Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
Article in English | MEDLINE | ID: mdl-38970745

ABSTRACT

PURPOSE: Probe-based confocal laser endomicroscopy (pCLE) offers real-time, cell-level imaging and holds promise for early cancer diagnosis. However, a large area surface scanning for image acquisition is needed to overcome the limitation of field-of-view. Obtaining high-quality images during scanning requires maintaining a stable contact distance between the tissue and probe. This work presents a novel contact optimization algorithm to acquire high-quality pCLE images. METHODS: The contact optimization algorithm, based on swarm intelligence of whale optimization algorithm, is designed to optimize the probe position, according to the quality of the image acquired by probe. An accurate image quality assessment of total co-occurrence entropy is introduced to evaluate the pCLE image quality. The algorithm aims to maintain a consistent probe-tissue contact, resulting in high-quality images acquisition. RESULTS: Scanning experiments on sponge, ex vivo swine skin tissue and stomach tissue demonstrate the effectiveness of the contact optimization algorithm. Scanning results of the sponge with three different trajectories (spiral trajectory, circle trajectory, and raster trajectory) reveal high-quality mosaics with clear details in every part of the image and no blurred sections. CONCLUSION: The contact optimization algorithm successfully identifies the optimal distance between probe and tissue, improving the quality of pCLE images. Experimental results confirm the high potential of this method in endomicroscopic surface scanning.

2.
Front Oncol ; 14: 1389608, 2024.
Article in English | MEDLINE | ID: mdl-38841162

ABSTRACT

Objectives: Confocal laser endomicroscopy (CLE) is an intraoperative real-time cellular resolution imaging technology that images brain tumor histoarchitecture. Previously, we demonstrated that CLE images may be interpreted by neuropathologists to determine the presence of tumor infiltration at glioma margins. In this study, we assessed neurosurgeons' ability to interpret CLE images from glioma margins and compared their assessments to those of neuropathologists. Methods: In vivo CLE images acquired at the glioma margins that were previously reviewed by CLE-experienced neuropathologists were interpreted by four CLE-experienced neurosurgeons. A numerical scoring system from 0 to 5 and a dichotomous scoring system based on pathological features were used. Scores from assessments of hematoxylin and eosin (H&E)-stained sections and CLE images by neuropathologists from a previous study were used for comparison. Neurosurgeons' scores were compared to the H&E findings. The inter-rater agreement and diagnostic performance based on neurosurgeons' scores were calculated. The concordance between dichotomous and numerical scores was determined. Results: In all, 4275 images from 56 glioma margin regions of interest (ROIs) were included in the analysis. With the numerical scoring system, the inter-rater agreement for neurosurgeons interpreting CLE images was moderate for all ROIs (mean agreement, 61%), which was significantly better than the inter-rater agreement for the neuropathologists (mean agreement, 48%) (p < 0.01). The inter-rater agreement for neurosurgeons using the dichotomous scoring system was 83%. The concordance between the numerical and dichotomous scoring systems was 93%. The overall sensitivity, specificity, positive predictive value, and negative predictive value were 78%, 32%, 62%, and 50%, respectively, using the numerical scoring system and 80%, 27%, 61%, and 48%, respectively, using the dichotomous scoring system. No statistically significant differences in diagnostic performance were found between the neurosurgeons and neuropathologists. Conclusion: Neurosurgeons' performance in interpreting CLE images was comparable to that of neuropathologists. These results suggest that CLE could be used as an intraoperative guidance tool with neurosurgeons interpreting the images with or without assistance of the neuropathologists. The dichotomous scoring system is robust yet simple and may streamline rapid, simultaneous interpretation of CLE images during imaging.

4.
Folia Med (Plovdiv) ; 66(2): 282-286, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38690826

ABSTRACT

The diagnosis of intrathoracic non-tuberculous mycobacteriosis (NTM) is challenging. We report a case of a pediatric pulmonary NTM with endobronchial lesion and lymphadenitis in a child with HIV infection diagnosed by bronchoscopic biopsy, EBUS-TBNA and probe-based confocal laser endomicroscopy (pCLE). The pCLE showed a large number of highly fluorescent cells and zones of density and disorganized elastin fibers at alveolar areas. A combination of diagnostic endoscopic procedures is required to establish the diagnosis of NTM.


Subject(s)
Bronchoscopy , Endoscopic Ultrasound-Guided Fine Needle Aspiration , HIV Infections , Microscopy, Confocal , Mycobacterium Infections, Nontuberculous , Humans , Bronchoscopy/methods , Child , Microscopy, Confocal/methods , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/pathology , Male , HIV Infections/complications , HIV Infections/pathology , Biopsy/methods
5.
Laryngoscope ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761157

ABSTRACT

OBJECTIVE: Confocal laser endomicroscopy (CLE) is an optical imaging technique that allows in vivo, real-time, microscope-like assessment of superficial lesions. Although there is substantial data on CLE use in the upper GI tract, there is limited information regarding its application in the nasal cavity and paranasal sinuses. This study aims to assess the feasibility and diagnostic metrics of CLE in the nasal cavity and paranasal sinuses regarding differentiation between healthy/benign and malignant tissue. These structures show, however, a wider variety of frequent and concomitant benign and malignant pathologies, which could pose an increased challenge for optical biopsy by CLE. METHODS: We performed CLE on a case series of six patients with various findings in the nose (three chronic rhinosinusitis, adenocarcinoma, meningoenzephalozele, esthesionneuroblastoma). Forty-two sequences (3792 images) from various structures in the nasal cavity and/or paranasal sinuses were acquired. Biopsies were taken at corresponding locations and analyzed in hematoxylin and eosin staining as a standard of reference. Three independent examiners blinded to the histopathology assessed the sequences. RESULTS: Healthy and inflamed mucosa could be distinguished from malignant lesions with an accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of 84.1%, 85.4%, 83.1%, 72.5%, and 92.1%, respectively, with a substantial agreement between raters (Fleiss κ = 0.62). CONCLUSION: This technique shows, despite its limitations, potential as an adjunctive imaging technique during sinus surgery; however, the creation of a scoring system based on reproducible and defined characteristics in a larger more diverse population should be the focus of further research to improve its diagnostic value and clinical utility. LEVEL OF EVIDENCE: NA Laryngoscope, 2024.

6.
Exp Biol Med (Maywood) ; 249: 10104, 2024.
Article in English | MEDLINE | ID: mdl-38708425

ABSTRACT

Seawater-drowning-induced acute lung injury (SD-ALI) is a life-threatening disorder characterized by increased alveolar-capillary permeability, an excessive inflammatory response, and refractory hypoxemia. Perfluorocarbons (PFCs) are biocompatible compounds that are chemically and biologically inert and lack toxicity as oxygen carriers, which could reduce lung injury in vitro and in vivo. The aim of our study was to explore whether the vaporization of PFCs could reduce the severity of SD-ALI in canines and investigate the underlying mechanisms. Eighteen beagle dogs were randomly divided into three groups: the seawater drowning (SW), perfluorocarbon (PFC), and control groups. The dogs in the SW group were intratracheally administered seawater to establish the animal model. The dogs in the PFC group were treated with vaporized PFCs. Probe-based confocal laser endomicroscopy (pCLE) was performed at 3 h. The blood gas, volume air index (VAI), pathological changes, and wet-to-dry (W/D) lung tissue ratios were assessed. The expression of heme oxygenase-1 (HO-1), nuclear respiratory factor-1 (NRF1), and NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasomes was determined by means of quantitative real-time polymerase chain reaction (qRT-PCR) and immunological histological chemistry. The SW group showed higher lung injury scores and W/D ratios, and lower VAI compared to the control group, and treatment with PFCs could reverse the change of lung injury score, W/D ratio and VAI. PFCs deactivated NLRP3 inflammasomes and reduced the release of caspase-1, interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) by enhancing the expression of HO-1 and NRF1. Our results suggest that the vaporization of PFCs could attenuate SD-ALI by deactivating NLRP3 inflammasomes via the HO-1/NRF1 pathway.


Subject(s)
Acute Lung Injury , Fluorocarbons , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Fluorocarbons/pharmacology , Dogs , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Inflammasomes/metabolism , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Seawater , Male , Drowning/metabolism , Disease Models, Animal , Lung/pathology , Lung/metabolism , Lung/drug effects
7.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732957

ABSTRACT

Probe-based confocal laser endoscopy (pCLE) has emerged as a powerful tool for disease diagnosis, yet it faces challenges such as the formation of hexagonal patterns in images due to the inherent characteristics of fiber bundles. Recent advancements in deep learning offer promise in image denoising, but the acquisition of clean-noisy image pairs for training networks across all potential scenarios can be prohibitively costly. Few studies have explored training denoising networks on such pairs. Here, we propose an innovative self-supervised denoising method. Our approach integrates noise prediction networks, image quality assessment networks, and denoising networks in a collaborative, jointly trained manner. Compared to prior self-supervised denoising methods, our approach yields superior results on pCLE images and fluorescence microscopy images. In summary, our novel self-supervised denoising technique enhances image quality in pCLE diagnosis by leveraging the synergy of noise prediction, image quality assessment, and denoising networks, surpassing previous methods on both pCLE and fluorescence microscopy images.

8.
World J Clin Cases ; 12(8): 1481-1486, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38576802

ABSTRACT

BACKGROUND: In recent years, confocal laser endomicroscopy (CLE) has become a new endoscopic imaging technology at the microscopic level, which is extensively performed for real-time in vivo histological examination. CLE can be performed to distinguish benign from malignant lesions. In this study, we diagnosed using CLE an asymptomatic patient with poorly differentiated gastric adenocarcinoma. CASE SUMMARY: A 63-year-old woman was diagnosed with gastric mucosal lesions, which may be gastric cancer, in the small curvature of the stomach by gastroscopy. She consented to undergo CLE for morphological observation of the gastric mucosa. Through the combination of CLE diagnosis and postoperative pathology, the intraoperative CLE diagnosis was considered to be reliable. According to our experience, CLE can be performed as the first choice for the diagnosis of gastric cancer. CONCLUSION: CLE has several advantages over pathological diagnosis. We believe that CLE has great potential in the diagnosis of benign and malignant gastric lesions.

10.
Clin Oral Investig ; 28(5): 266, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652317

ABSTRACT

OBJECTIVES: Confocal laser endomicroscopy (CLE) is an optical method that enables microscopic visualization of oral mucosa. Previous studies have shown that it is possible to differentiate between physiological and malignant oral mucosa. However, differences in mucosal architecture were not taken into account. The objective was to map the different oral mucosal morphologies and to establish a "CLE map" of physiological mucosa as baseline for further application of this powerful technology. MATERIALS AND METHODS: The CLE database consisted of 27 patients. The following spots were examined: (1) upper lip (intraoral) (2) alveolar ridge (3) lateral tongue (4) floor of the mouth (5) hard palate (6) intercalary line. All sequences were examined by two CLE experts for morphological differences and video quality. RESULTS: Analysis revealed clear differences in image quality and possibility of depicting tissue morphologies between the various localizations of oral mucosa: imaging of the alveolar ridge and hard palate showed visually most discriminative tissue morphology. Labial mucosa was also visualized well using CLE. Here, typical morphological features such as uniform cells with regular intercellular gaps and vessels could be clearly depicted. Image generation and evaluation was particularly difficult in the area of the buccal mucosa, the lateral tongue and the floor of the mouth. CONCLUSION: A physiological "CLE map" for the entire oral cavity could be created for the first time. CLINICAL RELEVANCE: This will make it possible to take into account the existing physiological morphological features when differentiating between normal mucosa and oral squamous cell carcinoma in future work.


Subject(s)
Microscopy, Confocal , Mouth Mucosa , Humans , Microscopy, Confocal/methods , Mouth Mucosa/diagnostic imaging , Mouth Mucosa/cytology , Male , Female , Middle Aged , Mouth Neoplasms/pathology , Mouth Neoplasms/diagnostic imaging
11.
Comput Biol Med ; 173: 108354, 2024 May.
Article in English | MEDLINE | ID: mdl-38522251

ABSTRACT

Colorectal cancer (CRC) is a leading cause of cancer-related deaths, with colonic crypts (CC) being crucial in its development. Accurate segmentation of CC is essential for decisions CRC and developing diagnostic strategies. However, colonic crypts' blurred boundaries and morphological diversity bring substantial challenges for automatic segmentation. To mitigate this problem, we proposed the Dual-Branch Asymmetric Encoder-Decoder Segmentation Network (DAUNet), a novel and efficient model tailored for confocal laser endomicroscopy (CLE) CC images. In DAUNet, we crafted a dual-branch feature extraction module (DFEM), employing Focus operations and dense depth-wise separable convolution (DDSC) to extract multiscale features, boosting semantic understanding and coping with the morphological diversity of CC. We also introduced the feature fusion guided module (FFGM) to adaptively combine features from both branches using cross-group spatial and channel attention to improve the model representation in focusing on specific lesion features. These modules are seamlessly integrated into the encoder for effective multiscale information extraction and fusion, and DDSC is further introduced in the decoder to provide rich representations for precise segmentation. Moreover, the local multi-layer perceptron (LMLP) module is designed to decouple and recalibrate features through a local linear transformation that filters out the noise and refines features to provide edge-enriched representation. Experimental evaluations on two datasets demonstrate that the proposed method achieves Intersection over Union (IoU) scores of 81.54% and 84.83%, respectively, which are on par with state-of-the-art methods, exhibiting its effectiveness for CC segmentation. The proposed method holds great potential in assisting physicians with precise lesion localization and region analysis, thereby improving the diagnostic accuracy of CRC.


Subject(s)
Colon , Coping Skills , Colon/diagnostic imaging , Information Storage and Retrieval , Neural Networks, Computer , Semantics , Image Processing, Computer-Assisted
12.
Int J Comput Assist Radiol Surg ; 19(6): 1061-1073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38538880

ABSTRACT

PURPOSE: Probe-based confocal laser endomicroscopy (pCLE) enables intraoperative tissue characterization with improved resection rates of brain tumours. Although a plethora of deep learning models have been developed for automating tissue characterization, their lack of transparency is a concern. To tackle this issue, techniques like Class Activation Map (CAM) and its variations highlight image regions related to model decisions. However, they often fall short of providing human-interpretable visual explanations for surgical decision support, primarily due to the shattered gradient problem or insufficient theoretical underpinning. METHODS: In this paper, we introduce XRelevanceCAM, an explanation method rooted in a better backpropagation approach, incorporating sensitivity and conservation axioms. This enhanced method offers greater theoretical foundation and effectively mitigates the shattered gradient issue when compared to other CAM variants. RESULTS: Qualitative and quantitative evaluations are based on ex vivo pCLE data of brain tumours. XRelevanceCAM effectively highlights clinically relevant areas that characterize the tissue type. Specifically, it yields a remarkable 56% improvement over our closest baseline, RelevanceCAM, in the network's shallowest layer as measured by the mean Intersection over Union (mIoU) metric based on ground-truth annotations (from 18 to 28.07%). Furthermore, a 6% improvement in mIoU is observed when generating the final saliency map from all network layers. CONCLUSION: We introduce a new CAM variation, XRelevanceCAM, for precise identification of clinically important structures in pCLE data. This can aid introperative decision support in brain tumour resection surgery, as validated in our performance study.


Subject(s)
Brain Neoplasms , Microscopy, Confocal , Microscopy, Confocal/methods , Humans , Brain Neoplasms/surgery , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Deep Learning
13.
Helicobacter ; 29(2): e13065, 2024.
Article in English | MEDLINE | ID: mdl-38443332

ABSTRACT

BACKGROUND: Gastric epithelial barrier disruption constitutes a crucial step in gastric cancer (GC). We investigated these disruptions during the Correa's cascade timeline to correlate epithelial barrier dysfunction. MATERIALS AND METHODS: This study was conducted as a single-center, non-randomized clinical trial in China from May 2019 to October 2022. Patients with chronic atrophic gastritis (CAG), gastric intestinal metaplasia (GIM), low-grade intraepithelial neoplasia (LGIN), high-grade intraepithelial neoplasia (HGIN), and intramucosal carcinoma underwent probe-based confocal laser endomicroscopy (pCLE). The pCLE scoring system was used to assess gastric epithelial barrier disruption semi-quantitatively. RESULTS: We enrolled 95 patients who underwent a pCLE examination. The control group consisted of 15 individuals, and the experimental group included 17 patients with CAG, 27 patients with GIM, 20 patients with LGIN, and 16 patients with early gastric cancer (EGC). Apart from CAG, which showed no significant difference compared to the control group, a significantly higher incidence of gastric epithelial barrier damage was found in the GIM, LGIN, and EGC groups compared to the control group (Kruskal-Wallis H test = 69.295, p < 0.001). There is no difference in LGIN patients between GIM and LGIN areas, and there is no difference between the two groups compared with the EGC group. The intestinal metaplasia area in LGIN patients causes more severe gastric epithelial damage compared to that in non-LGIN patients. Additionally, compared to control group, a significant difference (p < 0.001) was noted between individuals with Helicobacter pylori-positive atrophic gastritis and those with IM, whereas no significant difference (p > 0.05) was observed among individuals with H. pylori-negative atrophic gastritis. CONCLUSIONS: The gastric epithelial barrier remains dysfunctional from the initiation of H. pylori infection to GC progression. Beyond the "point of no return," subsequent carcinogenesis processes may be attributed to other mechanisms.


Subject(s)
Gastritis, Atrophic , Helicobacter Infections , Helicobacter pylori , Precancerous Conditions , Stomach Neoplasms , Humans , Helicobacter Infections/complications , Metaplasia
14.
In Vivo ; 38(2): 855-863, 2024.
Article in English | MEDLINE | ID: mdl-38418139

ABSTRACT

BACKGROUND/AIM: The need for instant histological evaluation of fresh tissue, especially in cancer treatment, remains paramount. The conventional frozen section technique has inherent limitations, prompting the exploration of alternative methods. A recently developed confocal laser endomicroscopic system provides real-time imaging of the tissue without the need for glass slide preparation. Herein, we evaluated its applicability in the histologic evaluation of gastric cancer tissues. MATERIALS AND METHODS: A confocal laser endomicroscopic system (CLES) with a Lissajous pattern laser scanning, was developed. Fourteen fresh gastric cancer tissues and the same number of normal gastric tissues were obtained from advanced gastric cancer patients. Fluorescein sodium was used for staining. Five pathologists interpreted 100 endomicroscopic images and decided their histologic location and the presence of cancer. Following the review of matched hematoxylin and eosin (H&E) slides, their performance was evaluated with another 100 images. RESULTS: CLES images mirrored gastric tissue histology. Pathologists were able to detect the histologic location of the images with 65.7% accuracy and differentiate cancer tissue from normal with 74.7% accuracy. The sensitivity and specificity of cancer detection were 71.9% and 76.1%. Following the review of matched H&E images, the accuracy of identifying the histologic location was increased to 92.8% (p<0.0001), and that of detecting cancer tissue was also increased to 90.9% (p<0.001). The sensitivity and specificity of cancer detection were enhanced to 89.1% and 93.2% (p<0.0001). CONCLUSION: High-quality histological images were immediately acquired by the CLES. The operator training enabled the accurate detection of cancer and histologic location raising its potential applicability as a real-time tissue imaging modality.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology , Microscopy, Confocal/methods , Fluorescein , Eosine Yellowish-(YS) , Lasers
15.
Respiration ; 103(4): 171-176, 2024.
Article in English | MEDLINE | ID: mdl-38387451

ABSTRACT

INTRODUCTION: Increasing numbers of cases of mild asymptomatic pulmonary alveolar proteinosis (PAP) are being reported with the recent increase in chest computed tomography (CT). Bronchoscopic diagnosis of mild PAP is challenging because of the patchy distribution of lesions, which makes it difficult to obtain sufficient biopsy samples. Additionally, the pathological findings of mild PAP, particularly those that differ from severe PAP, have not been fully elucidated. This study aimed to clarify the pathological findings of mild PAP and the usefulness of optical biopsy using probe-based confocal laser endomicroscopy (pCLE). METHODS: We performed bronchoscopic optical biopsy using pCLE and tissue biopsy in 5 consecutive patients with PAP (three with mild PAP and two with severe PAP). We compared the pCLE images of mild PAP with those of severe PAP by integrating clinical findings, tissue pathology, and chest CT images. RESULTS: pCLE images of PAP showed giant cells with strong fluorescence, amorphous substances, and thin alveolar walls. Images of affected lesions in mild PAP were equivalent to those obtained in arbitrary lung lesions in severe cases. All 3 patients with mild PAP spontaneously improved or remained stable after ≥3 years of follow-up. Serum autoantibodies to granulocyte-macrophage colony-stimulating factor were detected in all 5 cases. CONCLUSION: Optical biopsy using pCLE can yield specific diagnostic findings, even in patients with mild PAP. pCLE images of affected areas in mild and severe PAP showed similar findings, indicating that the dysfunction level of pathogenic alveolar macrophages in affected areas is similar between both disease intensities.


Subject(s)
Autoimmune Diseases , Pulmonary Alveolar Proteinosis , Humans , Pulmonary Alveolar Proteinosis/diagnostic imaging , Microscopy, Confocal/methods , Biopsy , Lasers
16.
Eur Arch Otorhinolaryngol ; 281(4): 2115-2122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38329525

ABSTRACT

PURPOSE: Confocal Laser Endomicroscopy (CLE) is an imaging tool, that has demonstrated potential for intraoperative, real-time, non-invasive, microscopical assessment of surgical margins of oropharyngeal squamous cell carcinoma (OPSCC). However, interpreting CLE images remains challenging. This study investigates the application of OpenAI's Generative Pretrained Transformer (GPT) 4.0 with Vision capabilities for automated classification of CLE images in OPSCC. METHODS: CLE Images of histological confirmed SCC or healthy mucosa from a database of 12 809 CLE images from 5 patients with OPSCC were retrieved and anonymized. Using a training data set of 16 images, a validation set of 139 images, comprising SCC (83 images, 59.7%) and healthy normal mucosa (56 images, 40.3%) was classified using the application programming interface (API) of GPT4.0. The same set of images was also classified by CLE experts (two surgeons and one pathologist), who were blinded to the histology. Diagnostic metrics, the reliability of GPT and inter-rater reliability were assessed. RESULTS: Overall accuracy of the GPT model was 71.2%, the intra-rater agreement was κ = 0.837, indicating an almost perfect agreement across the three runs of GPT-generated results. Human experts achieved an accuracy of 88.5% with a substantial level of agreement (κ = 0.773). CONCLUSIONS: Though limited to a specific clinical framework, patient and image set, this study sheds light on some previously unexplored diagnostic capabilities of large language models using few-shot prompting. It suggests the model`s ability to extrapolate information and classify CLE images with minimal example data. Whether future versions of the model can achieve clinically relevant diagnostic accuracy, especially in uncurated data sets, remains to be investigated.


Subject(s)
Head and Neck Neoplasms , Humans , Reproducibility of Results , Microscopy, Confocal/methods , Squamous Cell Carcinoma of Head and Neck , Lasers
17.
Neurosurg Rev ; 47(1): 65, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38265724

ABSTRACT

OBJECTIVE: The extent of resection and neurological outcome are important prognostic markers for overall survival in glioma patients. Confocal laser endomicroscopy is a tool to examine tissue without the need for fixation or staining. This study aims to analyze gliomas in confocal laser endomicroscopy and identify reliable diagnostic criteria for glial matter and glial tumors. MATERIAL AND METHODS: One-hundred-and-five glioma specimens were analyzed using a 670-nm confocal laser endomicroscope and then processed into hematoxylin-eosin-stained frozen sections. All confocal images and frozen sections were evaluated for the following criteria: presence of tumor, cellularity, nuclear pleomorphism, changes of the extracellular glial matrix, microvascular proliferation, necrosis, and mitotic activity. Recurring characteristics were identified. Accuracy, sensitivity, specificity, and positive and negative predictive values were assessed for each feature. RESULTS: All 125 specimens could be processed and successfully analyzed via confocal laser endomicroscopy. We found diagnostic criteria to identify white and grey matter and analyze cellularity, nuclear pleomorphism, changes in the glial matrix, vascularization, and necrosis in glial tumors. An accuracy of > 90.0 % was reached for grey matter, cellularity, and necrosis, > 80.0 % for white matter and nuclear pleomorphism, and > 70.0 % for microvascular proliferation and changes of the glial matrix. Mitotic activity could not be identified. Astroglial tumors showed significantly less nuclear pleomorphism in confocal laser endomicroscopy than oligodendroglial tumors (p < 0.001). Visualization of necrosis aids in the differentiation of low grade gliomas and high grade gliomas  (p < 0.002). CONCLUSION: Autofluorescence-based confocal laser endomicroscopy proved not only useful in differentiation between tumor and brain tissue but also revealed useful clues to further characterize tissue without processing in a lab. Possible applications include the improvement of extent of resection and the safe harvest of representative tissue for histopathological and molecular genetic diagnostics.


Subject(s)
Glioma , Neoplasm Recurrence, Local , Humans , Endoscopy , Cerebral Cortex , Necrosis
18.
Cureus ; 16(1): e53114, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38283778

ABSTRACT

Gastric adenocarcinomas are a well-known malignancy, with the vast majority presenting as primary mucosal invasions. However, a rare form of this cancer presents from the submucosal layer and mimics submucosal tumors (SMTs). This variant of gastric adenocarcinoma is not only rare, but it is also frequently misdiagnosed as other conditions such as gastrointestinal stromal tumors, lymphoma, or sarcoma. This case report describes a unique case of early gastric adenocarcinoma that presented as a submucosal tumor without invasion into the muscularis propria or primary involvement from the gastric mucosa. Additionally, this raises an important clinical question of whether this variant of gastric adenocarcinoma behaves differently from mucosal-origin cancers in terms of invasion and metastasis. This case highlights the diagnostic challenges and the importance of early detection and accurate diagnosis of this rare presentation of gastric adenocarcinoma. This case also provides valuable insights into the clinical variability of submucosal gastric adenocarcinomas and the need for further research to optimize its management and improve patient outcomes.

19.
Neuro Oncol ; 26(5): 922-932, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38243410

ABSTRACT

BACKGROUND: The aim of this clinical trial was to compare Fluorescein-stained intraoperative confocal laser endomicroscopy (CLE) of intracranial lesions and evaluation by a neuropathologist with routine intraoperative frozen section (FS) assessment by neuropathology. METHODS: In this phase II noninferiority, prospective, multicenter, nonrandomized, off-label clinical trial (EudraCT: 2019-004512-58), patients above the age of 18 years with any intracranial lesion scheduled for elective resection were included. The diagnostic accuracies of both CLE and FS referenced with the final histopathological diagnosis were statistically compared in a noninferiority analysis, representing the primary endpoint. Secondary endpoints included the safety of the technique and time expedited for CLE and FS. RESULTS: A total of 210 patients were included by 3 participating sites between November 2020 and June 2022. Most common entities were high-grade gliomas (37.9%), metastases (24.1%), and meningiomas (22.7%). A total of 6 serious adverse events in 4 (2%) patients were recorded. For the primary endpoint, the diagnostic accuracy for CLE was inferior with 0.87 versus 0.91 for FS, resulting in a difference of 0.04 (95% confidence interval -0.10; 0.02; P = .367). The median time expedited until intraoperative diagnosis was 3 minutes for CLE and 27 minutes for FS, with a mean difference of 27.5 minutes (standard deviation 14.5; P < .001). CONCLUSIONS: CLE allowed for a safe and time-effective intraoperative histological diagnosis with a diagnostic accuracy of 87% across all intracranial entities included. The technique achieved histological assessments in real time with a 10-fold reduction of processing time compared to FS, which may invariably impact surgical strategy on the fly.


Subject(s)
Brain Neoplasms , Fluorescein , Frozen Sections , Microscopy, Confocal , Humans , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Male , Microscopy, Confocal/methods , Female , Middle Aged , Prospective Studies , Frozen Sections/methods , Aged , Adult , Follow-Up Studies , Young Adult , Prognosis , Aged, 80 and over
20.
Dig Endosc ; 36(3): 292-304, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37643635

ABSTRACT

Several advanced imaging techniques are now available for endoscopists managing inflammatory bowel disease (IBD) patients. These tools, including dye-based and virtual chromoendoscopy, probe-based confocal laser endomicroscopy and endocytoscopy, are increasingly innovative applications in clinical practice. They allow for a more in-depth and refined evaluation of the mucosal and vascular bowel surface, getting closer to histology. They have demonstrated a remarkable ability in assessing intestinal inflammation, histologic remission, and predicting relapse and favorable long-term outcomes. In addition, the future application of molecular endoscopy to predict biological drug responses has yielded preliminary but encouraging results. Furthermore, these techniques are crucial in detecting and characterizing IBD-related dysplasia, assisting endoscopic mucosal resection and submucosal dissection towards a surgery-sparing approach. Artificial intelligence (AI) holds great potential in this promising landscape, as it can provide an objective and reproducible assessment of inflammation and dysplasia. Moreover, it can improve the prediction of outcomes and aid in subsequent therapeutic decision-making. This review aims to summarize the promising role of state-of-the-art advanced endoscopic techniques and related AI-enabled models for managing IBD, paving the way for precision medicine.


Subject(s)
Endoscopic Mucosal Resection , Inflammatory Bowel Diseases , Humans , Artificial Intelligence , Inflammatory Bowel Diseases/diagnosis , Endoscopy, Gastrointestinal/methods , Endoscopy/methods , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...