Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Small ; : e2404420, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39308234

ABSTRACT

Wood, as a renewable material, has been regarded as an emerging substrate for self-supporting electrodes in large-scale water electrolysis due to numerous merits such as rich pore structure, abundant hydroxyl groups, etc. However, poor conductivity of wood can greatly suppress the performance of wood-based electrodes. Carbonization process can improve wood's conductivity, but the loss of hydroxyl groups and the required high energy consumption are the drawbacks of such a process. Here, a facile strategy is developed to prepare pristine wood-supported electrode (Ni-NiP/W) for enhanced hydrogen evolution reaction (HER); this improves electrical conductivity of wood while retaining its excellent intrinsic properties. The preparation process involves the deposition of copper on the untreated wood followed with the loading of Ni-NiP catalyst at room temperature. Encouragingly, the Ni-NiP/W exhibits conductive and inherited pristine wood's superhydrophilic and superaerophobic properties, that effectively boost mass and charge transfer. It demonstrates high activity and excellent stability in acidic, alkali, and seawater conditions as well as high current densities of up to 2000 mA cm-2; particularly a record-low HER overpotential of 206 mV in acidic conditions at 1000 mA cm-2. This work fully unlocks the admiring potential of pristine wood as superior substrate for high-performance electrochemical electrodes.

2.
Environ Sci Pollut Res Int ; 31(44): 55996-56007, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39249612

ABSTRACT

Herein, a novel graphite/sulfur iron tailing composite was applied as a peroxydisulfate (PDS) activator for rhodamine B (RhB) degradation in the water. The superior catalytic efficiency of graphite/sulfur iron tailing was achieved through radical (SO4•- and •OH) and non-radical (1O2) processes according to the radical quenching experiments and electron paramagnetic resonance analysis. The carbonyl group and Fe species were the main active sites on the surface of graphite/sulfur iron tailing, which was demonstrated by combining Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and reaction kinetic experiments, and a possible degradation mechanism was also proposed. Overall, activated with 0.30 g/L of C-1, PDS achieved a 94.8% removal rate for RhB and maintained a removal rate of over 85% even after five consecutive operation cycles, and this study will benefit the application of iron/carbon composite materials in practical water treatment.


Subject(s)
Graphite , Iron , Rhodamines , Water Pollutants, Chemical , Rhodamines/chemistry , Graphite/chemistry , Iron/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Sulfur/chemistry , Kinetics , Spectroscopy, Fourier Transform Infrared , Sulfates/chemistry
3.
Molecules ; 29(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39202904

ABSTRACT

CoMn2O4 (CMO) has been recognized as an effective peroxymonosulfate (PMS) activator; however, it still shows disadvantages such as limited reactive sites and metal leakage. Herein, an effective and environmentally friendly composite catalyst, CMO/Kln, was synthesized by anchoring CMO on kaolinite (Kln), a natural clay mineral with a special lamellar structure, to activate peroxymonosulfate (PMS) for the degradation of residue pharmaceuticals in water. The abundant hydroxyl groups located on the surface of Kln helped induce rich oxygen vacancies (OVs) into composite CMO/Kln, which not only acted as additional active sites but also accelerated working efficiency. In addition, compared with bare CMO, CMO/Kln showed lower crystallinity, and the adoption of the Kln substrate contributed to its structural stability with lower metal leaching after three rounds of reaction. The universal applicability of CMO/Kln was also verified by using three other pharmaceuticals as probes. This work shed light on the adoption of natural clay minerals in modifying CMO catalysts with promoted catalytic activity for the efficient and eco-friendly remediation of pharmaceuticals in wastewater.

4.
Heliyon ; 10(9): e29896, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707273

ABSTRACT

In this study, ionic liquids (ILs) were used as organic modifiers by introducing montmorillonite nanolayers containing potential C and N active sites between the montmorillonite nanolayers. Organically modified montmorillonite (ILs-Mt-p) was further prepared by high-temperature pyrolysis under N2 and used for the removal of ofloxacin (OFL) by activated peroxymonosulfate (PMS). Combined with XPS and other characterization analyses, it was found that the catalyst materials prepared from different organic modifiers had similar surface functional groups and graphitized structures, but contained differences in the types and numbers of C and N active sites. The catalyst (3CPC-Mt-p) obtained after pyrolysis of montmorillonite modified with cetylpyridinium chloride (CPC) had optimal catalytic performance, in which graphitic C, graphitic N, and carbonyl group (C[bond, double bond]O) could synergistically promote the activation of PMS by electron transfer, and 77.3 % of OFL could be removed within 60 min. The effects of OFL concentration, initial pH, and anions on the effects of OFL removal by the 3CPC-Mt-p/PMS system were further investigated. Satisfactory degradation results were obtained over a wide pH range. Cl- promoted the system to degrade OFL, while the presence of SO42-, H2PO4- and HA showed some inhibition, but overall the 3CPC-Mt-p catalysts had a strong anti-interference ability, showing good application prospects. The quenching experiments and EPR tests showed that O2-- and 1O2 in the 3CPC-Mt-p/PMS system were the main reactive oxygen species for the degradation of OFL, and •OH was also involved in the reaction. This study provides ideas for the construction and modulation of active sites in mineral materials such as montmorillonite and broadens the application of montmorillonite composite catalysts in advanced oxidation processes for the treatment of antibiotic wastewater.

5.
Polymers (Basel) ; 16(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38399883

ABSTRACT

The development of precious metal-free (M-N-C) catalysts for the oxygen reduction reaction (ORR) is considered crucial for reducing fuel cell costs. Herein, Co-Zn/NC interconnected frameworks with uniformly dispersed Co nanoparticles and graphitic carbon are designed and successfully synthesized through the in situ growth of zeolitic imidazolate frameworks (ZIF67 and ZIF8) along with biomass nano-microfibrillar cellulose (MFC), followed by pyrolysis. A Co-Zn/NC composite is prepared by combining Co-Zn/NC with a perfluorosulfonic acid polymer. The Co-Zn/NC composite catalyst exhibits excellent ORR catalytic activity (E0 = 0.974 V vs. RHE, E1/2 = 0.858 V vs. RHE) and good long-term durability, with 90% current retention after 10000s, surpassing that of commercial Pt/C in alkaline media. The hierarchical porous structure, coupled with the uniform distribution of Co nanoparticles and nitrogen doping, contributes to superior electrocatalytic performance, while the interconnected frameworks and graphitic carbon ensure good stability. Additionally, the Co-Zn/NC composite demonstrates promising applications in acidic media. This strategy offers significant guidance to develop advanced non-precious metal carbon-based catalysts for highly efficient and stable ORR.

6.
Bioresour Technol ; 395: 130399, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286165

ABSTRACT

The utilization of biomass char was hindered by the low gasification activity due to thick ring structures and unclear gasification mechanism. Herein, the mechanism was elucidated by experimental and DFT to improve the activity. The results demonstrated that temperature increased the gasification activity but did not changed the order of gasification activity of samples. Pressure dominated the position of the highest point of instantaneous CH4 yield, and high pressure enhanced carbon conversion by 81.72 % and 7.32 times. Moreover, KNi exhibited an uppermost catalytic activity with the instantaneous CH4 yield 1.89 times higher than that of raw char at 750 °C. The formation of the CxNi structure lowered the activation barrier for the ring opening reaction. Possible transformation pathways of Ni species were as follows: Ni(NO3)2·6H2O â†’ NiO â†’ Ni. KNi changed the reaction pathways and the most energy-consuming step. The study could shed light on the hydrogasification reaction mechanism.


Subject(s)
Carbon Dioxide , Transition Elements , Carbon Dioxide/chemistry , Carbon , Temperature , Catalysis , Biomass
7.
Chem Rec ; 23(11): e202300142, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37565697

ABSTRACT

As a class of metal-organic framework, the zeolitic-imidazole framework-67 is constructed from bridging cobalt ions and 2-methylimidazole. The high content of abundant active cobalt species, uniform structure, ultrahigh porosity, and large surface area show the potential for multiple catalytic applications, especially electrocatalytic oxygen evolution reaction (OER). The design and synthetic strategies of catalyst-based ZIF-67 that approach the maximized catalytic performance are still challenging in further development. Herein, the current progress strategy on the structural design, synthetic route, and functionalization of electrocatalysts based on ZIF-67 to boost the catalytic performance of OER is reviewed. Besides, the structurally designed catalyst from various fabricated strategies corresponding to enhancing catalytic activity is discussed. The emphasized review for understanding design and synthetic structure with catalytic performance could guide researchers in further developing catalyst-based ZIF-67 for improving the efficient electrocatalytic OER.

8.
Chemosphere ; 339: 139673, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536536

ABSTRACT

Contaminants in water pose a significant challenge as they are harmful and difficult to treat using conventional methods. Therefore, various new methods have been proposed to degrade organic pollutants in water, among which the photo-Fenton process is considered promising. In recent years, Fe-based metal-organic frameworks (Fe-MOFs) have gained attention and found applications in different fields due to their cost-effectiveness, non-toxic nature, and unique porous structure. Many researchers have applied Fe-MOFs to the photo-Fenton process in recent years and achieved good results. This review focuses on describing different strategies for enhancing the performance of Fe-MOFs in the photo-Fenton process. Also, the mechanism of MOF in the photo-Fenton process is described in detail. Finally, prospects for the application of Fe-MOFs in photo-Fenton systems for the treatment of organic pollutants in water are presented. This study provides information and ideas for researchers to use Fe-MOFs to remove organic pollutants from water by photo-Fenton process.


Subject(s)
Environmental Pollutants , Metal-Organic Frameworks , Water Pollutants, Chemical , Iron/chemistry , Metal-Organic Frameworks/chemistry , Hydrogen Peroxide/chemistry , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Water
9.
Angew Chem Int Ed Engl ; 62(37): e202309377, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37503791

ABSTRACT

Selective synthesis of specific value-added aromatics from CO2 hydrogenation is of paramount interest for mitigating energy and climate problems caused by CO2 emission. Herein, we report a highly active composite catalyst of ZnZrO and HZSM-5 (ZZO/Z5-SG) for xylene synthesis from CO2 hydrogenation via a coupling reaction in the presence of toluene, achieving a xylene selectivity of 86.5 % with CO2 conversion of 10.5 %. A remarkably high space time yield of xylene could reach 215 mg gcat -1 h-1 , surpassing most reported catalysts for CO2 hydrogenation. The enhanced performance of ZZO/Z5-SG could be due to high dispersion and abundant oxygen vacancies of the ZZO component for CO2 adsorption, more feasible hydrogen activation and transfer due to the close interaction between the two components, and enhanced stability of the formate intermediate. The consumption of methoxy and methanol from the deep hydrogenation of formate by introduced toluene also propels an oriented conversion of CO2 .

10.
Materials (Basel) ; 16(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37374619

ABSTRACT

The use of solar photocatalysts to degrade organic pollutants is not only the most promising and efficient strategy to solve pollution problems today but also helps to alleviate the energy crisis. In this work, MoS2/SnS2 heterogeneous structure catalysts were prepared by a facile hydrothermal method, and the microstructures and morphologies of these catalysts were investigated using XRD, SEM, TEM, BET, XPS and EIS. Eventually, the optimal synthesis conditions of the catalysts were obtained as 180 °C for 14 h, with the molar ratio of molybdenum to tin atoms being 2:1 and the acidity and alkalinity of the solution adjusted by hydrochloric acid. TEM images of the composite catalysts synthesized under these conditions clearly show that the lamellar SnS2 grows on the surface of MoS2 at a smaller size; high-resolution TEM images show lattice stripe distances of 0.68 nm and 0.30 nm for the (002) plane of MoS2 and the (100) plane of SnS2, respectively. Thus, in terms of microstructure, it is confirmed that the MoS2 and SnS2 in the composite catalyst form a tight heterogeneous structure. The degradation efficiency of the best composite catalyst for methylene blue (MB) was 83.0%, which was 8.3 times higher than that of pure MoS2 and 16.6 times higher than that of pure SnS2. After four cycles, the degradation efficiency of the catalyst was 74.7%, indicating a relatively stable catalytic performance. The increase in activity could be attributed to the improved visible light absorption, the increase in active sites introduced at the exposed edges of MoS2 nanoparticles and the construction of heterojunctions opening up photogenerated carrier transfer pathways and effective charge separation and transfer. This unique heterostructure photocatalyst not only has excellent photocatalytic performance but also has good cycling stability, which provides a simple, convenient and low-cost method for the photocatalytic degradation of organic pollutants.

11.
Nanomaterials (Basel) ; 12(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36234467

ABSTRACT

The shortage of powerful functionalities on scalable α-zirconium phosphate (ZrP) materials blocks the facile preparation of highly dispersed and immobilized metal nanocatalysts. We herein present a mild and facile mussel-inspired strategy based on polydopamine (PDA) for the surface modification of ZrP, and hence, the generation of powerful functionalities at a high density for the straightforward reduction of chloroauric acid to Au nanoparticles (AuNPs) and the immobilization of AuNPs. The resulting ternary ZrP@PDA/Au exhibited ultra-small AuNPs with a particle size of around 6.5 nm, as estimated based on TEM images. Consequently, the ZrP@PDA/Au catalyst showed significant activity in the catalytic conversion of 4-nitrophenol (4NP) to 4-aminophenol (4AP), a critical transformation reaction in turning the hazard into valuable intermediates for drug synthesis. The PDA was demonstrated to play a critical role in the fabrication of the highly efficient ZrP@PDA/Au catalyst, far outperforming the ZrP/Au counterpart. The turnover frequency (TOF) achieved by the ZrP@PDA/Au reached as high as 38.10 min-1, much higher than some reported noble metal-based catalysts. In addition, the ZrP@PDA/Au showed high stability and reusability, of which the catalytic efficiency was not significantly degraded after prolonged storage in solution.

12.
ACS Appl Mater Interfaces ; 14(5): 6818-6827, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35076199

ABSTRACT

Innovative breakthroughs regarding self-supported open and porous electrodes that can promote gas-liquid transmission and regulate the water dissociation kinetics are critical for sustainable hydrogen economy. Herein, a free-standing porous electrode with Pd-NiS nanoparticles assembled in a multichannel carbonized wood framework (Pd-NiS/CW) was ingeniously constructed. Specifically, carbonized wood (CW) with a mass of open microchannels and high electrical conductivity can significantly facilitate electrolyte permeation ("inhalation"), hydrogen evolution ("exhalation"), and electron transfer. As expected, the fabricated "breathable" wooden electrode exhibits remarkable hydrogen evolution activity in 1.0 M KOH, only requiring a low overpotential of 80 mV to sustain a current density of 10 mA cm-2, and can maintain this current density for 100 h. Further, the spectroscopic characterization and density functional theory (DFT) calculations manifest that the electron interaction between Pd and NiS is beneficial to reduce the water dissociation energy barriers, optimize the adsorption/desorption of H, and ultimately accelerate the catalytic activity. The work reported here will provide a potential approach for the design of electrocatalysts combined with natural multichannel wood to achieve the goal of high electrocatalytic activity and superior durability for hydrogen production.

13.
Chemosphere ; 288(Pt 1): 132425, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34606904

ABSTRACT

Fe-Ce-based composite catalysts were prepared and used for As2O3 catalytic oxidation and adsorption. They were characterized by XRD, BET, H2-TPR, Raman, SEM and XPS. The results suggests Fe, La and Zr can be partially doped into CeO2 lattice to form solid solutions. Compared with pure Fe2O3, the composite catalysts have stronger low-temperature reducibility, especially La3+ doping is beneficial to the formation of more low-temperature active sites. Raman and XPS measurements disclose the presence of oxygen vacancy and surface adsorbed oxygen in composite catalysts and these are more prominent in FeCeLaO. Ce3+ ratio increases to 18.30% after reaction, which confirms part of Ce4+ can participate in As2O3 oxidation and be reduced to Ce3+. The oxidation and adsorption capacity for As2O3 were investigated at different temperatures and O2 concentrations. The results show FeCeLaO exhibits excellent activity at middle-low-temperatures of 200-400 °C, the oxidation efficiency of As2O3 can reach 100%, the total adsorbed arsenic at 400 °C reaches 583.7 µg/g, which is 1.8 times of pure Fe2O3 at 600 °C. As2O3 oxidation mechanism over FeCeLaO with/without O2 was proposed through the Mars-Maessen theory with the aid of surface-active oxygen. The abundant oxygen vacancy defects and active chemisorbed oxygen play important roles and guarantee an efficient As2O3 oxidation, which is also the essential reason why the composite catalysts can effectively oxidize and adsorb As2O3 at middle-low-temperature of 200-400 °C, while pure Fe2O3 can only be at high temperature of 600-700 °C.


Subject(s)
Arsenic , Adsorption , Catalysis , Oxidation-Reduction , Temperature
14.
ACS Appl Mater Interfaces ; 13(45): 53777-53786, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34739222

ABSTRACT

The interfacial interaction including chemical bonding or electron transfer and even physisorption in composite electrocatalysts has a considerable effect on electrocatalytic oxidation reaction. Herein, we report a tremendously enhanced catalytic activity and excellent durability for the ethanol electro-oxidation reaction in NiMoO4-C-supported Pd composites (Pd/NiMoO4-C) compared to the commercial Pd/C (10%) catalyst. The X-ray powder diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy measurements disclose that the strong electron transfer between NiMoO4 nanorods and Pd nanoparticles likely induces the formation of more electrochemical active centers and improves the adsorption-desorption capacity of reactants and corresponding intermediates. In addition, the Pd/NiMoO4-C composite exhibits superior specific activity for ethanol oxidation compared to the Pd/NiMoO4 catalyst with physically incorporated carbon black, which further reveals that the stronger anchoring effect between Pd and C and higher electrical conductivity in Pd/NiMoO4-C composites are also conducive to promote the ethanol oxidation reaction. These discoveries provide an effective and simple method for the design of advanced electrocatalysts and provide more insights into optimizing the electronic interaction between the catalyst and support in general.

15.
ACS Appl Mater Interfaces ; 13(43): 51039-51047, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34672532

ABSTRACT

Elaborate design of metal-organic frameworks (MOFs) composites with enhanced properties is of fundamental interest and practical importance in the fields of catalysis. Typical strategies are usually focused on how to increase MOFs contents while lacking architecture design for performance improvements. Herein, we first report MOFs composites with Janus structures to boost catalytic performance by Le Châtelier's principle when using wood aerogel as a versatile platform. Janus structures mean that one part of the composite is still wood aerogel while the other part is decorated with MOFs. The underoil hydrophilicity of the wood aerogels endows the Janus composites with dehydration capacity for promoting the equilibrium movement so as to boost the catalytic performance. The catalytic performance of Janus composites for the Knoevenagel reaction increases more than 40% compared with those symmetric composites. Moreover, both the final conversion and the reaction rate are much better for the Janus composites than other state-of-the-art heterogeneous ZIF-8-based catalysts. Our design is general and paves the way to exploit composites with special architecture.

16.
J Hazard Mater ; 419: 126427, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34216971

ABSTRACT

A magnetic nitrogen-doped porous carbon material (Co/CoOx@NC) with large surface area was synthesized for peroxymonosulfate (PMS) activation. The addition of reduced graphene oxide (rGO) remarkably improved the catalytic performance of Co/CoOx@NC due to its enhancement on graphitization degree and structural regulation. Co/CoOx@NC exhibited excellent PMS activation for phenol removal with almost 100% removal efficiency in 10 min, close to that of homogeneous Co2+. Simultaneously, good reusability and recyclability of Co/CoOx@NC was achieved, demonstrating its feasibility for practical application. The PMS activation process in Co/CoOx@NC/PMS system was dominant by efficient mediation of electron transfer from pollutants to PMS through the sp2-hybridized carbon and nitrogen network. Batch tests of various organic compounds removal revealed the specific selectivity related to the electron-donating ability in Co/CoOx@NC/PMS system. As the negligible role of reactive radicals on pollutants degradation, the inhibition of interfering species (e.g., Cl-, natural organic matters) was largely weakened. Present study not only provided a strategy for rationally designing highly efficient nanocarbon-based catalysts on PMS activation, but also presented new insight into the mechanism of PMS heterogeneous activation.

17.
Ultrason Sonochem ; 74: 105558, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33933830

ABSTRACT

In this study, a novel, simple, high yield, and scalable method is proposed to synthesize highly porous MoS2/graphene oxide (M-GO) nanocomposites by reacting the GO and co-exfoliation of bulky MoS2 in the presence of polyvinyl pyrrolidone (PVP) under different condition of ultrasonication. Also, the effect of ultrasonic output power on the particle size distribution of metal cluster on the surface of nanocatalysts is studied. It is found that the use of the ultrasonication method can reduce the particle size and increase the specific surface area of M-GO nanocomposite catalysts which leads to HDS activity is increased. These nanocomposite catalysts are characterized by XRD, Raman spectroscopy, SEM, STEM, HR-TEM, AFM, XPS, ICP, BET surface, TPR and TPD techniques. The effects of physicochemical properties of the M-GO nanocomposites on the hydrodesulfurization (HDS) reactions of vacuum gas oil (VGO) has been also studied. Catalytic activities of MoS2-GO nanocomposite are investigated by different operating conditions. M9-GO nanocatalyst with high surface area (324 m2/g) and large pore size (110.3 Å), have the best catalytic performance (99.95%) compared with Co-Mo/γAl2O3 (97.91%). Density functional theory (DFT) calculations were also used to elucidate the HDS mechanism over the M-GO catalyst. It is found that the GO substrate can stabilize MoS2 layers through weak van der Waals interactions between carbon atoms of the GO and S atoms of MoS2. At both Mo- and S-edges, the direct desulfurization (DDS) is found as the main reaction pathway for the hydrodesulfurization of DBT molecules.

18.
J Hazard Mater ; 413: 125288, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33588334

ABSTRACT

A novel ternary recyclable Fe3O4/graphene/sulfur-doped g-C3N4 (Fe3O4/GE/SCN) composite catalyst was synthesized and adopted in a visible-light driven catalytic system for the degradation of ranitidine, which is an important precursor of the emerging disinfection by-product of N-nitrosodimethylamine (NDMA). The addition of GE and Fe3O4 significantly improved the interface charge transfer of SCN, increased the light collection efficiency and decreased the photogenerated charge recombination efficiency. Considering both the ranitidine removal efficiency and catalyst recovery, the Fe3O4 mass fraction of 20% (20%-Fe3O4/GE/SCN) was recommended. Ranitidine (≤2 mg/L) was completely removed in 60 min under the conditions of an initial pH of 7.0 and a 20%-Fe3O4/GE/SCN dose of 1.0 g/L, and its degradation fitted well with the pseudo first-order kinetics model. Electron paramagnetic resonance analysis and trapping experiments confirmed that ·O2-, ·OH and h+ participated in the degradation of ranitidine. Ranitidine was removed through the pathways of demethylation and hydroxylation based on the analysis of the detected degradation intermediates, and 57.3% of the NDMA formation potential (FP) was reduced after the reaction. The visible-light driven 20%-Fe3O4/GE/SCN catalytic technology is a promising method not only for the control of NDMA FP but also the catalyst could be recovered and reused.


Subject(s)
Dimethylnitrosamine , Graphite , Catalysis , Ranitidine , Sulfur
19.
Chemosphere ; 263: 128011, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32841880

ABSTRACT

The design of sustainable, effective and recyclable hybrid catalysts for advanced oxidation processes is highly significant for remediation of the water environment. In this study, we synthesized magnetic Fe3O4-N-doped carbon sphere composite catalysts (Fe3O4-NCS-x) for efficient removal of tetracycline by activating peroxymonosulfate (PMS). The Fe3O4-NCS-x composite was obtained by facile hydrothermal treatment of chitosan-iron complexes followed by pyrolysis. The unique structure of N-doped carbon spheres embedded in Fe3O4 nanoparticles intensified the electron transport, consequently improving the catalytic activity via a synergistic effect. Factors influencing the catalytic activity of the Fe3O4-NCS-2 were systematically investigated. High degradation efficiency of TC-97.1% within 1 h-was achieved in this Fe3O4-NCS-2/PMS system under the optimum conditions (C0 = 20 mg L-1, catalyst dosage 0.2 g L-1, PMS concentration 2.4 mM, native pH and 25 °C). The inhibitory effect of anions in the water matrix decreased in the order Cl- > NO3- > SO42- > CH3COO- > HCO3-. The obtained results from the competitive quenching tests and electron paramagnetic resonance measurements demonstrated that singlet oxygen (1O2), a non-radical species, plays a major role in TC degradation. It is estimated that 1O2 and hydroxyl radicals (·OH) contributed ∼65.2% and ∼24.2% to TC degradation in the Fe3O4-NCS-2/PMS system, respectively. The M-H hysteresis loop of Fe3O4-NCS-2 revealed that its saturation moment is 56 emu g-1. Magnetic responsive behavior and consecutive runs confirmed that Fe3O4-NCS-2 possesses remarkable separation performance and desirable reusability. This novel magnetic Fe3O4-NCS-2 composite activator for PMS promises great potential in TC degradation.


Subject(s)
Peroxides/chemistry , Tetracycline/chemistry , Carbon/chemistry , Catalysis , Hydroxyl Radical , Iron , Magnetic Phenomena , Magnetics , Oxidation-Reduction , Singlet Oxygen
20.
Food Sci Nutr ; 8(7): 3504-3514, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724613

ABSTRACT

Lignin was isolated from wheat straw via organosolv process and further transferred to monophenolic compounds via oxidative conversion. Wheat straw lignin (WSL) with purity at 91.4 wt% was acquired in the presence of heterogeneous and recyclable catalyst of Amberlyst-45. WSL was characterized by infrared spectrometer (IR), nuclear magnetic resonance spectroscopy (NMR) including 1H NMR and 13C NMR spectra. The results showed that WSL possesses typical syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H) units, and it is mainly composed of S and G units. The product distribution was dependent on the composition of WSL. Derivatives from S and G units were found to be the main products. The oxidative conversion of WSL was performed by varying oxidant and catalyst. Both the formation of monophenolic compounds and aromatic aldehydes were enhanced by combining oxidants and catalysts. The composite catalyst composed of NaOH/NaAlO2 was effective for the oxidation of WSL in the presence of nitrobenzene and atmospheric pressure air. The total yield of monophenolic compounds reached up 18.1%, and yields at 6.3 and 5.7% for syringaldehyde and vanillin were achieved, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL