Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.771
Filter
1.
Environ Sci Ecotechnol ; 21: 100434, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989258

ABSTRACT

Lake ecosystems confront escalating challenges to their stability and resilience, most intuitively leading to biodiversity loss, necessitating effective preservation strategies to safeguard aquatic environments. However, the complexity of ecological processes governing lake biodiversity under multi-stressor interactions remains an ongoing concern, primarily due to insufficient long-term bioindicator data, particularly concerning macroinvertebrate biodiversity. Here we utilize a unique, continuous, and in situ biomonitoring dataset spanning from 2011 to 2019 to investigate the spatio-temporal variation of macroinvertebrate communities. We assess the impact of four crucial environmental parameters on Lake Dongting and Lake Taihu, i.e., water quality, hydrology, climate change, and land use. These two systems are representative of lakes with Yangtze-connected and disconnected subtropical floodplains in China. We find an alarming trend of declining taxonomic and functional diversities among macroinvertebrate communities despite improvements in water quality. Primary contributing factors to this decline include persistent anthropogenic pressures, particularly alterations in human land use around the lakes, including intensified nutrient loads and reduced habitat heterogeneity. Notably, river-lake connectivity is pivotal in shaping differential responses to multiple stressors. Our results highlight a strong correlation between biodiversity alterations and land use within a 2-5 km radius and 0.05-2.5 km from the shorelines of Lakes Dongting and Taihu, respectively. These findings highlight the importance of implementing land buffer zones with specific spatial scales to enhance taxonomic and functional diversity, securing essential ecosystem services and enhancing the resilience of crucial lake ecosystems.

2.
Hum Brain Mapp ; 45(10): e26749, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38989605

ABSTRACT

The cerebellum has been involved in social abilities and autism. Given that the cerebellum is connected to the cortex via the cerebello-thalamo-cortical loop, the connectivity between the cerebellum and cortical regions involved in social interactions, that is, the right temporo-parietal junction (rTPJ) has been studied in individuals with autism, who suffer from prototypical deficits in social abilities. However, existing studies with small samples of categorical, case-control comparisons have yielded inconsistent results due to the inherent heterogeneity of autism, suggesting that investigating how clinical dimensions are related to cerebellar-rTPJ functional connectivity might be more relevant. Therefore, our objective was to study the functional connectivity between the cerebellum and rTPJ, focusing on its association with social abilities from a dimensional perspective in a transdiagnostic sample. We analyzed structural magnetic resonance imaging (MRI) and functional MRI (fMRI) scans obtained during naturalistic films watching from a large transdiagnostic dataset, the Healthy Brain Network (HBN), and examined the association between cerebellum-rTPJ functional connectivity and social abilities measured with the social responsiveness scale (SRS). We conducted univariate seed-to-voxel analysis, multivariate canonical correlation analysis (CCA), and predictive support vector regression (SVR). We included 1404 subjects in the structural analysis (age: 10.516 ± 3.034, range: 5.822-21.820, 506 females) and 414 subjects in the functional analysis (age: 11.260 ± 3.318 years, range: 6.020-21.820, 161 females). Our CCA model revealed a significant association between cerebellum-rTPJ functional connectivity, full-scale IQ (FSIQ) and SRS scores. However, this effect was primarily driven by FSIQ as suggested by SVR and univariate seed-to-voxel analysis. We also demonstrated the specificity of the rTPJ and the influence of structural anatomy in this association. Our results suggest that there is a complex relationship between cerebellum-rTPJ connectivity, social performance and IQ. This relationship is specific to the cerebellum-rTPJ connectivity, and is largely related to structural anatomy in these two regions. PRACTITIONER POINTS: We analyzed cerebellum-right temporoparietal junction (rTPJ) connectivity in a pediatric transdiagnostic sample. We found a complex relationship between cerebellum and rTPJ connectivity, social performance and IQ. Cerebellum and rTPJ functional connectivity is related to structural anatomy in these two regions.


Subject(s)
Cerebellum , Magnetic Resonance Imaging , Humans , Cerebellum/diagnostic imaging , Cerebellum/physiopathology , Cerebellum/pathology , Male , Female , Young Adult , Adult , Connectome/methods , Social Skills , Adolescent , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiopathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
3.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38989873

ABSTRACT

Competition is common in life, and intimate relationships are essential. Understanding how intimate relationships impact an individual's competitive process is crucial. This study explored the impact of competitor gender on female competition using electroencephalography analysis. The results revealed that females exhibited a smaller median of the absolute value of reaction time difference (DRT) between their partners and their competitors when their partners were absent compared to when their partners were present. Additionally, females showed greater average amplitudes of N2 posterior contralateral component (N2pc) and Late Positive Potential (LPP), increased activation of the alpha frequency band, and enhanced theta frequency band functional connectivity between the central parietal lobe and occipital lobe. Furthermore, when competing with individuals of the same gender as opposed to individuals of the opposite gender, females exhibited greater average amplitudes of percentage of wins and N2pc. A significant negative correlation was noted between the DRT and the average wave amplitudes of N2pc and LPP. These findings suggest that females are more engaged in competitive tasks when partners are not present and have improved decision-making when competing with same-gender individuals. This study provides evidence for the influence of lovers on female competition, helping females adapt to social competition and promoting healthy relationships.


Subject(s)
Brain , Competitive Behavior , Electroencephalography , Interpersonal Relations , Humans , Female , Young Adult , Brain/physiology , Adult , Competitive Behavior/physiology , Reaction Time/physiology , Evoked Potentials/physiology , Male
4.
Physiol Rep ; 12(13): e16133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961593

ABSTRACT

Decompensated liver disease is complicated by multi-organ failure and poor prognosis. The prognosis of patients with liver failure often dictates clinical management. Current prognostic models have focused on biomarkers considered as individual isolated units. Network physiology assesses the interactions among multiple physiological systems in health and disease irrespective of anatomical connectivity and defines the influence or dependence of one organ system on another. Indeed, recent applications of network mapping methods to patient data have shown improved prediction of response to therapy or prognosis in cirrhosis. Initially, different physical markers have been used to assess physiological coupling in cirrhosis including heart rate variability, heart rate turbulence, and skin temperature variability measures. Further, the parenclitic network analysis was recently applied showing that organ systems connectivity is impaired in patients with decompensated cirrhosis and can predict mortality in cirrhosis independent of current prognostic models while also providing valuable insights into the associated pathological pathways. Moreover, network mapping also predicts response to intravenous albumin in patients hospitalized with decompensated cirrhosis. Thus, this review highlights the importance of evaluating decompensated cirrhosis through the network physiologic prism. It emphasizes the limitations of current prognostic models and the values of network physiologic techniques in cirrhosis.


Subject(s)
Liver Cirrhosis , Humans , Liver Cirrhosis/physiopathology , Liver Cirrhosis/diagnosis , Prognosis
5.
Front Psychiatry ; 15: 1399062, 2024.
Article in English | MEDLINE | ID: mdl-38966185

ABSTRACT

Background: Hoarding disorder (HD) is characterized by cognitive control impairments and abnormal brain activity in the insula and anterior cingulate cortex (ACC) during disposal of personal items or certain executive function tasks. However, whether there are any changes in resting-state functional connectivity of the insula and ACC remains unclear. Methods: A total of 55 subjects, including 24 patients with HD and 31 healthy controls (HCs), participated in the study. We acquired resting-state functional magnetic resonance imaging data and examined group differences in functional connectivity from the insula and ACC in whole-brain voxels. Results: In patients with HD, functional connectivity was significantly lower between the right insula and right inferior frontal gyrus (IFG) and left superior temporal gyrus (STG) compared to HCs. There was no correlation between these connectivities and HD symptoms. Conclusions: Although the clinical implication is uncertain, our results suggest that patients with HD have resting-state functional alterations between the insula and IFG and STG, corresponding with the results of previous fMRI studies. These findings provide new insight into the neurobiological basis of HD.

6.
Neurobiol Aging ; 141: 182-193, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38968875

ABSTRACT

Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18-88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.

7.
J Neurosci Methods ; : 110211, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968975

ABSTRACT

BACKGROUND: If brain effective connectivity network modelling (ECN) could be accurately achieved, early diagnosis of neurodegenerative diseases would be possible. It has been observed in the literature that Dynamic Bayesian Network (DBN) based methods are more successful than others. However, DBNs have not been applied easily and tested much due to computational complexity problems in structure learning. NEW METHOD: This study introduces an advanced method for modelling brain ECNs using improved discrete DBN (Improved- dDBN) which addresses the computational challenges previously limiting DBN application, offering solutions that enable accurate and fast structure modeling. RESULTS: The practical data and prior sizes needed for the convergence to the globally correct network structure are proved to be much smaller than the theoretical ones using simulated dDBN data. Besides, Hill Climbing is shown to converge to the true structure at a reasonable iteration step size when the appropriate data and prior sizes are used. Finally, importance of data quantization methods are analysed. COMPARISON WITH EXISTING METHODS: The Improved-dDBN method performs better and robust, when compared to the existing methods for realistic scenarios such as varying graph complexity, various input conditions, noise cases and non-stationary connections. The data used in these tests is the simulated fMRI BOLD time series proposed in the literature. CONCLUSIONS: Improved-dDBN is a good candidate to be used on real datasets to accelerate developments in brain ECN modeling and neuroscience. Appropriate data and prior sizes can be identified based on the approach proposed in this study for global and fast convergence.

8.
Hum Brain Mapp ; 45(10): e26776, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958131

ABSTRACT

Recent studies in Parkinson's disease (PD) patients reported disruptions in dynamic functional connectivity (dFC, i.e., a characterization of spontaneous fluctuations in functional connectivity over time). Here, we assessed whether the integrity of striatal dopamine terminals directly modulates dFC metrics in two separate PD cohorts, indexing dopamine-related changes in large-scale brain network dynamics and its implications in clinical features. We pooled data from two disease-control cohorts reflecting early PD. From the Parkinson's Progression Marker Initiative (PPMI) cohort, resting-state functional magnetic resonance imaging (rsfMRI) and dopamine transporter (DaT) single-photon emission computed tomography (SPECT) were available for 63 PD patients and 16 age- and sex-matched healthy controls. From the clinical research group 219 (KFO) cohort, rsfMRI imaging was available for 52 PD patients and 17 age- and sex-matched healthy controls. A subset of 41 PD patients and 13 healthy control subjects additionally underwent 18F-DOPA-positron emission tomography (PET) imaging. The striatal synthesis capacity of 18F-DOPA PET and dopamine terminal quantity of DaT SPECT images were extracted for the putamen and the caudate. After rsfMRI pre-processing, an independent component analysis was performed on both cohorts simultaneously. Based on the derived components, an individual sliding window approach (44 s window) and a subsequent k-means clustering were conducted separately for each cohort to derive dFC states (reemerging intra- and interindividual connectivity patterns). From these states, we derived temporal metrics, such as average dwell time per state, state attendance, and number of transitions and compared them between groups and cohorts. Further, we correlated these with the respective measures for local dopaminergic impairment and clinical severity. The cohorts did not differ regarding age and sex. Between cohorts, PD groups differed regarding disease duration, education, cognitive scores and L-dopa equivalent daily dose. In both cohorts, the dFC analysis resulted in three distinct states, varying in connectivity patterns and strength. In the PPMI cohort, PD patients showed a lower state attendance for the globally integrated (GI) state and a lower number of transitions than controls. Significantly, worse motor scores (Unified Parkinson's Disease Rating Scale Part III) and dopaminergic impairment in the putamen and the caudate were associated with low average dwell time in the GI state and a low total number of transitions. These results were not observed in the KFO cohort: No group differences in dFC measures or associations between dFC variables and dopamine synthesis capacity were observed. Notably, worse motor performance was associated with a low number of bidirectional transitions between the GI and the lesser connected (LC) state across the PD groups of both cohorts. Hence, in early PD, relative preservation of motor performance may be linked to a more dynamic engagement of an interconnected brain state. Specifically, those large-scale network dynamics seem to relate to striatal dopamine availability. Notably, most of these results were obtained only for one cohort, suggesting that dFC is impacted by certain cohort features like educational level, or disease severity. As we could not pinpoint these features with the data at hand, we suspect that other, in our case untracked, demographical features drive connectivity dynamics in PD. PRACTITIONER POINTS: Exploring dopamine's role in brain network dynamics in two Parkinson's disease (PD) cohorts, we unraveled PD-specific changes in dynamic functional connectivity. Results in the Parkinson's Progression Marker Initiative (PPMI) and the KFO cohort suggest motor performance may be linked to a more dynamic engagement and disengagement of an interconnected brain state. Results only in the PPMI cohort suggest striatal dopamine availability influences large-scale network dynamics that are relevant in motor control.


Subject(s)
Corpus Striatum , Dopamine Plasma Membrane Transport Proteins , Dopamine , Magnetic Resonance Imaging , Parkinson Disease , Positron-Emission Tomography , Tomography, Emission-Computed, Single-Photon , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Female , Male , Middle Aged , Aged , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Corpus Striatum/diagnostic imaging , Corpus Striatum/metabolism , Corpus Striatum/physiopathology , Cohort Studies , Dihydroxyphenylalanine/analogs & derivatives , Connectome , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Nerve Net/physiopathology
9.
Front Psychiatry ; 15: 1423008, 2024.
Article in English | MEDLINE | ID: mdl-38962058

ABSTRACT

Introduction: Chronic schizophrenia has a course of 5 years or more and has a widespread abnormalities in brain functional connectivity. This study aimed to find characteristic functional and structural changes in a long illness duration chronic schizophrenia (10 years or more). Methods: Thirty-six patients with a long illness duration chronic schizophrenia and 38 healthy controls were analyzed by independent component analysis of brain network functional connectivity. Correlation analysis with clinical duration was performed on six resting state networks: auditory network, default mode network, dorsal attention network, fronto-parietal network, somatomotor network, and visual network. Results: The differences in the resting state network between the two groups revealed that patients exhibited enhanced inter-network connections between default mode network and multiple brain networks, while the inter-network connections between somatomotor network, default mode network and visual network were reduced. In patients, functional connectivity of Cuneus_L was negatively correlated with illness duration. Furthermore, receiver operating characteristic curve of functional connectivity showed that changes in Thalamus_L, Rectus_L, Frontal_Mid_R, and Cerebelum_9_L may indicate a longer illness duration chronic schizophrenia. Discussion: In our study, we also confirmed that the course of disease is significantly associated with specific brain regions, and the changes in specific brain regions may indicate that chronic schizophrenia has a course of 10 years or more.

10.
ISA Trans ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964998

ABSTRACT

This paper proposes a novel multi-unmanned aerial vehicle (UAV) connectivity preservation controller, suitable for scenarios with bounded actuation and limited communication range. According to the hierarchical control strategy, controllers are designed separately for the position and attitude subsystems. A distributed position controller is developed, integrating an indirect coupling control mechanism. The innovative mechanism associates each UAV with a virtual proxy, facilitating connections among adjacent UAVs through these proxies. This structuring assists in managing the actuator saturation constraints effectively. The artificial potential function is utilized to preserve network connectivity and fulfill coordination among all virtual proxies. Additionally, an attitude controller designed for finite-time convergence guarantees that the attitude subsystem adheres precisely to the attitude specified by the distributed position controller. Simulation results validate the efficacy of this distributed formation controller with connectivity preservation under bounded actuation conditions. The simulation results confirm the effectiveness of the distributed connectivity preservation controller with bounded actuation.

11.
Clin Neurophysiol ; 165: 64-75, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38959537

ABSTRACT

OBJECTIVE: Investigating the optimal interstimulus interval (ISI) and the 24-hour test-retest reliability for intrahemispheric dorsal premotor cortex (PMd) - primary motor cortex (M1) connectivity using dual-site transcranial magnetic stimulation (dsTMS). METHODS: In 21 right-handed adults, left intrahemispheric PMd-M1 connectivity has been investigated with a stacked-coil dsTMS setup (conditioning stimulus: 75% of resting motor threshold; test stimulus: eliciting MEPs of 1-1.5 mV) at ISIs of 3, 5-8, and 10 ms. Additionally, M1-M1 short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were investigated to assess comparability to standard paired-pulse setups. RESULTS: Conditioning PMd led to significant inhibition of M1 output at ISIs of 3 and 5 ms, whereas 10 ms resulted in facilitation (all, p < 0.001), with a fair test-retest reliability for 3 (ICC: 0.47) and 6 ms (ICC: 0.44) ISIs. Replication of SICI (p < 0.001) and ICF (p = 0.017) was successful, with excellent test-retest reliability for SICI (ICC: 0.81). CONCLUSION: This dsTMS setup can probe the inhibitory and facilitatory PMd-M1 connections, as well as reliably replicate SICI and ICF paradigms. SIGNIFICANCE: The stacked-coil dsTMS setup for investigating intrahemispheric PMd-M1 connectivity offers promising possibilities to better understand motor control.

12.
Hum Brain Mapp ; 45(10): e26726, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949487

ABSTRACT

Resting-state functional connectivity (FC) is widely used in multivariate pattern analysis of functional magnetic resonance imaging (fMRI), including identifying the locations of putative brain functional borders, predicting individual phenotypes, and diagnosing clinical mental diseases. However, limited attention has been paid to the analysis of functional interactions from a frequency perspective. In this study, by contrasting coherence-based and correlation-based FC with two machine learning tasks, we observed that measuring FC in the frequency domain helped to identify finer functional subregions and achieve better pattern discrimination capability relative to the temporal correlation. This study has proven the feasibility of coherence in the analysis of fMRI, and the results indicate that modeling functional interactions in the frequency domain may provide richer information than that in the time domain, which may provide a new perspective on the analysis of functional neuroimaging.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Adult , Male , Female , Machine Learning , Young Adult , Brain/physiology , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Nerve Net/physiology
13.
Netw Neurosci ; 8(2): 395-417, 2024.
Article in English | MEDLINE | ID: mdl-38952809

ABSTRACT

Functional brain networks have preserved architectures in rest and task; nevertheless, previous work consistently demonstrated task-related brain functional reorganization. Efficient rest-to-task functional network reconfiguration is associated with better cognition in young adults. However, aging and cognitive load effects, as well as contributions of intra- and internetwork reconfiguration, remain unclear. We assessed age-related and load-dependent effects on global and network-specific functional reconfiguration between rest and a spatial working memory (SWM) task in young and older adults, then investigated associations between functional reconfiguration and SWM across loads and age groups. Overall, global and network-level functional reconfiguration between rest and task increased with age and load. Importantly, more efficient functional reconfiguration associated with better performance across age groups. However, older adults relied more on internetwork reconfiguration of higher cognitive and task-relevant networks. These reflect the consistent importance of efficient network updating despite recruitment of additional functional networks to offset reduction in neural resources and a change in brain functional topology in older adults. Our findings generalize the association between efficient functional reconfiguration and cognition to aging and demonstrate distinct brain functional reconfiguration patterns associated with SWM in aging, highlighting the importance of combining rest and task measures to study aging cognition.


Brain networks identified by functional connectivity (FC) have preserved architectures from rest to task and across task demands. Higher similarity, implying more efficient network reconfiguration, was associated with better cognition and task performance in young adults. To examine how it may be influenced by aging, we compared whole-brain and network-level FC similarities between resting-state and spatial working memory fMRI in young and older adults. At whole-brain level and higher order cognitive networks, older adults evidenced less efficient network reconfiguration from rest to task than young adults. Importantly, more efficient reconfiguration was associated with better accuracy. This relationship relied more on internetwork connections in older adults. Despite reduced neural resources compared to young, maintaining efficient network updating still contributes to better cognition at older age.

14.
Netw Neurosci ; 8(2): 557-575, 2024.
Article in English | MEDLINE | ID: mdl-38952808

ABSTRACT

In recent years, there has been an increasing interest in studying brain-heart interactions. Methodological advancements have been proposed to investigate how the brain and the heart communicate, leading to new insights into some neural functions. However, most frameworks look at the interaction of only one brain region with heartbeat dynamics, overlooking that the brain has functional networks that change dynamically in response to internal and external demands. We propose a new framework for assessing the functional interplay between cortical networks and cardiac dynamics from noninvasive electrophysiological recordings. We focused on fluctuating network metrics obtained from connectivity matrices of EEG data. Specifically, we quantified the coupling between cardiac sympathetic-vagal activity and brain network metrics of clustering, efficiency, assortativity, and modularity. We validate our proposal using open-source datasets: one that involves emotion elicitation in healthy individuals, and another with resting-state data from patients with Parkinson's disease. Our results suggest that the connection between cortical network segregation and cardiac dynamics may offer valuable insights into the affective state of healthy participants, and alterations in the network physiology of Parkinson's disease. By considering multiple network properties, this framework may offer a more comprehensive understanding of brain-heart interactions. Our findings hold promise in the development of biomarkers for diagnostic and cognitive/motor function evaluation.

15.
Brain Imaging Behav ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954259

ABSTRACT

Pain empathy enables us to understand and share how others feel pain. Few studies have investigated pain empathy-related functional interactions at the whole-brain level across all networks. Additionally, women with primary dysmenorrhea (PDM) have abnormal pain empathy, and the association among the whole-brain functional network, pain, and pain empathy remain unclear. Using resting-state functional magnetic resonance imaging (fMRI) and machine learning analysis, we identified the brain functional network connectivity (FNC)-based features that are associated with pain empathy in two studies. Specifically, Study 1 examined 41 healthy controls (HCs), while Study 2 investigated 45 women with PDM. Additionally, in Study 3, a classification analysis was performed to examine the differences in FNC between HCs and women with PDM. Pain empathy was evaluated using a visual stimuli experiment, and trait and state of menstrual pain were recorded. In Study 1, the results showed that pain empathy in HCs relied on dynamic interactions across whole-brain networks and was not concentrated in a single or two brain networks, suggesting the dynamic cooperation of networks for pain empathy in HCs. In Study 2, PDM exhibited a distinctive network for pain empathy. The features associated with pain empathy were concentrated in the sensorimotor network (SMN). In Study 3, the SMN-related dynamic FNC could accurately distinguish women with PDM from HCs and exhibited a significant association with trait menstrual pain. This study may deepen our understanding of the neural mechanisms underpinning pain empathy and suggest that menstrual pain may affect pain empathy through maladaptive dynamic interaction between brain networks.

16.
Mol Ecol ; : e17461, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958291

ABSTRACT

Humans have impacted most of the planet, and the ensuing fragmentation results in small, isolated habitat patches posing a risk of genetic diversity loss, inbreeding, and genetic load. Understanding how natural and anthropogenic landscape features affect gene flow among habitat patches is critical for maintaining connectivity. Genome-wide data are required to comprehend the impacts of recent fragmentation, which can be challenging when only non-invasive samples are available. Here, we build upon advancements in conservation genomics to address connectivity of two large herbivores, gaur (Bos gaurus) and sambar (Rusa unicolor) in central India. Given their habitat associations, we expected these species to respond similarly to habitat fragmentation. We used faecal-DNA and methylation-based host-DNA enrichment with modified ddRAD protocol to generate genome-wide single-nucleotide polymorphism (SNP) data for 124 gaur and 99 sambar individuals. Our findings reveal that gaur populations in central India are fragmented, displaying high genetic differentiation, with drift significantly affecting small populations like Umred Karhandla Wildlife Sanctuary. Although sambar shows low genetic structure, another small population, Bor Tiger Reserve is genetically differentiated. Our results suggest that although land cover change and roads restrict animal movement, the extent of this impact varies across the two species. We show that different species respond differently to landscape features, even with similar habitat associations. We highlight small and isolated populations requiring urgent conservation intervention. Such multi-species approaches enhance our understanding of cross-species connectivity patterns. We suggest shifting from single-species to multi-species holistic conservation approach in rapidly developing landscapes to better manage co-occurring endangered species.

17.
Alzheimers Dement ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958537

ABSTRACT

INTRODUCTION: Mild cognitive impairment (MCI) is a prodromal stage of dementia. Understanding the mechanistic changes from healthy aging to MCI is critical for comprehending disease progression and enabling preventative intervention. METHODS: Patients with MCI and age-matched controls (CN) were administered cognitive tasks during functional near-infrared spectroscopy (fNIRS) recording, and changes in plasma levels of extracellular vesicles (EVs) were assessed using small-particle flow cytometry. RESULTS: Neurovascular coupling (NVC) and functional connectivity (FC) were decreased in MCI compared to CN, prominently in the left-dorsolateral prefrontal cortex (LDLPFC). We observed an increased ratio of cerebrovascular endothelial EVs (CEEVs) to total endothelial EVs in patients with MCI compared to CN, correlating with structural MRI small vessel ischemic damage in MCI. LDLPFC NVC, CEEV ratio, and LDLPFC FC had the highest feature importance in the random Forest group classification. DISCUSSION: NVC, CEEVs, and FC predict MCI diagnosis, indicating their potential as markers for MCI cerebrovascular pathology. HIGHLIGHTS: Neurovascular coupling (NVC) is impaired in mild cognitive impairment (MCI). Functional connectivity (FC) compensation mechanism is lost in MCI. Cerebrovascular endothelial extracellular vesicles (CEEVs) are increased in MCI. CEEV load strongly associates with cerebral small vessel ischemic lesions in MCI. NVC, CEEVs, and FC predict MCI diagnosis over demographic and comorbidity factors.

18.
Brain Topogr ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958833

ABSTRACT

The cortical generators of the pure tone MMN and P300 have been thoroughly studied. Their nature and interaction with respect to phoneme perception, however, is poorly understood. Accordingly, the cortical sources and functional connections that underlie the MMN and P300 in relation to passive and active speech sound perception were identified. An inattentive and attentive phonemic oddball paradigm, eliciting a MMN and P300 respectively, were administered in 60 healthy adults during simultaneous high-density EEG recording. For both the MMN and P300, eLORETA source reconstruction was performed. The maximal cross-correlation was calculated between ROI-pairs to investigate inter-regional functional connectivity specific to passive and active deviant processing. MMN activation clusters were identified in the temporal (insula, superior temporal gyrus and temporal pole), frontal (rostral middle frontal and pars opercularis) and parietal (postcentral and supramarginal gyrus) cortex. Passive discrimination of deviant phonemes was aided by a network connecting right temporoparietal cortices to left frontal areas. For the P300, clusters with significantly higher activity were found in the frontal (caudal middle frontal and precentral), parietal (precuneus) and cingulate (posterior and isthmus) cortex. Significant intra- and interhemispheric connections between parietal, cingulate and occipital regions constituted the network governing active phonemic target detection. A predominantly bilateral network was found to underly both the MMN and P300. While passive phoneme discrimination is aided by a fronto-temporo-parietal network, active categorization calls on a network entailing fronto-parieto-cingulate cortices. Neural processing of phonemic contrasts, as reflected by the MMN and P300, does not appear to show pronounced lateralization to the language-dominant hemisphere.

19.
Adv Sci (Weinh) ; : e2402152, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946585

ABSTRACT

Post-stroke depression is a common complication that imposes significant burdens and challenges on patients. The occurrence of depression is often associated with frontal lobe hemorrhage, however, current understanding of the underlying mechanisms remains limited. Here, the pathogenic mechanisms associated with the circuitry connectivity, electrophysiological alterations, and molecular characteristics are investigated related to the frontal lobe in adult male mice following unilateral injection of blood in the medial prefrontal cortex (mPFC). It is demonstrated that depression is a specific neurological complication in the unilateral hematoma model of the mPFC, and the ventral tegmental area (VTA) shows a higher percentage of connectivity disruption compared to the lateral habenula (LHb) and striatum (STR). Additionally, long-range projections originating from the frontal lobe demonstrate higher damage percentages within the connections between each region and the mPFC. mPFC neurons reveal reduced neuronal excitability and altered synaptic communication. Furthermore, transcriptomic analysis identifies the involvement of the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) signaling pathway, and targeting the JAK-STAT pathway significantly alleviates the severity of depressive symptoms. These findings improve the understanding of post-hemorrhagic depression and may guide the development of efficient treatments.

20.
Front Aging Neurosci ; 16: 1395911, 2024.
Article in English | MEDLINE | ID: mdl-38974904

ABSTRACT

Background: Patients with carotid atherosclerotic stenosis (CAS) often have varying degrees of cognitive decline. However, there is little evidence regarding how brain morphological and functional abnormalities impact the cognitive decline in CAS patients. This study aimed to determine how the brain morphological and functional changes affected the cognitive decline in patients with CAS. Methods: The brain morphological differences were analyzed using surface and voxel-based morphometry, and the seed-based whole-brain functional connectivity (FC) abnormalities were analyzed using resting-state functional magnetic resonance imaging. Further, mediation analyses were performed to determine whether and how morphological and FC changes affect cognition in CAS patients. Results: The CAS-MCI (CAS patients with mild cognitive impairment) group performed worse in working memory, verbal fluency, and executive time. Cortical thickness (CT) of the left postcentral and superiorparietal were significantly reduced in CAS-MCI patients. The gray matter volume (GMV) of the right olfactory, left temporal pole (superior temporal gyrus) (TPOsup.L), left middle temporal gyrus (MTG.L), and left insula (INS.L) were decreased in the CAS-MCI group. Besides, decreased seed-based FC between TPOsup.L and left precuneus, between MTG.L and TPOsup.L, and between INS.L and MTG.L, left middle frontal gyrus, as well as Superior frontal gyrus, were found in CAS-MCI patients. Mediation analyses demonstrated that morphological and functional abnormalities fully mediated the association between the maximum degree of carotid stenosis and cognitive function. Conclusion: Multiple brain regions have decreased GMV and CT in CAS-MCI patients, along with disrupted seed-based FC. These morphological and functional changes play a crucial role in the cognitive impairment in CAS patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...