Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biotechnol Rep (Amst) ; 30: e00618, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33981591

ABSTRACT

ß-Glucosidases are a limiting factor in the conversion of cellulose to glucose for the subsequent ethanol production. Here, ß-glucosidase production by Malbranchea pulchella was optimized using Composite Central Designs and Response Surface Methodologies from a medium designed. The coefficient of determination (R2 ) was 0.9960, F-value was very high, and the lack of fit was found to be non-significant. This indicates a statistic valid and predictive result. M. pulchella enzymatic extract was successfully tested as an enzymatic cocktail in a mixture design using sugarcane bagasse, soybean hull and barley bagasse. We proved that the optimization of the ß-glucosidase production and the application in hydrolysis using unexpansive biomass and agricultural wastes can be accomplished by means of statistical methodologies. The strategy presented here can be useful for the improvement of enzyme production and the hydrolysis process, arising as an alternative for bioeconomy.

2.
Food Microbiol ; 86: 103346, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31703876

ABSTRACT

This work aimed to study the effect of the combination of Sodium hypochlorite, the most used disinfectant by the vegetable industry, with a natural antimicrobial, benzyl-isothiocyanate (BITC), considering cutting surface and contact time, on the reduction of Salmonella in fresh-cut produce in washing operations under typical industrial conditions. Overall, the combinations of disinfectant and process parameters resulted in a mean reduction of Salmonella of 2.5 log CFU/g. According to statistical analysis, free chlorine and BITC concentrations, contact time and cut size exerted a significant effect on the Salmonella reduction (p ≤ 0.05). The optimum combination of process parameter values yielding the highest Salmonella reduction was a lettuce cut size of 15 cm2 washed for 110 s in industrial water containing 160 mg/L free chlorine and 40 mg/L BITC. A predictive model was also derived, which, as illustrated, could be applied to optimize industrial disinfection and develop probabilistic Exposure Assessments considering the effect of washing process parameters on the levels of Salmonella contamination in leafy green products. The present study demonstrated the efficacy of chlorine to reduce Salmonella populations in fresh-cut lettuce while highlighting the importance of controlling the washing process parameters, such as, contact time, cut size and concentration of the disinfectant to increase disinfectant efficacy and improve food safety.


Subject(s)
Chlorine/pharmacology , Disinfection/methods , Food Handling/methods , Isothiocyanates/pharmacology , Lactuca/microbiology , Salmonella/drug effects , Disinfectants/pharmacology , Food Contamination/analysis , Food Microbiology , Food Safety , Lactuca/growth & development , Salmonella/growth & development , Sodium Hypochlorite/pharmacology , Time Factors , Vegetables/growth & development , Vegetables/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL