Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.920
Filter
1.
Int Rev Immunol ; : 1-20, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982912

ABSTRACT

Computational biology involves applying computer science and informatics techniques in biology to understand complex biological data. It allows us to collect, connect, and analyze biological data at a large scale and build predictive models. In the twenty first century, computational resources along with Artificial Intelligence (AI) have been widely used in various fields of biological sciences such as biochemistry, structural biology, immunology, microbiology, and genomics to handle massive data for decision-making, including in applications such as drug design and vaccine development, one of the major areas of focus for human and animal welfare. The knowledge of available computational resources and AI-enabled tools in vaccine design and development can improve our ability to conduct cutting-edge research. Therefore, this review article aims to summarize important computational resources and AI-based tools. Further, the article discusses the various applications and limitations of AI tools in vaccine development.


The application of vaccines is one of the most promising treatments for numerous infectious diseases. However, the design and development of effective vaccines involve huge investments and resources, and only a handful of candidates successfully reach the market. Only relying on traditional methods is both time-consuming and expensive. Various computational tools and software have been developed to accelerate the vaccine design and development. Further, AI-enabled computational tools have revolutionized the field of vaccine design and development by creating predictive models and data-driven decision-making processes. Therefore, information and awareness of these AI-enabled computational resources will immensely facilitate the development of vaccines against emerging pathogens. In this review, we have meticulously summarized the available computational tools for each step of in-silico vaccine design and development, delving into the transformative applications of AI and ML in this domain, which would help to choose appropriate tools for each step during vaccine development, and also highlighting the limitations of these tools to facilitate the selection of appropriate tools for each step of vaccine design.

2.
Comput Biol Chem ; 112: 108139, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38972100

ABSTRACT

COVID-19, caused by the SARS-COV-2 virus, induces numerous immunological reactions linked to the severity of the clinical condition of those infected. The surface Spike protein (S protein) present in Sars-CoV-2 is responsible for the infection of host cells. This protein presents a high rate of mutations, which can increase virus transmissibility, infectivity, and immune evasion. Therefore, we propose to evaluate, using immunoinformatic techniques, the predicted epitopes for the S protein of seven variants of Sars-CoV-2. MHC class I and II epitopes were predicted and further assessed for their immunogenicity, interferon-gamma (IFN-γ) inducing capacity, and antigenicity. For B cells, linear and structural epitopes were predicted. For class I MHC epitopes, 40 epitopes were found for the clades of Wuhan, Clade 2, Clade 3, and 20AEU.1, Gamma, and Delta, in addition to 38 epitopes for Alpha and 44 for Omicron. For MHC II, there were differentially predicted epitopes for all variants and eight equally predicted epitopes. These were evaluated for differences in the MHC II alleles to which they would bind. Regarding B cell epitopes, 16 were found in the Wuhan variant, 14 in 22AEU.1 and in Clade 3, 15 in Clade 2, 11 in Alpha and Delta, 13 in Gamma, and 9 in Omicron. When compared, there was a reduction in the number of predicted epitopes concerning the Spike protein, mainly in the Delta and Omicron variants. These findings corroborate the need for updates seen today in bivalent mRNA vaccines against COVID-19 to promote a targeted immune response to the main circulating variant, Omicron, leading to more robust protection against this virus and avoiding cases of reinfection. When analyzing the specific epitopes for the RBD region of the spike protein, the Omicron variant did not present a B lymphocyte epitope from position 390, whereas the epitope at position 493 for MHC was predicted only for the Alpha, Gamma, and Omicron variants.

3.
J Theor Biol ; : 111880, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972569

ABSTRACT

The aerial flocking of birds, or murmurations, have fascinated observers while presenting many challenges to behavioral study and simulation. We examine how the periphery of murmurations remain well bounded and cohesive. We also investigate agitation waves, which occur when a flock is disturbed, developing a plausible model for how they might emerge spontaneously. To understand these behaviors a new model is presented for orientation-based social flocking. Previous methods model inter-bird dynamics by considering the neighborhood around each bird, and introducing forces for avoidance, alignment, and cohesion as three dimensional vectors that alter acceleration. Our method introduces orientation-based social flocking that treats social influences from neighbors more realistically as a desire to turn, indirectly controlling the heading in an aerodynamic model. While our model can be applied to any flocking social bird we simulate flocks of starlings, Sturnus vulgaris, and demonstrate the possibility of orientation waves in the absence of predators. Our model exhibits spherical and ovoidal flock shapes matching observation. Comparisons of our model to Reynolds' on energy consumption and frequency analysis demonstrates more realistic motions, significantly less energy use in turning, and a plausible mechanism for emergent orientation waves.

4.
Heliyon ; 10(12): e32546, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975228

ABSTRACT

Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.

5.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240008, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38952174

ABSTRACT

The numerous and varied forms of neurodegenerative illnesses provide a considerable challenge to contemporary healthcare. The emergence of artificial intelligence has fundamentally changed the diagnostic picture by providing effective and early means of identifying these crippling illnesses. As a subset of computational intelligence, machine-learning algorithms have become very effective tools for the analysis of large datasets that include genetic, imaging, and clinical data. Moreover, multi-modal data integration, which includes information from brain imaging (MRI, PET scans), genetic profiles, and clinical evaluations, is made easier by computational intelligence. A thorough knowledge of the course of the illness is made possible by this consolidative method, which also facilitates the creation of predictive models for early medical evaluation and outcome prediction. Furthermore, there has been a great deal of promise shown by the use of artificial intelligence to neuroimaging analysis. Sophisticated image processing methods combined with machine learning algorithms make it possible to identify functional and structural anomalies in the brain, which often act as early indicators of neurodegenerative diseases. This chapter examines how computational intelligence plays a critical role in improving the diagnosis of neurodegenerative diseases such as Parkinson's, Alzheimer's, etc. To sum up, computational intelligence provides a revolutionary approach for improving the identification of neurodegenerative illnesses. In the battle against these difficult disorders, embracing and improving these computational techniques will surely pave the path for more individualized therapy and more therapies that are successful.


Subject(s)
Computational Biology , Machine Learning , Neurodegenerative Diseases , Neuroimaging , Humans , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/diagnostic imaging , Computational Biology/methods , Neuroimaging/methods , Algorithms , Artificial Intelligence , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods
6.
BMC Bioinformatics ; 25(1): 229, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956474

ABSTRACT

Adeno-associated viruses 2 (AAV2) are minute viruses renowned for their capacity to infect human cells and akin organisms. They have recently emerged as prominent candidates in the field of gene therapy, primarily attributed to their inherent non-pathogenic nature in humans and the safety associated with their manipulation. The efficacy of AAV2 as gene therapy vectors hinges on their ability to infiltrate host cells, a phenomenon reliant on their competence to construct a capsid capable of breaching the nucleus of the target cell. To enhance their infection potential, researchers have extensively scrutinized various combinatorial libraries by introducing mutations into the capsid, aiming to boost their effectiveness. The emergence of high-throughput experimental techniques, like deep mutational scanning (DMS), has made it feasible to experimentally assess the fitness of these libraries for their intended purpose. Notably, machine learning is starting to demonstrate its potential in addressing predictions within the mutational landscape from sequence data. In this context, we introduce a biophysically-inspired model designed to predict the viability of genetic variants in DMS experiments. This model is tailored to a specific segment of the CAP region within AAV2's capsid protein. To evaluate its effectiveness, we conduct model training with diverse datasets, each tailored to explore different aspects of the mutational landscape influenced by the selection process. Our assessment of the biophysical model centers on two primary objectives: (i) providing quantitative forecasts for the log-selectivity of variants and (ii) deploying it as a binary classifier to categorize sequences into viable and non-viable classes.


Subject(s)
Mutation , Humans , Capsid Proteins/genetics , Dependovirus/genetics , Parvovirinae/genetics
7.
Front Microbiol ; 15: 1368377, 2024.
Article in English | MEDLINE | ID: mdl-38962127

ABSTRACT

Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.

8.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892144

ABSTRACT

In this study, we present an innovative approach to improve the prediction of protein-protein interactions (PPIs) through the utilization of an ensemble classifier, specifically focusing on distinguishing between native and non-native interactions. Leveraging the strengths of various base models, including random forest, gradient boosting, extreme gradient boosting, and light gradient boosting, our ensemble classifier integrates these diverse predictions using a logistic regression meta-classifier. Our model was evaluated using a comprehensive dataset generated from molecular dynamics simulations. While the gains in AUC and other metrics might seem modest, they contribute to a model that is more robust, consistent, and adaptable. To assess the effectiveness of various approaches, we compared the performance of logistic regression to four baseline models. Our results indicate that logistic regression consistently underperforms across all evaluated metrics. This suggests that it may not be well-suited to capture the complex relationships within this dataset. Tree-based models, on the other hand, appear to be more effective for problems involving molecular dynamics simulations. Extreme gradient boosting (XGBoost) and light gradient boosting (LightGBM) are optimized for performance and speed, handling datasets effectively and incorporating regularizations to avoid over-fitting. Our findings indicate that the ensemble method enhances the predictive capability of PPIs, offering a promising tool for computational biology and drug discovery by accurately identifying potential interaction sites and facilitating the understanding of complex protein functions within biological systems.


Subject(s)
Molecular Dynamics Simulation , Protein Interaction Mapping , Protein Interaction Mapping/methods , Proteins/chemistry , Proteins/metabolism , Computational Biology/methods , Algorithms , Protein Binding , Logistic Models
9.
Elife ; 122024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896449

ABSTRACT

Untargeted metabolomic profiling through liquid chromatography-mass spectrometry (LC-MS) measures a vast array of metabolites within biospecimens, advancing drug development, disease diagnosis, and risk prediction. However, the low throughput of LC-MS poses a major challenge for biomarker discovery, annotation, and experimental comparison, necessitating the merging of multiple datasets. Current data pooling methods encounter practical limitations due to their vulnerability to data variations and hyperparameter dependence. Here, we introduce GromovMatcher, a flexible and user-friendly algorithm that automatically combines LC-MS datasets using optimal transport. By capitalizing on feature intensity correlation structures, GromovMatcher delivers superior alignment accuracy and robustness compared to existing approaches. This algorithm scales to thousands of features requiring minimal hyperparameter tuning. Manually curated datasets for validating alignment algorithms are limited in the field of untargeted metabolomics, and hence we develop a dataset split procedure to generate pairs of validation datasets to test the alignments produced by GromovMatcher and other methods. Applying our method to experimental patient studies of liver and pancreatic cancer, we discover shared metabolic features related to patient alcohol intake, demonstrating how GromovMatcher facilitates the search for biomarkers associated with lifestyle risk factors linked to several cancer types.


Subject(s)
Algorithms , Mass Spectrometry , Metabolomics , Pancreatic Neoplasms , Metabolomics/methods , Humans , Chromatography, Liquid/methods , Mass Spectrometry/methods , Pancreatic Neoplasms/metabolism , Liver Neoplasms/metabolism , Metabolome
10.
Elife ; 132024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896457

ABSTRACT

The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (-)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.


Studies about the health benefits of foods or nutrients are often inconsistent. One study may find a health benefit of a particular food and may recommend that people increase their consumption of this food to reduce their disease risk. Yet another study may find the opposite. Inconsistent study results fuel confusion and frustration, and reduce trust in research. Limitations in the studies' designs are likely to be blamed for the inconsistent findings. For example, many studies rely on participants to self-report their food intake and on databases of the nutritional content of food. But people may not accurately report their food intake. Foods vary in their nutritional content, even between two items of the same food such as two apples. And how individuals metabolize foods can further affect the nutrients they receive. Nutritional biomarkers are a potential alternative to measuring dietary intake of specific nutrients. Biomarkers are compounds the body produces when it metabolizes a specific nutrient. Measuring biomarkers therefore give scientists a more accurate and unbiased assessment of nutrient intake. Ottaviani et al. conducted a study to test the differences when estimating nutrient intake using nutritional biomarkers compared with more conventional tools. They analyzed data from a nutrition study that involved over 18,000 participants. The experiments used computer modelling to assess study results using self-reported food intake in combination with food composition database information, or measures of three biomarkers estimating the intake of flavan-3-ols, epicatechin, and nitrates. The models showed that self-reported intake and food database information often led to inaccurate results that did not align well with biomarker measurements. Measuring nutritional biomarkers provides a more accurate and unbiased assessment of nutritional intake. Using these measurements instead of traditional methods for measuring nutrient intake may help increase the reliability of nutrition research. Scientists must work to identify and confirm biomarkers of nutrients to facilitate this work. Using these more precise nutrient measurements in studies may result in more consistent results. It may also lead to more trustworthy recommendations for consumers.


Subject(s)
Biomarkers , Self Report , Humans , Catechin/analysis , Bias , Nutritional Sciences , Nutrition Assessment , Diet , Food Analysis
11.
Elife ; 132024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900561

ABSTRACT

A study of two enzymes in the brain reveals new insights into how redox reactions regulate the activity of protein kinases.


Subject(s)
Oxidation-Reduction , Brain/metabolism , Brain/physiology , Humans , Animals , Protein Kinases/metabolism
12.
Trends Microbiol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38845267

ABSTRACT

The biological interplay between phages and bacteria has driven the evolution of phage anti-defence systems (ADSs), which evade bacterial defence mechanisms. These ADSs bind and inhibit host defence proteins, add covalent modifications and deactivate defence proteins, degrade or sequester signalling molecules utilised by host defence systems, synthesise and restore essential molecules depleted by bacterial defences, or add covalent modifications to phage molecules to avoid recognition. Overall, 145 phage ADSs have been characterised to date. These ADSs counteract 27 of the 152 different bacterial defence families, and we hypothesise that many more ADSs are yet to be discovered. We discuss high-throughput approaches (computational and experimental) which are indispensable for discovering new ADSs and the limitations of these approaches. A comprehensive characterisation of phage ADSs is critical for understanding phage-host interplay and developing clinical applications, such as treatment for multidrug-resistant bacterial infections.

13.
Cell ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908368

ABSTRACT

In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.

14.
Elife ; 122024 Jun 26.
Article in English | MEDLINE | ID: mdl-38921957

ABSTRACT

Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSDCα between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody-antigen interactions. This structural prediction tool can be used to optimize antibody-antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.


Subject(s)
Complementarity Determining Regions , Deep Learning , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Models, Molecular , Protein Conformation , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Humans
15.
Comput Biol Med ; 178: 108796, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909448

ABSTRACT

BACKGROUND: Computational simulation of biological processes can be a valuable tool for accelerating biomedical research, but usually requires extensive domain knowledge and manual adaptation. Large language models (LLMs) such as GPT-4 have proven surprisingly successful for a wide range of tasks. This study provides proof-of-concept for the use of GPT-4 as a versatile simulator of biological systems. METHODS: We introduce SimulateGPT, a proof-of-concept for knowledge-driven simulation across levels of biological organization through structured prompting of GPT-4. We benchmarked our approach against direct GPT-4 inference in blinded qualitative evaluations by domain experts in four scenarios and in two quantitative scenarios with experimental ground truth. The qualitative scenarios included mouse experiments with known outcomes and treatment decision support in sepsis. The quantitative scenarios included prediction of gene essentiality in cancer cells and progression-free survival in cancer patients. RESULTS: In qualitative experiments, biomedical scientists rated SimulateGPT's predictions favorably over direct GPT-4 inference. In quantitative experiments, SimulateGPT substantially improved classification accuracy for predicting the essentiality of individual genes and increased correlation coefficients and precision in the regression task of predicting progression-free survival. CONCLUSION: This proof-of-concept study suggests that LLMs may enable a new class of biomedical simulators. Such text-based simulations appear well suited for modeling and understanding complex living systems that are difficult to describe with physics-based first-principles simulations, but for which extensive knowledge is available as written text. Finally, we propose several directions for further development of LLM-based biomedical simulators, including augmentation through web search retrieval, integrated mathematical modeling, and fine-tuning on experimental data.

16.
Elife ; 132024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913421

ABSTRACT

Background: Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods: Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results: Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions: The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding: This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.


Human pregnancies last 40 weeks on average. Preterm births, defined as live births before 37 weeks, occur in about one in ten pregnancies. Being born too early is the main cause of a number of diseases and death in newborn babies. Preterm births are further divided into those that happen early ­ before 34 weeks ­ and those that happen late ­ between 34 and 37 weeks. There are also differences between preterm births in which the amniotic sac ruptures before or after the start of labor. Although several factors can lead to spontaneous preterm birth, bacteria getting into the amniotic fluid around the fetus are a well-known trigger. These bacteria usually come from the vagina. In the past, researchers have studied the number and types of bacteria in the vagina of people who had a normal pregnancy and those that had a preterm birth to predict who is more at risk of preterm birth. However, predictions based only on data about bacteria have been less useful so far. Instead, it might be better to investigate a person's immune response during pregnancy. Shaffer et al. addressed this gap by asking whether measuring the levels of proteins involved in the immune response could help predict preterm births. Shaffer et al. collected vaginal fluids from 739 individuals of predominately African American ethnicity with an average BMI of 28.7 ­ representing a population at high risk for spontaneous preterm birth. The swabs were taken at multiple points during their pregnancy, and 31 different immune-related proteins in those fluids were measured. The researchers further noted whether these individuals had a normal or a preterm birth. The data showed that, compared to normal births, preterm births are associated with higher levels of proteins that attract white blood cells and promote inflammation, such as IL-6 and IL-1ß. Vaginal fluids from individuals who went on to have an early preterm birth where the amniotic sac ruptured before labor, contained lower levels of proteins known as defensins, which defend the body from bacteria. With these new data from vaginal swabs, Shaffer et al. could make better predictions about the likelihood of preterm birth in general and early preterm birth with the amniotic sac ruptured before labor. For the latter scenario, the predictions were not improved when combining immune protein data with other characteristics of the pregnant person, such as age. These findings suggest that clinicians may be able to use measurements of immune-related proteins to help predict preterm births, so that pregnant individuals at high risk can receive extra care. Further research will have to validate the data and determine whether the findings apply more widely.


Subject(s)
Premature Birth , Vagina , Humans , Female , Longitudinal Studies , Pregnancy , Vagina/immunology , Premature Birth/immunology , Adult , Retrospective Studies , Proteome , Cytokines/metabolism , Fetal Membranes, Premature Rupture/immunology , Fetal Membranes, Premature Rupture/diagnosis , Young Adult , Immunoproteins
17.
Life Sci ; 352: 122859, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925223

ABSTRACT

Lung cancer is among leading causes of death worldwide. The five-year survival rate of this disease is extremely low (17.8 %), mainly due to difficult early diagnosis and to the limited efficacy of currently available chemotherapeutics. This underlines the necessity to develop innovative therapies for lung cancer. In this context, drug repurposing represents a viable approach, as it reduces the turnaround time of drug development removing costs associated to safety testing of new molecular entities. Ribavirin, an antiviral molecule used to treat hepatitis C virus infections, is particularly promising as repurposed drug for cancer treatment, having shown therapeutic activity against glioblastoma, acute myeloid leukemia, and nasopharyngeal carcinoma. In the present study, we thoroughly investigated the in vitro anticancer activity of ribavirin against A549 human lung adenocarcinoma cells. From a functional standpoint, ribavirin significantly inhibits cancer hallmarks such as cell proliferation, migration, and colony formation. Mechanistically, ribavirin downregulates the expression of numerous proteins and genes regulating cell migration, proliferation, apoptosis, and cancer angiogenesis. The anticancer potential of ribavirin was further investigated in silico through gene ontology pathway enrichment and protein-protein interaction networks, identifying five putative molecular interactors of ribavirin (Erb-B2 Receptor Tyrosine Kinase 4 (Erb-B4); KRAS; Intercellular Adhesion Molecule 1 (ICAM-1); amphiregulin (AREG); and neuregulin-1 (NRG1)). These interactions were characterized via molecular docking and molecular dynamic simulations. The results of this study highlight the potential of ribavirin as a repurposed chemotherapy against lung cancer, warranting further studies to ascertain the in vivo anticancer activity of this molecule.

18.
Elife ; 132024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905121

ABSTRACT

Runs of homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE, to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 SNPs and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended HLA region and autoimmune disorders. We found an association between a diplotype covering the HFE gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (P-value=1.82×10-11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.

19.
Biophys Rep (N Y) ; : 100167, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909903

ABSTRACT

Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. Additionally, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from non-coding ones in otherwise ambiguous cases.

20.
Cell Rep ; 43(6): 114328, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861386

ABSTRACT

A key issue for research on COVID-19 pathogenesis is the lack of biopsies from patients and of samples at the onset of infection. To overcome these hurdles, hamsters were shown to be useful models for studying this disease. Here, we further leverage the model to molecularly survey the disease progression from time-resolved single-cell RNA sequencing data collected from healthy and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected Syrian and Roborovski hamster lungs. We compare our data to human COVID-19 studies, including bronchoalveolar lavage, nasal swab, and postmortem lung tissue, and identify a shared axis of inflammation dominated by macrophages, neutrophils, and endothelial cells, which we show to be transient in Syrian and terminal in Roborovski hamsters. Our data suggest that, following SARS-CoV-2 infection, commitment to a type 1- or type 3-biased immunity determines moderate versus severe COVID-19 outcomes, respectively.


Subject(s)
COVID-19 , Endothelial Cells , Lung , Neutrophils , SARS-CoV-2 , Single-Cell Analysis , COVID-19/immunology , COVID-19/virology , COVID-19/pathology , Animals , Humans , Neutrophils/immunology , SARS-CoV-2/immunology , Lung/pathology , Lung/virology , Lung/immunology , Cricetinae , Endothelial Cells/virology , Endothelial Cells/pathology , Inflammation/pathology , Mesocricetus , Disease Models, Animal , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...