Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.098
Filter
1.
Angew Chem Int Ed Engl ; : e202403535, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951114

ABSTRACT

Many bacterial natural products contain C-branched sugars, including components from the outer cell wall or antibiotically active metabolites. The enzymatic C-branching of keto sugars leading to longer side chains (≥C2), is catalyzed by thiamine diphosphate (ThDP)-dependent enzymes. Chiral tertiary α-hydroxy ketones are formed in this process. The ThDP enzymes that catalyze C-branching reactions belong to one of three enzymatic superfamilies: decarboxy-lases, transketolases, and α-ketoacid dehydrogenases 2, but branching of keto sugars has only been demonstrated for decarboxylases. In this study, we showed that an α-ketoacid dehydrogenase is responsible for C-branching of the deoxyketo sugar amycolose in the biosynthesis of kibdelomycin in Kibdelosporangium sp. MA7385. In addition, we characterized an amino transferase in the same biosynthetic gene cluster (BGC) that accepts a sterically demanding tertiary α-hydroxy ketone in a downstream reaction. Subsequently, we identified approximately 400 similar BGCs in silico, suggesting that there is a large diversity of possible ThDP-dependent enzymes catalyzing the C-branching of keto sugars and subsequent modifications.

2.
Sci Rep ; 14(1): 16103, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997265

ABSTRACT

High dose radiation exposures are rare. However, medical management of such incidents is crucial due to mortality and tissue injury risks. Rapid radiation biodosimetry of high dose accidental exposures is highly challenging, considering that they usually involve non uniform fields leading to partial body exposures. The gold standard, dicentric assay and other conventional methods have limited application in such scenarios. As an alternative, we propose Premature Chromosome Condensation combined with Fluorescent In-situ Hybridization (G0-PCC-FISH) as a promising tool for partial body exposure biodosimetry. In the present study, partial body exposures were simulated ex-vivo by mixing of uniformly exposed blood with unexposed blood in varying proportions. After G0-PCC-FISH, Dolphin's approach with background correction was used to provide partial body exposure dose estimates and these were compared with those obtained from conventional dicentric assay and G0-PCC-Fragment assay (conventional G0-PCC). Dispersion analysis of aberrations from partial body exposures was carried out and compared with that of whole-body exposures. The latter was inferred from a multi-donor, wide dose range calibration curve, a-priori established for whole-body exposures. With the dispersion analysis, novel multi-parametric methodology for discerning the partial body exposure from whole body exposure and accurate dose estimation has been formulated and elucidated with the help of an example. Dose and proportion dependent reduction in sensitivity and dose estimation accuracy was observed for Dicentric assay, but not in the two PCC methods. G0-PCC-FISH was found to be most accurate for the dose estimation. G0-PCC-FISH has potential to overcome the shortcomings of current available methods and can provide rapid, accurate dose estimation of partial body and high dose accidental exposures. Biological dose estimation can be useful to predict progression of disease manifestation and can help in pre-planning of appropriate & timely medical intervention.


Subject(s)
In Situ Hybridization, Fluorescence , In Situ Hybridization, Fluorescence/methods , Humans , Chromosome Aberrations/radiation effects , Radiation Exposure/adverse effects , Radiometry/methods , Radiation Dosage , Male , Dose-Response Relationship, Radiation
3.
Nanomaterials (Basel) ; 14(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38998742

ABSTRACT

The condensation of water vapor plays a crucial role in various applications, including combating water scarcity. In this study, by employing molecular dynamics simulations, we delved into the impact of graphene coatings on water vapor condensation on copper surfaces. Unique to this work was the exploration of various levels of graphene coverage and distribution, a facet largely unexplored in prior investigations. The findings demonstrated a notable increase in the rate of water vapor condensation and heat transfer performance as the graphene coverage was reduced. Using graphene coverages of 84%, 68%, and 52%, the numbers of condensed water molecules were 664, 735, and 880 molecules/ns, respectively. One of the most important findings was that when using the same graphene coverage of 68%, the rate of water vapor condensation and heat transfer performance increased as the graphene coating became more distributed. The overall performance of the water condensation correlated well with the energy and vibrational interaction between the graphene and the copper. This phenomenon suggests how a hybrid surface can enhance the nucleation and growth of a droplet, which might be beneficial for tailoring graphene-coated copper surfaces for applications demanding efficient water vapor condensation.

4.
ACS Nano ; 18(28): 18211-18229, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38946122

ABSTRACT

Transarterial chemoembolization (TACE), the mainstay treatment of unresectable primary liver cancer that primarily employs nondegradable drug-loaded embolic agents to achieve synergistic vascular embolization and locoregional chemotherapy effects, suffers from an inferior drug burst behavior lacking long-term drug release controllability that severely limits the TACE efficacy. Here we developed gelatin-based drug-eluting microembolics grafted with nanosized poly(acrylic acid) serving as a biodegradable ion-exchange platform that leverages a counterion condensation effect to achieve high-efficiency electrostatic drug loading with electropositive drugs such as doxorubicin (i.e., drug loading capacity >34 mg/mL, encapsulation efficiency >98%, and loading time <10 min) and an enzymatic surface-erosion degradation pattern (∼2 months) to offer sustained locoregional pharmacokinetics with long-lasting deep-tumor retention capability for TACE treatment. The microembolics demonstrated facile microcatheter deliverability in a healthy porcine liver embolization model, superior tumor-killing capacity in a rabbit VX2 liver cancer embolization model, and stabilized extravascular drug penetration depth (>3 mm for 3 months) in a rabbit ear embolization model. Importantly, the microembolics finally exhibited vessel remodeling-induced permanent embolization with minimal inflammation responses after complete degradation. Such a biodegradable ion-exchange drug carrier provides an effective and versatile strategy for enhancing long-term therapeutic responses of various local chemotherapy treatments.


Subject(s)
Chemoembolization, Therapeutic , Doxorubicin , Animals , Chemoembolization, Therapeutic/methods , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Rabbits , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/drug therapy , Swine , Acrylic Resins/chemistry , Polyelectrolytes/chemistry , Drug Carriers/chemistry , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/pharmacokinetics , Gelatin/chemistry , Nanoparticles/chemistry , Humans , Drug Liberation , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage
5.
Cell Rep ; 43(7): 114419, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38985672

ABSTRACT

The compaction of chromatin into mitotic chromosomes is essential for faithful transmission of the genome during cell division. In eukaryotes, chromosome morphogenesis is regulated by the condensin complex, though the exact mechanism used to target condensin to chromatin and initiate condensation is not understood. Here, we reveal that condensin contains an intrinsically disordered region (IDR) that modulates its association with chromatin in early mitosis and exhibits phase separation. We describe DNA-binding motifs within the IDR that, upon deletion, inflict striking defects in chromosome condensation and segregation, ill-timed condensin turnover on chromatin, and cell death. Importantly, we demonstrate that the condensin IDR can impart cell cycle regulatory functions when transferred to other subunits within the complex, indicating its autonomous nature. Collectively, our study unveils the molecular basis for the initiation of chromosome condensation in early mitosis and how this process ultimately promotes genomic stability and faultless cell division.

6.
J Environ Manage ; 366: 121713, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986368

ABSTRACT

Spirulina platensis contains abundant nitrogen-containing organics, which might react with derivatives of cellulose/lignin during hydrothermal carbonization (HTC), probably affecting yield, property of hydrochar, and pore development in activation of hydrochar. This was investigated herein by conducting co-HTC of spirulina platensis with cellulose, lignin, and sawdust at 260 °C and subsequent activation of the resulting hydrochars with K2C2O4 at 800 °C. The results showed that cross-condensation of spirulina platensis-derived proteins with cellulose/lignin-derived ketones and phenolics did take place in the co-HTC, forming more π-conjugated heavier organics, retaining more nitrogen species in hydrochar, reducing yields of hydrochar, making the hydrochar more aromatic and increasing the thermal stability and resistivity towards activation. This enhanced the yield of activated carbon (AC) by 7 %-20 % and significantly increased specific surface area of the AC from activation of hydrochar of spirulina platensis + lignin to 2074.5 m2/g (859.3 m2/g from spirulina platensis only and 1170.1 m2/g from lignin only). Furthermore, more mesopores from activation of hydrochar of spirulina platensis + cellulose (47 %) and more micropores from activation of hydrochar of spirulina + sawdust (93 %) was generated. The AC from spirulina platensis + lignin with the developed pore structures generated sufficient sites for adsorption of tetracycline from aqueous phase and minimized steric hindrance for mass transfer with the abundant mesopores (43 %).

7.
Beilstein J Org Chem ; 20: 1468-1475, 2024.
Article in English | MEDLINE | ID: mdl-38978743

ABSTRACT

A catalyst- and additive-free synthesis of 2-benzyl N-substituted anilines from (E)-2-arylidene-3-cyclohexenones and primary amines has been reported. The reaction proceeds smoothly through a sequential imine condensation-isoaromatization pathway, affording a series of synthetically useful aniline derivatives in acceptable to high yields. Mild reaction conditions, no requirement of metal catalysts, operational simplicity and the potential for scale-up production are some of the highlighted advantages of this transformation.

8.
Beilstein J Nanotechnol ; 15: 808-816, 2024.
Article in English | MEDLINE | ID: mdl-38979525

ABSTRACT

Janus-type nanoparticles are important because of their ability to combine distinct properties and functionalities in a single particle, making them extremely versatile and valuable in various scientific, technological, and industrial applications. In this work, bimetallic silver-palladium Janus nanoparticles were obtained for the first time using the inert gas condensation technique. In order to achieve this, an original synthesis equipment built by Mantis Ltd. was modified by the inclusion of an additional magnetron in a second chamber, which allowed us to use two monometallic targets to sputter the two metals independently. With this arrangement, we could find appropriate settings at room temperature to promote the synthesis of bimetallic Janus nanoparticles. The structural properties of the resulting nanoparticles were investigated by transmission electron microscopy (TEM), and the chemical composition was analyzed by TEM energy dispersive spectroscopy (TEM-EDS), which, together with structural analysis, confirmed the presence of Janus-type nanostructures. Results of molecular dynamics and TEM simulations show that the differences between the crystalline structures of the Pd and Ag regions observed in the TEM micrographs can be explained by small mismatches in the orientations of the two regions of the particle. A density functional theory structural aims to understand the atomic arrangement at the interface of the Janus particle.

9.
Adv Anat Embryol Cell Biol ; 238: 23-46, 2024.
Article in English | MEDLINE | ID: mdl-39030353

ABSTRACT

The regulation of mRNA transcription and translation is uncoupled during oogenesis. The reason for this uncoupling is two-fold. Chromatin is only accessible to the transcriptional machinery during the growth phase as it condenses prior to resumption of meiosis to ensure faithful segregation of chromosomes during meiotic maturation. Thus, transcription rates are high during this time period in order to produce all of the transcripts needed for meiosis, fertilization, and embryo cleavage until the newly formed embryonic genome becomes transcriptionally active. To ensure appropriate timing of key developmental milestones including chromatin condensation, resumption of meiosis, segregation of chromosomes, and polar body extrusion, the translation of protein from transcripts synthesized during oocyte growth must be temporally regulated. This is achieved by the regulation of mRNA interaction with RNA binding proteins and shortening and lengthening of the poly(A) tail. This chapter details the essential factors that regulate the dynamic changes in mRNA synthesis, storage, translation, and degradation during oocyte growth and maturation.


Subject(s)
Oocytes , Oogenesis , RNA, Messenger , Oocytes/metabolism , Animals , RNA, Messenger/metabolism , RNA, Messenger/genetics , Oogenesis/genetics , Oogenesis/physiology , Humans , Gene Expression Regulation, Developmental , Female , Meiosis , Protein Biosynthesis
10.
Cell Tissue Res ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042176

ABSTRACT

3D cell culture has emerged as a promising approach to replicate the complex behaviors of cells within living organisms. This study aims to analyze spatiotemporal behavior of the morphological characteristics of cell structure at multiscale in 3D scaffold-free spheroids using chondrogenic progenitor ATDC5 cells. Over a 14-day culture period, it exhibited cell hypertrophy in the spheroids regarding cellular and nuclear size as well as changes in morphology. Moreover, biological analysis indicated a signification up-regulation of normal chondrocyte as well as hypertrophic chondrocyte markers, suggesting early hypertrophic chondrocyte differentiation. Cell nuclei underwent changes in volume, sphericity, and distribution in spheroid over time, indicating alterations in chromatin organization. The ratio of chromatin condensation volume to cell nuclear volume decreased as the cell nuclei enlarged, potentially signifying changes in chromatin state during hypertrophic chondrocyte differentiation. Our image analysis techniques in this present study enabled detailed morphological measurement of cell structure at multi-scale, which can be applied to various 3D culture models for in-depth investigation.

11.
J Obstet Gynaecol ; 44(1): 2375590, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39039900

ABSTRACT

BACKGROUND: Operative vision can frequently be critically reduced during laparoscopic surgery by condensation and other matter accumulating on the distal laparoscope lens. By delivering saline and carbon dioxide across the lens, the OpClear system is designed to maintain operative vision without needing scope removal for lens cleaning. This study evaluates the system's efficacy in providing high-level visual acuity during laparoscopic hysterectomy while examining its utility through its impact on operative duration. METHODS: A retrospective audit compared efficacy and utility for the three years before and after the implementation of OpClear in a single unit. Thirty-three cases were reviewed pre-OpClear, while 82 cases were analysed in the post-OpClear group. All cases involved routine total laparoscopic hysterectomies (TLH) performed by the same surgeon (AT) with similar complexity levels. RESULTS: The OpClear system provided a consistently high level of visual acuity throughout the laparoscopic procedures. Scope removals, which typically result in non-productive operating time, were virtually eliminated. Consequently, in highly comparable cases, OpClear usage resulted in a 17-minute reduction in operating time over cases performed without the device. Additionally, in the OpClear group, there were trends towards reduced blood loss and shorter hospital stays, with patients in the OpClear group being discharged on first rather than second postoperatively. CONCLUSIONS: The findings of this audit suggest that the OpClear system provides continuous high-level vision during laparoscopic hysterectomy. Further, reducing periods of non-productive time associated with scope removal for cleaning resulted in shorter operating times. Thus, the system has the potential to enhance safety, improve theatre utilisation and alleviate some of the surgical stresses associated with laparoscopic surgery.


Keyhole (Laparoscopic) surgery is often better for patients than open surgery as it speeds up recovery and return to normal activities. However, despite technical advances, the surgeon's view during keyhole operations may be lost by condensation and tissue material sticking to the lens of the laparoscope, the instrument used to see inside the body. For safety, such vision loss demands that operations must be paused so the 'scope' can be removed and the lens cleaned. This may occur often during an operation, interrupting its progress. Our audit reviews OpClear, a device that cleans the lens while the scope is in the body, improving vision and reducing pauses. OpClear works by blowing gas and fluid across the lens, washing away contamination. In keyhole hysterectomy operations, OpClear maintained vision and shortened the length of operations. OpClear may lead to safer, shorter keyhole operations and help improve the efficiency of operating departments.


Subject(s)
Hysterectomy , Laparoscopy , Operative Time , Visual Acuity , Humans , Female , Laparoscopy/methods , Hysterectomy/methods , Hysterectomy/adverse effects , Retrospective Studies , Middle Aged , Adult , Length of Stay/statistics & numerical data , Laparoscopes
12.
Heliyon ; 10(13): e33354, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040285

ABSTRACT

A superficial, one step thermal polycondensation method has been employed for the manifestation of graphene like graphitic carbon nitride (g-C3N4) catalyst. The as synthesized g-C3N4 was well characterized by SEM and EDAX analysis, XRD, ATR-IR, FTIR, Fluorescence spectroscopy, Raman spectroscopy and UV-Visible spectroscopy which provide structural, morphological assemblage relating to the structure of g-C3N4. The g-C3N4 showed that an outstanding photochemical stability, morphology, conductive carbon framework and superior photocatalytic activity. The band gap value of g-C3N4 is 2.34 eV determined using Tauc plot. Due to low band gap (2.33 eV) and unique morphology which provides high separation and migration ability of the photogenerated charges, the g-C3N4 shows enhanced photocatalytic activity for the removal of many organic dyes such as Rhodamine B (RhB), Crystal Violet (CV), Methylene Blue (MB), Methyl Orange (MO), Naphthol Orange (NO) and a phenol derivative, p-Nitrophenol (p-NP). Among them, RhB dye was degraded almost 81 % at 90 min under sunlight irradiation in presence g-C3N4 while other dyes and p-NP was degraded at lower rate. From the experimental data, it was found that MO and p-NP degradation rate was least. The rate constant for degradation of Rh B is 1.1 × 10-2 min-1. Therefore, g-C3N4 can be used as an efficient photocatalyst for waste water treatment by the removal of such organic pollutants.

13.
Mol Divers ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951417

ABSTRACT

Four new series of curcumin derivatives bearing NO-donating moiety were synthesized via etherification, nucleophilic substitution, and Knoevenagel condensation etc. The cytotoxicity activity of curcumin derivatives against five human tumor cell lines (A549, Hela, HepG2, MCF-7 and HT-29) and two normal cell lines (LO-2 and HK-2) has been studied. The results showed that compound 6a could inhibit the proliferation of MCF-7 cells remarkably and exhibit low toxicity to normal cells. Also, the underlying mechanism in vitro of compound 6a on MCF-7 was investigated. It has been found that compound 6a induced G2/M arrest and apoptosis of MCF-7 in a dose-dependent manner. Compound 6a-induced the fluorescence changes of ROS in MCF-7 cells confirmed the occurrence of apoptosis. Western Blot suggested that compound 6a decreased the expression of PI3K, as well as increased the expression of p53, cleaved caspase-9 and cleaved caspase-3. Furthermore, molecular docking revealed that compound 6a could bind well at active site of PI3K (3zim) with total score 9.59. Together, compound 6a, a potential PI3K inhibitor, may inhibit the survival of MCF-7 cells via interfering with PI3K/Akt/p53 pathway.

14.
Methods Mol Biol ; 2819: 341-356, 2024.
Article in English | MEDLINE | ID: mdl-39028514

ABSTRACT

Dynamic light scattering (DLS) enables the characterization of sizes and electrokinetic properties of colloids, polymers, and macromolecules. DNA is a charged semiflexible polyelectrolyte that is condensed or compacted by counterions, proteins, and other condensing agents in processes such as chromosome compaction and gene therapeutic applications. DNA condensation is closely related to charge screening since packaging requires effective neutralization of its surface negative charges. In this chapter, we describe in detail the protocol for DLS DNA-ligand complexes. As an example, we describe data for the condensation of DNA by chitosan and the measurement of size, zeta potential, and electrophoretic mobility of the DNA-ligand complex by DLS.


Subject(s)
DNA , Dynamic Light Scattering , DNA/chemistry , Ligands , Chitosan/chemistry
15.
Methods ; 229: 147-155, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39002735

ABSTRACT

This article reviews tried-and-tested methodologies that have been employed in the first studies on phase separating properties of structural, RNA-binding and catalytic proteins of HIV-1. These are described here to stimulate interest for any who may want to initiate similar studies on virus-mediated liquid-liquid phase separation. Such studies serve to better understand the life cycle and pathogenesis of viruses and open the door to new therapeutics.

16.
BMC Complement Med Ther ; 24(1): 269, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010075

ABSTRACT

BACKGROUND: The leaves of Kalanchoe pinnata (Lam.) Pers. (K. pinnata), a succulent plant native to tropical regions, are used as a medicinal alternative against cancer in several countries worldwide; however, its therapeutic potential to fight cancer has been little addressed. In this study, we analyzed the phytochemical content, antioxidant capacity, and selectivity of K. pinnata leaf ethanolic extract against different human cancer cell lines in vitro. METHODOLOGY: This study subjected the ethanolic extract to enzymatic assays to quantify the phytochemical content (phenolics, flavonoids, and anthraquinones) and its radical scavenging and iron-reducing capacities. Also, the phytoconstituents and major phenolic compounds present in the extract's subfractions were identified by GC-MS, HPLC, and NMR. Human cancer (MCF-7, PC-3, HT-29) and normal colon (CoN) cell lines were treated with different concentrations of K. pinnata leaf ethanolic extract, and the changes in cell proliferation (sulforhodamine B assay), caspases activity (FITC-VAD-FMK reporter), mitochondrial membrane potential (MMP, rhodamine 123 assay), chromatin condensation/fragmentation (Hoechst 33342 stain), and ROS generation (DCFH2 probe assay) were assessed. RESULTS: The results showed that the K. pinnata leaf ethanolic extract is rich in phytoconstituents with therapeutic potential, including phenols (quercetin and kaempferol), flavonoids, fatty acid esters (34.6% of the total composition), 1- triacontanol and sterols (ergosterol and stigmasterol, 15.4% of the total composition); however, it presents a poor content of antioxidant molecules (IC50 = 27.6 mg/mL for H2O2 scavenging activity vs. 2.86 mg/mL in the case of Trolox). Notably, the extract inhibited cell proliferation and reduced MMP in all human cell lines tested but showed selectivity for HT-29 colon cancer cells compared to CoN normal cells (SI = 8.4). Furthermore, ROS generation, caspase activity, and chromatin condensation/fragmentation were augmented significantly in cancer-derived cell lines, indicating a selective cytotoxic effect. CONCLUSION: These findings reveal that the K. pinnata leaf ethanolic extract contains several bioactive molecules with therapeutic potential, capable of displaying selective cytotoxicity in different human cancer cell lines.


Subject(s)
Apoptosis , Kalanchoe , Plant Extracts , Plant Leaves , Reactive Oxygen Species , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Kalanchoe/chemistry , Plant Leaves/chemistry , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Antioxidants/pharmacology
17.
J Control Release ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38971427

ABSTRACT

Targeted radionuclide therapy (TRT) is an effective treatment for tumors. Self-condensation strategies can enhance the retention of radionuclides in tumors and enhance the anti-tumor effect. Considering legumain is overexpressed in multiple types of human cancers, a 131I-labeled radiopharmaceutical ([131I]MAAN) based on the self-condensation reaction between 2-cyanobenzothiazole (CBT) and cysteine (Cys) was developed by us recently for treating legumain-overexpressed tumors. However, liver enrichment limits its application. In this study, a new radiopharmaceutical [131I]IM(HE)3AAN was designed and synthesized by introducing a hydrophilic peptide sequence His-Glu-His-Glu-His-Glu ((HE)3) into [131I]MAAN to optimize the pharmacokinetics. Upon activation by legumain under a reducing environment, hydrophilic [131I]IM(HE)3AAN could react with its precursor to form heterologous dimer [131I]H-Dimer that is highly hydrophobic. Cerenkov imaging revealed that [131I]IM(HE)3AAN displayed superior tumor selectivity and longer tumor retention time as compared with [131I]MAAN, with a significant reduction in the liver uptake. After an 18-day treatment with [131I]IM(HE)3AAN, the tumor proliferation was obviously inhibited, while no obvious injury was observed in the normal organs. These findings suggest that [131I]IM(HE)3AAN could serve as a promising drug candidate for treating legumain-overexpressed tumors.

18.
J Int Soc Prev Community Dent ; 14(2): 152-160, 2024.
Article in English | MEDLINE | ID: mdl-38827350

ABSTRACT

Aim: The objective of this in vitro micro-computed tomography investigation is to assess the efficacy of the ProTaper Universal Retreatment System in retreating oval-shaped root canals filled with three obturation procedures. Materials and Methods: Thirty-six lower incisors with a single oval root canal were prepared using XP-Endo Shaper up to size 30/0.04, and allocated into three equal groups based on the filling technique: Group 1: Warm vertical condensation technique; Group 2: GuttaCore obturators; Group 3: Cold lateral condensation technique. All samples were further retreated using the ProTaper Universal Retreatment system. Micro-CT analysis was performed before and after the retreatment procedure. Statistical analysis was performed with a significance level of 0.05. Data analysis was conducted using the Kolmogorov-Smirnov and Kruskal-Wallis H tests. Results: The best performance of the files was achieved when the removal of the filling in the entire canal was considered. However, this outcome was not statistically significant when compared with the other observed root canal levels. The retreatment procedure could not ensure thorough cleanliness of the canal walls from filling remnants, regardless of the obturation technique and observational level. Conclusions: The ProTaper Universal Retreatment system used for the removal of gutta-percha and sealer in oval-shaped root canals demonstrated equal effectiveness, regardless of the obturation technique used.

19.
Micromachines (Basel) ; 15(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38930670

ABSTRACT

This paper constituted an extension of two previous studies concerning the mathematical development of the grain boundary grooving in polycrystalline thin films in the cases of evaporation/condensation and diffusion taken separately. The thermal grooving processes are deeply controlled by the various mass transfer mechanisms of evaporation-condensation, surface diffusion, lattice diffusion, and grain boundary diffusion. This study proposed a new original analytical solution to the mathematical problem governing the grain groove profile in the case of simultaneous effects of evaporation-condensation and diffusion in polycrystalline thin films by resolving the corresponding fourth-order partial differential equation ∂y∂t=C∂2y∂x2-B∂4y∂x4 obtained from the approximation ∂y∂x2≪1. The comparison of the new solution to that of diffusion alone proved an important effect of the coupling of evaporation and diffusion on the geometric characteristics of the groove profile. A second analytical solution based on the series development was also proposed. It was proved that changes in the boundary conditions of the grain grooving profile largely affected the different geometric characteristics of the groove profile.

20.
Environ Sci Technol ; 58(26): 11363-11375, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38900148

ABSTRACT

Surface-active organics lower the aerosol surface tension (σs/a), leading to enhanced cloud condensation nuclei (CCN) activity and potentially exerting impacts on the climate. Quantification of σs/a is mainly limited to laboratory or modeling work for particles with selected sizes and known chemical compositions. Inferred values from ambient aerosol populations are deficient. In this study, we propose a new method to derive σs/a by combining field measurements made at an urban site in northern China with the κ-Köhler theory. The results present new evidence that organics remarkably lower the surface tension of aerosols in a polluted atmosphere. Particles sized around 40 nm have an averaged σs/a of 53.8 mN m-1, while particles sized up to 100 nm show σs/a values approaching that of pure water. The dependence curve of σs/a with the organic mass resembles the behavior of dicarboxylic acids, suggesting their critical role in reducing the surface tension. The study further reveals that neglecting the σs/a lowering effect would result in lowered ultrafine CCN (diameter <100 nm) concentrations by 6.8-42.1% at a typical range of supersaturations in clouds, demonstrating the significant impact of surface tension on the CCN concentrations of urban aerosols.


Subject(s)
Aerosols , Atmosphere , Particle Size , Surface Tension , Atmosphere/chemistry , Air Pollutants/analysis , China
SELECTION OF CITATIONS
SEARCH DETAIL
...