Meat , Cattle/genetics , Animals , Phenotype , Gene Expression , Meat/analysis
20.
Cell Genom ; 3(12): 100458, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38116119

ABSTRACT

Short tandem repeats (STRs) are genomic regions consisting of repeated sequences of 1-6 bp in succession. Single-nucleotide polymorphism (SNP)-based genome-wide association studies (GWASs) do not fully capture STR effects. To study these effects, we imputed 445,720 STRs into genotype arrays from 408,153 White British UK Biobank participants and tested for association with 44 blood phenotypes. Using two fine-mapping methods, we identify 119 candidate causal STR-trait associations and estimate that STRs account for 5.2%-7.6% of causal variants identifiable from GWASs for these traits. These are among the strongest associations for multiple phenotypes, including a coding CTG repeat associated with apolipoprotein B levels, a promoter CGG repeat with platelet traits, and an intronic poly(A) repeat with mean platelet volume. Our study suggests that STRs make widespread contributions to complex traits, provides stringently selected candidate causal STRs, and demonstrates the need to consider a more complete view of genetic variation in GWASs.

SELECTION OF CITATIONS
SEARCH DETAIL
...