Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 173
Filter
1.
Stem Cell Res Ther ; 15(1): 192, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956727

ABSTRACT

BACKGROUND: Inherited retinal dystrophies (IRD) are one of the main causes of incurable blindness worldwide. IRD are caused by mutations in genes that encode essential proteins for the retina, leading to photoreceptor degeneration and loss of visual function. IRD generates an enormous global financial burden due to the lack of understanding of a significant part of its pathophysiology, molecular diagnosis, and the near absence of non-palliative treatment options. Patient-derived induced pluripotent stem cells (iPSC) for IRD seem to be an excellent option for addressing these questions, serving as exceptional tools for in-depth studies of IRD pathophysiology and testing new therapeutic approaches. METHODS: From a cohort of 8 patients with PROM1-related IRD, we identified 3 patients carrying the same variant (c.1354dupT) but expressing three different IRD phenotypes: Cone and rod dystrophy (CORD), Retinitis pigmentosa (RP), and Stargardt disease type 4 (STGD4). These three target patients, along with one healthy relative from each, underwent comprehensive ophthalmic examinations and their genetic panel study was expanded through clinical exome sequencing (CES). Subsequently, non-integrative patient-derived iPSC were generated and fully characterized. Correction of the c.1354dupT mutation was performed using CRISPR/Cas9, and the genetic restoration of the PROM1 gene was confirmed through flow cytometry and western blotting in the patient-derived iPSC lines. RESULTS: CES revealed that 2 target patients with the c.1354dupT mutation presented monoallelic variants in genes associated with the complement system or photoreceptor differentiation and peroxisome biogenesis disorders, respectively. The pluripotency and functionality of the patient-derived iPSC lines were confirmed, and the correction of the target mutation fully restored the capability of encoding Prominin-1 (CD133) in the genetically repaired patient-derived iPSC lines. CONCLUSIONS: The c.1354dupT mutation in the PROM1 gene is associated to three distinct AR phenotypes of IRD. This pleotropic effect might be related to the influence of monoallelic variants in other genes associated with retinal dystrophies. However, further evidence needs to be provided. Future experiments should include gene-edited patient-derived iPSC due to its potential as disease modelling tools to elucidate this matter in question.


Subject(s)
AC133 Antigen , Induced Pluripotent Stem Cells , Phenotype , Humans , Induced Pluripotent Stem Cells/metabolism , AC133 Antigen/genetics , AC133 Antigen/metabolism , Male , Female , Targeted Gene Repair/methods , Retinal Dystrophies/genetics , Retinal Dystrophies/therapy , Retinal Dystrophies/pathology , Adult , Mutation , Exome Sequencing , Exome
2.
Ophthalmic Genet ; : 1-10, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956823

ABSTRACT

PURPOSE: To gain an insight into the pathophysiology of RAB28-associated inherited retinal degeneration through detailed phenotyping and long-term longitudinal follow-up. METHODS: The patient underwent complete ophthalmic examinations. Visual function was assessed with microperimetry, full-field electroretinography (ffERG), imaging with optical coherence tomography (OCT), short-wave (SW), and near-infrared (NIR) fundus autofluorescence (FAF). RESULTS: A healthy Haitian woman with homozygous pathogenic variants (c.68C > T; p.Ser23Phe) in RAB28 presented at 16 years of age with a four-year history of blurred vision. Visual acuities were 20/125 in each eye, which remained relatively stable since. At age 27, cone ffERGs were non-detectable and borderline for rod-mediated responses. Kinetic fields were full to a V-4e target, undetectable to a small I-4e stimulus. Microperimetry showed an absolute central scotoma surrounded by a pericentral relative scotoma. SD-OCT showed an undetectable or barely detectable foveal and parafoveal photoreceptor outer nuclear layer (ONL), photoreceptor outer segment (POS), and retinal pigment epithelium (RPE) signals and loss of the SW- and NIR-FAF signals. This atrophic region was separated from a normally laminated retina by a narrow transition zone (TZ) of hyper SW- and NIR-FAF that co-localized with preserved ONL but abnormally thinned POS and RPE. There was minimal centrifugal (<100 µm) expansion over a six-year period. CONCLUSION: The cone-rod dystrophy phenotype documented herein supports a critical role of RAB28 for cone function and POS maintenance. Severe central photoreceptor and RPE loss with a predilection for POS loss in TZs suggests possible disruptions of complex mechanisms that maintain central cone photoreceptor and RPE homeostasis.

3.
Genes (Basel) ; 15(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38927698

ABSTRACT

The retinal features of Bardet-Biedl syndrome (BBS) are insufficiently characterized in Arab populations. This retrospective study investigated the retinal features and genotypes of BBS in Saudi patients managed at a single tertiary eye care center. Data analysis of the identified 46 individuals from 31 families included visual acuity (VA), systemic manifestations, multimodal retinal imaging, electroretinography (ERG), family pedigrees, and genotypes. Patients were classified to have cone-rod, rod-cone, or generalized photoreceptor dystrophy based on the pattern of macular involvement on the retinal imaging. Results showed that nyctalopia and subnormal VA were the most common symptoms with 76% having VA ≤ 20/200 at the last visit (age: 5-35). Systemic features included obesity 91%, polydactyly 56.5%, and severe cognitive impairment 33%. The predominant retinal phenotype was cone-rod dystrophy 75%, 10% had rod-cone dystrophy and 15% had generalized photoreceptor dystrophy. ERGs were undetectable in 95% of patients. Among the 31 probands, 61% had biallelic variants in BBSome complex genes, 32% in chaperonin complex genes, and 6% had biallelic variants in ARL6; including six previously unreported variants. Interfamilial and intrafamilial variabilities were noted, without a clear genotype-phenotype correlation. Most BBS patients had advanced retinopathy and were legally blind by early adulthood, indicating a narrow therapeutic window for rescue strategies.


Subject(s)
Bardet-Biedl Syndrome , Mutation , Humans , Bardet-Biedl Syndrome/genetics , Male , Saudi Arabia/epidemiology , Female , Child , Adolescent , Adult , Child, Preschool , Young Adult , Pedigree , Retrospective Studies , Electroretinography , Phenotype , Visual Acuity , Retina/pathology , ADP-Ribosylation Factors
4.
Yonago Acta Med ; 67(2): 93-99, 2024 May.
Article in English | MEDLINE | ID: mdl-38803594

ABSTRACT

Alström syndrome is a form of inherited obesity caused by a single gene abnormality and is inherited as an autosomal recessive trait. It is characterised by a variety of clinical manifestations, including progressive visual and hearing impairment, type 2 diabetes mellitus, dilated cardiomyopathy, and hepatic and renal dysfunction, in addition to obesity. Recent insights underline the pivotal involvement of the disease-associated gene (ALMS1) in cilia formation and function, leading to the classification of its clinical manifestations as a ciliopathy. This review delineates the diverse clinical indicators defining the syndrome and elucidates its pathological underpinnings.

5.
Am J Med Genet A ; : e63720, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780195

ABSTRACT

Dual sensory impairment, commonly referred to as combined hearing and vision loss, can stem from a diverse spectrum of conditions, each presenting with its unique set of clinical characteristics. Our understanding of dual sensory impairment has expanded significantly in the past decade, broadening the scope of genetic differential diagnoses, including genes such as CEP250, ARSG, TUBB4B, CEP78, and ABHD12. A case series including three patients from two families with genetically diagnosed CEP78-associated cone-rod dystrophy was identified. We collected and reviewed their clinical records, imaging data, and genetic testing results. In addition, a comprehensive literature review was conducted on the phenotype and the genetic testing modality employed in all published CEP78 cases through a PubMed search using the keyword "CEP78." A retinal dystrophy panel detected a novel homozygous CEP78 pathogenic variant (c.1447C>T, p.Arg483*) in siblings-Cases 1 and 2-from Family 1. Both teenagers have a clinical diagnosis of cone-rod dystrophy with presumed normal hearing. Case 3 from Family 2, diagnosed with cone-rod dystrophy and early-onset hearing loss, was found to carry a CEP78 pathogenic variant (c.1206-2A>C) and a likely pathogenic variant (c.856_857del, p.Leu286Glyfs*12) also through panel-based genetic testing. Intriguingly, neither of these variants was reported in an affected sibling's clinical whole-exome sequencing (WES) report when performed in 2015. A review of CEP78-related literature unveiled that the initial report linking CEP78 to cone-rod dystrophy and hearing loss was published in September 2016. Any pathogenic variant found in CEP78 before 2016 would have been categorized as a "clearly disruptive variant in a gene of uncertain significance (GUS)" and might not have been reported in the WES report. It is important to acknowledge that our understanding of genotype-phenotype associations is undergoing rapid expansion. It is also crucial to recognize that repeat genetic testing may represent a fundamentally different approach, given the technological advancements not only in the coverage of the sequencing but also in the more comprehensive understanding of genotype-phenotype associations. This case series also enriches the existing CEP78 literature by providing phenotypic details of the youngest case of CEP78-associated retinopathy reported in the literature (Case 2), which expands our perspective on the natural history of disease in this disorder.

6.
Int J Mol Sci ; 25(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38474159

ABSTRACT

PRPH2, one of the most frequently inherited retinal dystrophy (IRD)-causing genes, implies a high phenotypic variability. This study aims to analyze the PRPH2 mutational spectrum in one of the largest cohorts worldwide, and to describe novel pathogenic variants and genotype-phenotype correlations. A study of 220 patients from 103 families recruited from a database of 5000 families. A molecular diagnosis was performed using classical molecular approaches and next-generation sequencing. Common haplotypes were ascertained by analyzing single-nucleotide polymorphisms. We identified 56 variants, including 11 novel variants. Most of them were missense variants (64%) and were located in the D2-loop protein domain (77%). The most frequently occurring variants were p.Gly167Ser, p.Gly208Asp and p.Pro221_Cys222del. Haplotype analysis revealed a shared region in families carrying p.Leu41Pro or p.Pro221_Cys222del. Patients with retinitis pigmentosa presented an earlier disease onset. We describe the largest cohort of IRD families associated with PRPH2 from a single center. Most variants were located in the D2-loop domain, highlighting its importance in interacting with other proteins. Our work suggests a likely founder effect for the variants p.Leu41Pro and p.Pro221_Cys222del in our Spanish cohort. Phenotypes with a primary rod alteration presented more severe affectation. Finally, the high phenotypic variability in PRPH2 hinders the possibility of drawing genotype-phenotype correlations.


Subject(s)
Retinal Dystrophies , Retinitis Pigmentosa , Humans , DNA Mutational Analysis , Mutation , Mutation, Missense , Phenotype , Retinal Dystrophies/genetics , Retinitis Pigmentosa/genetics
7.
Ophthalmic Genet ; : 1-10, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38454848

ABSTRACT

BACKGROUND: Disease-causing variants in the KCNV2 gene are associated with "cone dystrophy with supernormal rod responses," a rare autosomal recessive retinal dystrophy. There is no previous report of hypomorphic variants in the disease. MATERIAL AND METHODS: Medical history, genetic testing, ocular examination, high-resolution retinal imaging including adaptive optics scanning light ophthalmoscopy (AOSLO), and functional assessments. RESULTS: A 16-year-old male with mild cone-rod dystrophy presented with reduced central vision and photophobia. Genetic testing showed two variants in KCNV2, c.614_617dupAGCG (p.207AlafsTer166) and c.854T>G (p.Met285Arg), the latter which was previously considered benign. Electrophysiological assessment revealed the pathognomic electroretinogram waveforms associated with KCNV2-retinopathy. Optical coherence tomography showed discrete focal ellipsoid zone disruption, while fundus autofluorescence was normal. Non-waveguiding cones corresponding to areas of loss of photoreceptor integrity were visible on adaptive optics scanning light ophthalmoscopy. Retinal sensitivity and fixation were relatively preserved, with a demonstrable deterioration after 14 months of follow-up. CONCLUSIONS: We provide functional and structural evidence that the variant M285R is disease-causing if associated with a loss-of-function variant. To the best of our knowledge, this is the first hypomorphic allele reported in KCNV2.

8.
Mol Ther ; 32(5): 1445-1460, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38504520

ABSTRACT

Age-related macular degeneration (AMD) is the most common cause of untreatable blindness in the developed world. Recently, CDHR1 has been identified as the cause of a subset of AMD that has the appearance of the "dry" form, or geographic atrophy. Biallelic variants in CDHR1-a specialized protocadherin highly expressed in cone and rod photoreceptors-result in blindness from shortened photoreceptor outer segments and progressive photoreceptor cell death. Here we demonstrate long-term morphological, ultrastructural, functional, and behavioral rescue following CDHR1 gene therapy in a relevant murine model, sustained to 23-months after injection. This represents the first demonstration of rescue of a monogenic cadherinopathy in vivo. Moreover, the durability of CDHR1 gene therapy seems to be near complete-with morphological findings of the rescued retina not obviously different from wildtype throughout the lifespan of the mouse model. A follow-on clinical trial in patients with CDHR1-associated retinal degeneration is warranted. Hypomorphic CDHR1 variants may mimic advanced dry AMD. Accurate clinical classification is now critical, as their pathogenesis and treatment are distinct.


Subject(s)
Cadherin Related Proteins , Cadherins , Disease Models, Animal , Genetic Therapy , Nerve Tissue Proteins , Retinal Cone Photoreceptor Cells , Retinal Degeneration , Retinal Rod Photoreceptor Cells , Animals , Mice , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Cadherins/genetics , Cadherins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/etiology , Humans , Genetic Therapy/methods , Macular Degeneration/therapy , Macular Degeneration/genetics , Macular Degeneration/pathology , Macular Degeneration/etiology , Macular Degeneration/metabolism
9.
Genet Med ; 26(6): 101106, 2024 06.
Article in English | MEDLINE | ID: mdl-38420906

ABSTRACT

PURPOSE: Inherited retinal diseases (IRDs) are a group of monogenic conditions that can lead to progressive blindness. Their missing heritability is still considerable, due in part to the presence of disease genes that await molecular identification. The purpose of this work was to identify novel genetic associations with IRDs. METHODS: Patients underwent a comprehensive ophthalmological evaluation using standard-of-care tests, such as detailed retinal imaging (macular optical coherence tomography and short-wavelength fundus autofluorescence) and electrophysiological testing. Exome and genome sequencing, as well as computer-assisted data analysis were used for genotyping and detection of DNA variants. A minigene-driven splicing assay was performed to validate the deleterious effects of 1 of such variants. RESULTS: We identified 8 unrelated families from Hungary, the United States, Israel, and The Netherlands with members presenting with a form of autosomal recessive and nonsyndromic retinal degeneration, predominantly described as rod-cone dystrophy but also including cases of cone/cone-rod dystrophy. Age of disease onset was very variable, with some patients experiencing first symptoms during their fourth decade of life or later. Myopia greater than 5 diopters was present in 5 of 7 cases with available refractive data, and retinal detachment was reported in 2 cases. All ascertained patients carried biallelic loss-of-function variants in UBAP1L (HGNC: 40028), a gene with unknown function and with homologies to UBAP1, encoding a protein involved in ubiquitin metabolism. One of these pathogenic variants, the intronic NM_001163692.2:c.910-7G>A substitution, was identified in 5 unrelated families. Minigene-driven splicing assays in HEK293T cells confirmed that this DNA change is responsible for the creation of a new acceptor splice site, resulting in aberrant splicing. CONCLUSION: We identified UBAP1L as a novel IRD gene. Although its function is currently unknown, UBAP1L is almost exclusively expressed in photoreceptors and the retinal pigment epithelium, hence possibly explaining the link between pathogenic variants in this gene and an ocular phenotype.


Subject(s)
Pedigree , Retinal Degeneration , Humans , Male , Female , Adult , Retinal Degeneration/genetics , Middle Aged , Loss of Function Mutation , Genes, Recessive , Child , Adolescent , Cone-Rod Dystrophies/genetics , Hungary , Young Adult , Genetic Predisposition to Disease
10.
Ophthalmology ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38309476

ABSTRACT

PURPOSE: To investigate the distribution of genotypes and natural history of ABCA4-associated retinal disease in a large cohort of patients seen at a single institution. DESIGN: Retrospective, single-institution cohort review. PARTICIPANTS: Patients seen at the University of Iowa between November 1986 and August 2022 clinically suspected to have disease caused by sequence variations in ABCA4. METHODS: DNA samples from participants were subjected to a tiered testing strategy progressing from allele-specific screening to whole genome sequencing. Charts were reviewed, and clinical data were tabulated. The pathogenic severity of the most common alleles was estimated by studying groups of patients who shared 1 allele. Groups of patients with shared genotypes were reviewed for evidence of modifying factor effects. MAIN OUTCOME MEASURES: Age at first uncorrectable vision loss, best-corrected visual acuity, and the area of the I2e isopter of the Goldmann visual field. RESULTS: A total of 460 patients from 390 families demonstrated convincing clinical features of ABCA4-associated retinal disease. Complete genotypes were identified in 399 patients, and partial genotypes were identified in 61. The median age at first vision loss was 16 years (range, 4-76 years). Two hundred sixty-five families (68%) harbored a unique genotype, and no more than 10 patients shared any single genotype. Review of the patients with shared genotypes revealed evidence of modifying factors that in several cases resulted in a > 15-year difference in age at first vision loss. Two hundred forty-one different alleles were identified among the members of this cohort, and 161 of these (67%) were found in only a single individual. CONCLUSIONS: ABCA4-associated retinal disease ranges from a very severe photoreceptor disease with an onset before 5 years of age to a late-onset retinal pigment epithelium-based condition resembling pattern dystrophy. Modifying factors frequently impact the ABCA4 disease phenotype to a degree that is similar in magnitude to the detectable ABCA4 alleles themselves. It is likely that most patients in any cohort will harbor a unique genotype. The latter observations taken together suggest that patients' clinical findings in most cases will be more useful for predicting their clinical course than their genotype. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

11.
Genet Med ; 26(6): 101081, 2024 06.
Article in English | MEDLINE | ID: mdl-38293907

ABSTRACT

PURPOSE: Progressive inherited retinal degenerations (IRDs) affecting rods and cones are clinically and genetically heterogeneous and can lead to blindness with limited therapeutic options. The major gene defects have been identified in subjects of European and Asian descent with only few reports of North African descent. METHODS: Genome, targeted next-generation, and Sanger sequencing was applied to cohort of ∼4000 IRDs cases. Expression analyses were performed including Chip-seq database analyses, on human-derived retinal organoids (ROs), retinal pigment epithelium cells, and zebrafish. Variants' pathogenicity was accessed using 3D-modeling and/or ROs. RESULTS: Here, we identified a novel gene defect with three distinct pathogenic variants in UBAP1L in 4 independent autosomal recessive IRD cases from Tunisia. UBAP1L is expressed in the retinal pigment epithelium and retina, specifically in rods and cones, in line with the phenotype. It encodes Ubiquitin-associated protein 1-like, containing a solenoid of overlapping ubiquitin-associated domain, predicted to interact with ubiquitin. In silico and in vitro studies, including 3D-modeling and ROs revealed that the solenoid of overlapping ubiquitin-associated domain is truncated and thus ubiquitin binding most likely abolished secondary to all variants identified herein. CONCLUSION: Biallelic UBAP1L variants are a novel cause of IRDs, most likely enriched in the North African population.


Subject(s)
Cone-Rod Dystrophies , Pedigree , Zebrafish , Humans , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/pathology , Male , Female , Zebrafish/genetics , Animals , Genes, Recessive , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Mutation/genetics , Retinal Cone Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retina/pathology , Retina/metabolism , Adult , Tunisia , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Phenotype , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology
12.
Ophthalmic Res ; 67(1): 9-22, 2024.
Article in English | MEDLINE | ID: mdl-38091967

ABSTRACT

INTRODUCTION: The objective of this study was to investigate the clinical characteristics and genetic spectrum of adult-onset cone/cone-rod dystrophy (AOCD/AOCRD) in Korean individuals. METHODS: This is a single-center, retrospective cross-sectional study. We analyzed 22 individuals with genetically confirmed cone dystrophy, with symptoms beginning after 30 years of age. All patients underwent comprehensive ophthalmic and electrophysiological examinations. Exome sequencing of 296 genes associated with inherited retinal disease was performed. The clinical features of patients with AOCD/AOCRD and the causative genes and variants detected by exome sequencing were analyzed. RESULTS: The median age at the first visit was 52 years (range, 31-76 years), and the most common initial symptom was reduced visual acuity. In most cases, fundus photography showed a bull's eye pattern with foveal sparing, consistent with perifoveal photoreceptor loss on optical coherence tomography. We identified disease-causing variants in six genes: RP1, CRX, CDHR1, PROM1, CRB1, and GUCY2D. Pathogenic variants in RP1, CRX, and CDHR1 were identified in 77% of the AOCD/AOCRD cases, including p.Cys1399LeufsTer5, p.Arg1933Ter, and p.Ile2061SerfsTer12 in RP1; p.Ter300GlnextTer118 in CRX; and p.Glu201Lys in CDHR1. No characteristic imaging differences were observed for any of the causative genes. Most of the RP1-related AOCD/AOCRD cases showed a decreased amplitude only in the photopic electroretinogram (ERG), whereas CRX-related AOCD/AOCRD cases showed a slightly decreased amplitude in both the scotopic and photopic ERGs. CONCLUSION: In case of visual impairment with bull's eye pattern of RPE atrophy recognized after the middle age, a comprehensive ophthalmic examination and genetic test should be considered, with the possibility of AOCD/AOCRD in East Asians.


Subject(s)
Cone-Rod Dystrophies , Adult , Middle Aged , Humans , Aged , Cone-Rod Dystrophies/diagnosis , Cone-Rod Dystrophies/genetics , Cone-Rod Dystrophies/pathology , Retrospective Studies , Cross-Sectional Studies , Pedigree , Mutation , Electroretinography , Tomography, Optical Coherence , Phenotype , Eye Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Cadherin Related Proteins
13.
Hum Mol Genet ; 33(5): 448-464, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-37975905

ABSTRACT

Biallelic mutations in interphotoreceptor matrix proteoglycan 2 (IMPG2) in humans cause retinitis pigmentosa (RP) with early macular involvement, albeit the disease progression varies widely due to genetic heterogeneity and IMPG2 mutation type. There are currently no treatments for IMPG2-RP. To aid preclinical studies toward eventual treatments, there is a need to better understand the progression of disease pathology in appropriate animal models. Toward this goal, we developed mouse models with patient mimicking homozygous frameshift (T807Ter) or missense (Y250C) Impg2 mutations, as well as mice with a homozygous frameshift mutation (Q244Ter) designed to completely prevent IMPG2 protein expression, and characterized the trajectory of their retinal pathologies across postnatal development until late adulthood. We found that the Impg2T807Ter/T807Ter and Impg2Q244Ter/Q244Ter mice exhibited early onset gliosis, impaired photoreceptor outer segment maintenance, appearance of subretinal deposits near the optic disc, disruption of the outer retina, and neurosensorial detachment, whereas the Impg2Y250C/Y250C mice exhibited minimal retinal pathology. These results demonstrate the importance of mutation type in disease progression in IMPG2-RP and provide a toolkit and preclinical data for advancing therapeutic approaches.


Subject(s)
Proteoglycans , Retinitis Pigmentosa , Humans , Animals , Mice , Adult , Proteoglycans/genetics , Retina , Mutation , Retinitis Pigmentosa/genetics , Disease Progression
14.
Spec Care Dentist ; 44(4): 1026-1035, 2024.
Article in English | MEDLINE | ID: mdl-38151709

ABSTRACT

Jalili syndrome (JS) (MIM#217080) is a rare autosomal recessive disorder with oculo-dental malformations. The clinical phenotype is characterized by the presence of Cone-Rod Dystrophy (CRD) and Amelogenesis Imperfecta (AI). Genetic mechanism entails a mutation in the CNNM4, a metal transporter gene located on Chromosome 2q11.2. A high fluoride concentration in groundwater has also been identified as an epigenetic factor in this syndrome. JS draws the attention of dentists due to its distinct oral manifestations. To the best of our knowledge, this is the first genetically confirmed pediatric case report from the Indian subcontinent emphasizing the clinical and radiographic features of this condition and its management in a 6-year-old child.


Subject(s)
Amelogenesis Imperfecta , Humans , Child , Amelogenesis Imperfecta/genetics , Male , Cone-Rod Dystrophies/genetics , Retinitis Pigmentosa , Radiography, Panoramic , Phenotype , Cation Transport Proteins
15.
Ophthalmic Res ; 67(1): 172-182, 2024.
Article in English | MEDLINE | ID: mdl-38160664

ABSTRACT

INTRODUCTION: Mutational screening of inherited retinal disorders is prerequisite for gene targeted therapy. Our aim was to report and analyze the proportions of mutations in inherited retinal disease (IRD)-causing genes from a single center in Switzerland in order to describe the distribution of IRDs in Western Switzerland. METHODS: We conducted a retrospective study of patient records. Criteria for inclusion were residence in Western Switzerland for patients and relatives presenting a clinical diagnosis of IRDs and an established molecular diagnosis managed by the genetics service of the Jules-Gonin Eye Hospital (JGEH) of Lausanne between January 2002 and December 2022. We initially investigated the IRD phenotypes in all patients (full cohort) with a clinical diagnosis, then calculated the distribution of IRD gene mutations in the entire cohort (genetically determined cohort). We analyzed a sub-group that comprised pediatric patients (≤18 years of age). In addition, we calculated the distribution of gene mutations within the most represented IRDs. Comprehensive gene screening was performed using a combined approach of different generation of DNA microarray analysis, direct sequencing, and Sanger sequencing. RESULTS: The full cohort comprised 899 individuals from 690 families with a clinical diagnosis of IRDs. We identified 400 individuals from 285 families with an elucidated molecular diagnosis (variants in 84 genes) in the genetically determined cohort. The pediatric cohort included 89 individuals from 65 families with an elucidated molecular diagnosis. The molecular diagnosis rate for the genetically determined cohort was 58.2% (family ratio) and the 5 most frequently implicated genes per family were ABCA4 (11.6%), USH2A (7.4%), EYS (6.7%), PRPH2 (6.3%), and BEST1 (4.6%). The pediatric cohort had a family molecular diagnosis rate of 64.4% and the 5 most common mutated genes per family were RS1 (9.2%), ABCA4 (7.7%), CNGB3 (7.7%), CACNA1F (6.2%), CEP290 (4.6%). CONCLUSIONS: This study describes the genetic mutation landscape of IRDs in Western Switzerland in order to quantify their disease burden and contribute to a better orientation of the development of future gene targeted therapies.


Subject(s)
Eye Proteins , Mutation , Retinitis Pigmentosa , Humans , Retrospective Studies , Male , Female , Switzerland/epidemiology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Child , Adult , Adolescent , DNA Mutational Analysis , Middle Aged , Eye Proteins/genetics , Child, Preschool , Pedigree , Young Adult , Aged , Phenotype , Genetic Testing/methods , Infant
16.
Saudi J Ophthalmol ; 37(4): 307-309, 2023.
Article in English | MEDLINE | ID: mdl-38155680

ABSTRACT

Mutations in the ALMS1 gene have been linked to isolated inherited retinal dystrophy or Alström syndrome. This report illustrates the unique pattern of ALMS1-associated diseases in a set of three simplex Saudi patients originating from unrelated consanguineous families. A detailed ophthalmological assessment was performed at the Department of Ophthalmology at King Saud University, Riyadh, Saudi Arabia. Next-generation sequencing vision panel revealed recessive ALMS1 mutations (reference sequence NM_015120). As a result, three distinct pathogenic ALMS1 mutations were identified; the first one is a nonsense mutation (c.8158C>T: p.R2720X) which has recently been identified in a Chinese patient, while the other two are known to have a founder effect in the Saudi population (the frameshift: C.848dupA: p.E283fs and the splicing: C.11870-2A>T: p.?). Clinically, a prominent nerve fiber layer was observed in the three studied patients with variable expectations of vessel attenuation. In addition, two of our patients observed unusual presentation of specific retinal pigment epithelium pigmentations in semi/halo-arrangement around the macula. Thus far, our report expands the phenotypic-genotypic spectrum of ALMS1-associated diseases and supports the principles of applying precision medicine in Saudi Arabia by utilizing the fact that common founder mutations were identified and unique phenotype was observed.

17.
Front Genet ; 14: 1157156, 2023.
Article in English | MEDLINE | ID: mdl-38028590

ABSTRACT

Purpose: To investigate pathogenic variants in six families with cone-rod dystrophy (CORD) presenting various inheritance patterns by using whole-exome sequencing (WES) and analyzing phenotypic features. Methods: A total of six families with CORD were enrolled in Ningxia Eye Hospital for this study. The probands and their family members received comprehensive ophthalmic examinations, and DNA was abstracted from patients and family members. Whole-exome sequencing was performed on probands to screen the causative variants, and all suspected pathogenic variants were determined via Sanger sequencing. Furthermore, co-segregation analysis was performed on available family members. The pathogenicity of novel variants was predicted using in silico analysis and evaluated according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Results: Of the six families, two families were assigned as X-linked recessive (XL), two families were assigned as autosomal recessive (AR), and two families were assigned as autosomal dominant (AD). Pathogenic variants were detected in CACNA1F in two X-linked recessive probands, among which family 1 had a hemizygous frameshift variant c.2201del (p.Val734Glyfs*17) and family 2 had a hemizygous missense variant c.245G>A (p.Arg82Gln). Both probands had high myopia, with fundus tessellation accompanied by abnormalities in the outer structure of the macular area. The homozygous splice variant c.2373 + 5G>T in PROM1 and the homozygous nonsense variant c.604C>T (p.Arg202Ter) in ADAM9 were detected in two autosomal recessive families of the probands. Both probands showed different degrees of atrophy in the macular area, and the lesions showed hypofluorescence changes in autofluorescence. The heterozygous variation in CRX c.682C>T (p.Gln228Ter) was detected in two autosomal dominant families. The onset age of the two probands was late, with better vision and severe macular atrophy. According to ACMG guidelines and the analysis of online in silico tools, all variations were labeled as potentially harmful or pathogenic. Conclusion: Pathogenic variants in CACNA1F, PROM1, ADAM9, and CRX genes were identified in six families affected by the diverse inheritance patterns of CORD. Furthermore, the potential impact of the nonsense-mediated decay (NMD) mechanism on the manifestation of CORD phenotypes was examined and addressed. Simultaneously, the spectrum of pathogenic variants and clinical phenotypes associated with the CORD gene was extended.

18.
Cell Mol Life Sci ; 80(12): 371, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001384

ABSTRACT

Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.


Subject(s)
Liposomes , Retina , Mice , Humans , Animals , Tissue Distribution , Retina/metabolism , Light Signal Transduction , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Guanylate Cyclase-Activating Proteins/genetics , Guanylate Cyclase-Activating Proteins/metabolism , Calcium/metabolism
19.
J Clin Med ; 12(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37959417

ABSTRACT

Inherited retinal dystrophies encompass a diverse group of disorders affecting the structure and function of the retina, leading to progressive visual impairment and, in severe cases, blindness. Electrophysiology testing has emerged as a valuable tool in assessing and diagnosing those conditions, offering insights into the function of different parts of the visual pathway from retina to visual cortex and aiding in disease classification. This review provides an overview of the application of electrophysiology testing in the non-macular inherited retinal dystrophies focusing on both common and rare variants, including retinitis pigmentosa, progressive cone and cone-rod dystrophy, bradyopsia, Bietti crystalline dystrophy, late-onset retinal degeneration, and fundus albipunctatus. The different applications and limitations of electrophysiology techniques, including multifocal electroretinogram (mfERG), full-field ERG (ffERG), electrooculogram (EOG), pattern electroretinogram (PERG), and visual evoked potential (VEP), in the diagnosis and management of these distinctive phenotypes are discussed. The potential for electrophysiology testing to allow for further understanding of these diseases and the possibility of using these tests for early detection, prognosis prediction, and therapeutic monitoring in the future is reviewed.

20.
BMC Ophthalmol ; 23(1): 422, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37864132

ABSTRACT

BACKGROUND: Inherited retinal diseases form a rare, highly heterogeneous group of genetic disorders characterized by retinal degeneration. It is considered one of the leading causes of debilitating visual loss and blindness in children and young adults. Despite this few population-based data studies on prevalence of inherited retinal diseases exist. Moreover, prevalence can vary widely depending on geographical area, population ethnicity and cultural habits. PURPOSE: To report the prevalence of different subtypes of Inherited retinal diseases in a large Egyptian cohort in a retrospective, hospital-based, cross-sectional study. METHODS: We conducted an extensive electronic medical record search for all the patients attending the outpatient clinic and investigation unit of Ain Shams University Hospital and the two branches of Watany Eye Hospital in the period between January 2015 and October 2022 aiming to identify the prevalence rate of different types of IRDs, patient demographics and stratify them according to their phenotype. RESULTS: We examined the electronic medical records of 478 222 patients, 971 patients were diagnosed with IRD by clinical examination with or without any of the following investigations: color fundus photography, fundus autofluorescence, fundus fluorescein angiography, optical coherence tomography and/or electrophysiological studies as electroretinogram, visual evoked potential and electrooculogram. The overall prevalence was 0.2%. The most common IRD encountered was isolated retinitis pigmentosa with a percentage of 78.9% followed by Stargardt disease at 6.3%, cone-rod dystrophy at 2.0%, autosomal recessive bestrophinopathy at 1.9% and unspecified IRD at 1.5%. CONCLUSION: Retinitis pigmentosa was the most common IRD encountered followed by Stargardt disease. Many of the dystrophies are the subject of clinical intervention trials, and population-based epidemiological data can guide phenotype-based genetic testing and help assess the future need for treatment.


Subject(s)
Evoked Potentials, Visual , Retinitis Pigmentosa , Child , Young Adult , Humans , Stargardt Disease , Retrospective Studies , Cross-Sectional Studies , Egypt/epidemiology , Prevalence , Retinitis Pigmentosa/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...