Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Glia ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007459

ABSTRACT

The relation of astrocytic endfeet to the vasculature plays a key functional role in the neuro-glia-vasculature unit. We characterize the spatial organization of astrocytes and the structural aspects that facilitate their involvement in molecular exchanges. Using double transgenic mice, we performed co-immunostaining, confocal microscopy, and three-dimensional digital segmentation to investigate the biophysical and molecular organization of astrocytes and their intricate endfoot network at the micrometer level in the isocortex and hippocampus. The results showed that hippocampal astrocytes had smaller territories, reduced endfoot dimensions, and fewer contacts with blood vessels compared with those in the isocortex. Additionally, we found that both connexins 43 and 30 have a higher density in the endfoot and the former is overexpressed relative to the latter. However, due to the limitations of the method, further studies are needed to determine the exact localization on the endfoot. The quantitative information obtained in this study will be useful for modeling the interactions of astrocytes with the vasculature.

2.
FASEB J ; 37(11): e23232, 2023 11.
Article in English | MEDLINE | ID: mdl-37819258

ABSTRACT

In the kidney, the flow rate of the pro-urine through the renal tubules is highly variable. The tubular epithelial cells sense these variations in pro-urinary flow rate in order to regulate various physiological processes, including electrolyte reabsorption. One of the mechanosensitive pathways activated by flow is the release of ATP, which can then act as a autocrine or paracrine factor. Increased ATP release is observed in various kidney diseases, among others autosomal dominant polycystic kidney disease (ADPKD). However, the mechanisms underlying flow-induced ATP release in the collecting duct, especially in the inner medullary collecting duct, remain understudied. Using inner medullary collecting duct 3 (IMCD3) cells in a microfluidic setup, we show here that administration of a high flow rate for 1 min results in an increased ATP release compared to a lower flow rate. Although the ATP release channel pannexin-1 contributed to flow-induced ATP release in Pkd1-/- IMCD3 cells, it did not in wildtype IMCD3 cells. In addition, flow application increased the expression of the putative ATP release channel connexin-30.3 (CX30.3) in wildtype and Pkd1-/- IMCD3 cells. However, CX30.3 knockout IMCD3 cells exhibited a similar flow-induced ATP release as wildtype IMCD3 cells, suggesting that CX30.3 does not drive flow-induced ATP release in wildtype IMDC3 cells. Collectively, our results show differential mechanisms underlying flow-induced ATP release in wildtype and Pkd1-/- IMCD3 cells and further strengthen the link between ADPKD and pannexin-1-dependent ATP release.


Subject(s)
Kidney Tubules, Collecting , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/metabolism , Kidney/metabolism , Gene Expression , Adenosine Triphosphate/metabolism , Kidney Tubules, Collecting/metabolism
3.
Cells ; 12(12)2023 06 20.
Article in English | MEDLINE | ID: mdl-37371139

ABSTRACT

The gap-junction-coupled astroglial network plays a central role in the regulation of neuronal activity and synchronisation, but its involvement in the pathogenesis of neuronal diseases is not yet understood. Here, we present the current state of knowledge about the impact of impaired glial coupling in the development and progression of epilepsy and discuss whether astrocytes represent alternative therapeutic targets. We focus mainly on temporal lobe epilepsy (TLE), which is the most common form of epilepsy in adults and is characterised by high therapy resistance. Functional data from TLE patients and corresponding experimental models point to a complete loss of astrocytic coupling, but preservation of the gap junction forming proteins connexin43 and connexin30 in hippocampal sclerosis. Several studies further indicate that astrocyte uncoupling is a causal event in the initiation of TLE, as it occurs very early in epileptogenesis, clearly preceding dysfunctional changes in neurons. However, more research is needed to fully understand the role of gap junction channels in epilepsy and to develop safe and effective therapeutic strategies targeting astrocytes.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Humans , Astrocytes/metabolism , Gap Junctions/metabolism , Epilepsy/metabolism , Connexins/metabolism
4.
Int J Mol Sci ; 24(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37373495

ABSTRACT

The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.


Subject(s)
Deafness , Hearing Loss , Infant, Newborn , Humans , Connexin 26/metabolism , Connexin 43/metabolism , Connexins/genetics , Connexins/metabolism , Deafness/metabolism , Hearing Loss/metabolism , Gap Junctions/metabolism , Mutation
5.
Front Cell Dev Biol ; 11: 1073805, 2023.
Article in English | MEDLINE | ID: mdl-36861039

ABSTRACT

Epidermal keratinocytes are enriched with at least nine connexins that are key regulators of epidermal homeostasis. The role of Cx30.3 in keratinocytes and epidermal health became evident when fourteen autosomal dominant mutations in the Cx30.3-encoding GJB4 gene were linked to a rare and incurable skin disorder called erythrokeratodermia variabilis et progressiva (EKVP). While these variants are linked to EKVP, they remain largely uncharacterized hindering therapeutic options. In this study, we characterize the expression and functional status of three EKVP-linked Cx30.3 mutants (G12D, T85P, and F189Y) in tissue-relevant and differentiation-competent rat epidermal keratinocytes. We found that GFP-tagged Cx30.3 mutants were non-functional likely due to their impaired trafficking and primary entrapment within the endoplasmic reticulum (ER). However, all mutants failed to increase BiP/GRP78 levels suggesting they were not inducing an unfolded protein response. FLAG-tagged Cx30.3 mutants were also trafficking impaired yet occasionally exhibited some capacity to assemble into gap junctions. The pathological impact of these mutants may extend beyond their trafficking deficiencies as keratinocytes expressing FLAG-tagged Cx30.3 mutants exhibited increased propidium iodide uptake in the absence of divalent cations. Attempts to rescue the delivery of trafficking impaired GFP-tagged Cx30.3 mutants into gap junctions by chemical chaperone treatment were ineffective. However, co-expression of wild type Cx30.3 greatly enhanced the assembly of Cx30.3 mutants into gap junctions, although endogenous levels of Cx30.3 do not appear to prevent the skin pathology found in patients harboring these autosomal dominant mutations. In addition, a spectrum of connexin isoforms (Cx26, Cx30, and Cx43) exhibited the differential ability to trans-dominantly rescue the assembly of GFP-tagged Cx30.3 mutants into gap junctions suggesting a broad range of connexins found in keratinocytes may favourably interact with Cx30.3 mutants. We conclude that selective upregulation of compatible wild type connexins in keratinocytes may have potential therapeutic value in rescuing epidermal defects invoked by Cx30.3 EKVP-linked mutants.

6.
Dev Dyn ; 252(2): 239-246, 2023 02.
Article in English | MEDLINE | ID: mdl-36106826

ABSTRACT

In the cochlea, connexin 26 (Cx26) and connexin 30 (Cx30) co-assemble into two types of homomeric and heteromeric gap junctions between adjacent non-sensory epithelial cells. These channels provide a mechanical coupling between connected cells, and their activity is critical to maintain cochlear homeostasis. Many of the mutations in GJB2 or GJB6, which encode Cx26 and Cx30 in humans, impair the formation of membrane channels and cause autosomal syndromic and non-syndromic hearing loss. Thus, deciphering the connexin trafficking pathways in situ should represent a major step forward in understanding the pathogenic significance of many of these mutations. A growing body of evidence now suggests that Cx26/Cx30 heteromeric and Cx30 homomeric channels display distinct assembly mechanisms. Here, we review the most recent advances that have been made toward unraveling the biogenesis and stability of these gap junctions in the cochlea.


Subject(s)
Connexins , Deafness , Humans , Connexins/genetics , Connexins/metabolism , Gap Junctions/metabolism , Cochlea/metabolism , Connexin 30/genetics , Connexin 30/metabolism , Deafness/genetics
7.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555685

ABSTRACT

Connexin 30 (Cx30), which forms gap junctions between astrocytes, regulates cell adhesion and migration, and modulates glutamate transport. Cx30 is upregulated on activated astroglia in central nervous system inflammatory lesions, including spinal cord lesions in mutant superoxide dismutase 1 (mSOD1) transgenic amyotrophic lateral sclerosis (ALS) model mice. Here, we investigated the role of Cx30 in mSOD1 mice. Cx30 was highly expressed in the pre-onset stage in mSOD1 mice. mSOD1 mice with knockout (KO) of the Cx30 gene (Cx30KO-mSOD1 mice) showed delayed disease onset and tended to have an extended survival period (log-rank, p = 0.09). At the progressive and end stages of the disease, anterior horn cells were significantly preserved in Cx30KO-mSOD1 mice. In lesions of these mice, glial fibrillary acidic protein/C3-positive inflammatory astroglia were decreased. Additionally, the activation of astrocytes in Cx30KO-mSOD1 mice was reduced compared with mSOD1 mice by gene expression microarray. Furthermore, expression of connexin 43 at the pre-onset stage was downregulated in Cx30KO-mSOD1 mice. These findings suggest that reduced expression of astroglial Cx30 at the early disease stage in ALS model mice protects neurons by attenuating astroglial inflammation.


Subject(s)
Amyotrophic Lateral Sclerosis , Connexin 30 , Animals , Mice , Amyotrophic Lateral Sclerosis/metabolism , Connexin 30/genetics , Disease Models, Animal , Disease Progression , Inflammation/metabolism , Mice, Transgenic , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
8.
J Neurosci ; 42(42): 7875-7884, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36261265

ABSTRACT

Cochlear amplification enables the enormous dynamic range of hearing through amplifying cochlear responses to low- to moderate-level sounds and compressing them to loud sounds. Amplification is attributed to voltage-dependent electromotility of mechanosensory outer hair cells (OHCs) driven by changing voltages developed across their cell membranes. At low frequencies, these voltage changes are dominated by intracellular receptor potentials (RPs). However, OHC membranes have electrical low-pass filter properties that attenuate high-frequency RPs, which should potentially attenuate amplification of high-frequency cochlear responses and impede high-frequency hearing. We made in vivo intracellular and extracellular electrophysiological measurements from the organ of Corti of male and female mice of the CBA/J strain, with excellent high-frequency hearing, and from the CD-1 mouse strain, which has sensitive hearing below 12 kHz but loses high-frequency hearing within a few weeks postpartum. The CD-1 mouse strain was transfected with an A88V mutation of the connexin 30 gap-junction protein. By blocking the action of the GJ protein to reduce input resistance, the mutation increased the OHC extracellular RP (ERP) magnitude and rescued high-frequency hearing. However, by increasing the organ of Corti resistance, the mutation rescued high-frequency hearing through preserving the OHC extracellular RP (ERP) magnitude. We measured the voltage developed across the basolateral membranes of OHCs, which controls their electromotility, for low- to high-frequency sounds in male and female mice of the CD-1 strain that expressed the A88V mutation. We demonstrate that ERPs, not RPs, drive OHC motility and cochlear amplification at high frequencies because at high frequencies, ERPs are not frequency attenuated, exceed RPs in magnitude, and are appropriately timed to provide cochlear amplification.SIGNIFICANCE STATEMENT Cochlear amplification, which enables the enormous dynamic range of hearing, is attributed to voltage-dependent electromotility of the mechanosensory outer hair cells (OHCs) driven by sound-induced voltage changes across their membranes. OHC intracellular receptor potentials are electrically low-pass filtered, which should hinder high-frequency hearing. We measured the intracellular and extracellular voltages that control OHC electromotility in vivo in a mouse strain with impaired high-frequency hearing. A gap-junction mutation of the strain rescued high-frequency hearing, increased organ of Corti resistance, and preserved large OHC extracellular receptor potentials but reduced OHC intracellular receptor potentials and impaired low-frequency hearing. We concluded intracellular potentials drive OHC motility at low frequencies and extracellular receptor potentials drive OHC motility and cochlear amplification at high frequencies.


Subject(s)
Cochlea , Hair Cells, Auditory, Outer , Animals , Female , Male , Mice , Cochlea/physiology , Connexin 30/genetics , Connexin 30/metabolism , Hair Cells, Auditory, Outer/physiology , Mice, Inbred CBA , Mutation/genetics , Gap Junctions
9.
Front Psychiatry ; 13: 856867, 2022.
Article in English | MEDLINE | ID: mdl-35401278

ABSTRACT

Objectives: To examine serum concentrations of aquaporin-4 (AQP4), connexin-30 (CX30), connexin-43 (CX43), and their correlations with cognitive function in the patients with chronic insomnia disorder (CID). Methods: We enrolled 76 subjects with CID and 32 healthy controls (HCs). Serum levels of AQP4, CX30, and CX43 were measured by enzyme-linked immunosorbent assays. Sleep quality was assessed with the Pittsburgh Sleep Quality Index (PSQI) and polysomnography, and mood was evaluated with 17-item Hamilton Depression Rating Scale and 14-item Hamilton Anxiety Rating Scale. Cognitive function was evaluated by the Chinese-Beijing Version of Montreal Cognitive Assessment (MoCA-C) and Nine Box Maze Test. Results: The serum levels of AQP4, CX43, and CX30 were significantly reduced in the CID group compared to the HCs. Partial correlation analysis showed that the biomarkers showed no significant correlations with PSQI score, AHI, ODI and TS90, but AQP4, CX43, and CX30 were positively associated with the percentage and total time of slow wave sleep in the CID group. Serum concentrations of AQP4 and CX30 were positively associated with MoCA-C score in the CID group, and AQP4 level negatively correlated with spatial working memory errors. Conclusions: Subjects with CID patients have decreased serum levels of AQP4, CX30, and CX43 indicating astrocyte dysfunction, which could be related to poor objective sleep quality and/or cognition dysfunction.

10.
Cell Rep ; 38(10): 110484, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263595

ABSTRACT

The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.


Subject(s)
Astrocytes , Connexin 43 , Animals , Astrocytes/metabolism , Connexin 30/metabolism , Connexin 43/metabolism , Connexins/metabolism , Gap Junctions/metabolism , Mice , Neuronal Plasticity/physiology , Spatial Learning
11.
Synapse ; 76(3-4): e22225, 2022 03.
Article in English | MEDLINE | ID: mdl-35137459

ABSTRACT

Intercellular communication via gap junctions (GJs) has a wide variety of complex and essential functions in the CNS. In the present developmental study, we aimed to quantify the number of astrocytic GJs protein connexin 30 (Cx30) of genetic model of absence epilepsy rats from Strasbourg (GAERS) at postnatal P10, P30, and P60 days in the epileptic focal areas involved in the cortico-thalamic circuit. We compared the results with Wistar rats using immunohistochemistry and western blotting. The number of Cx30 immunopositive astrocytes per unit area were quantified for the somatosensory cortex (SSCx), ventrobasal (VB), and lateral geniculate (LGN) thalamic nuclei of the two strains and Cx30 western blot was applied to the tissue samples from the same regions. Both immunohistochemical and western blot results revealed the presence of Cx30 in all regions studied at P10 in both Wistar and GAERS animals. The SSCx, VB, and LGN of Wistar animals showed progressive increase in the number of Cx30 immunopositive labeled astrocytes from P10 to P30 and reached a peak at P30; then a significant decline was observed from P30 to P60 for the SSCx and VB. However, in GAERS Cx30 immunopositive labeled astrocytes showed a progressive increase from P10 to P60 for all brain regions studied. The immunohistochemical data highly corresponded with western blotting results. We conclude that the developmental disproportional expression of Cx30 in the epileptic focal areas in GAERS may be related to the onset of absence seizures or may be related to the neurogenesis of absence epilepsy.


Subject(s)
Epilepsy, Absence , Animals , Astrocytes/metabolism , Connexins/genetics , Connexins/metabolism , Disease Models, Animal , Epilepsy, Absence/genetics , Epilepsy, Absence/metabolism , Rats , Rats, Wistar
12.
Exp Dermatol ; 31(4): 594-599, 2022 04.
Article in English | MEDLINE | ID: mdl-34717022

ABSTRACT

Erythrokeratodermia variabilis et progressiva (EKVP) is a rare genodermatosis of clinical and genetic heterogeneity, characterized by the manifestations of localized or disseminated persistent hyperkeratotic plagues and stationary to migratory transient erythematous patches. The majority of EKVP cases display an autosomal dominant mode of inheritance with incomplete penetrance, although recessive transmission has also been described. Mutations associated with EKVP have been primarily detected in connexin (Cx) genes. We herein reported a Chinese sporadic case of late-onset EKVP with a novel heterozygous missense mutation c.109G>A (p.V37M) in GJB4 (Cx30.3) gene, which resulted in a significant reduction of GJB4 expression in the epidermis of the patient. In accordance, while wild-type GJB4 localized at the cell membrane of HeLa cells forming intercellular junctions and intracellular puncta, V37M mutant variant was diffusely expressed within HeLa cells at a considerably lower level. Our findings reveal an essential role of GJB4 in the pathogenesis of EKVP and provides insights into the therapeutic potential of the disease.


Subject(s)
Connexins , Erythrokeratodermia Variabilis , Connexins/genetics , Erythrokeratodermia Variabilis/genetics , Erythrokeratodermia Variabilis/pathology , HeLa Cells , Heterozygote , Humans , Mutation, Missense
13.
Acta Anatomica Sinica ; (6): 108-113, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015372

ABSTRACT

Objective To stud)' the expression of connexin (Cx) 26 and Cx30 in the cochlea in rat model of type 2 diabetes, and their role in the hearing loss of type 2 diabetes. Methods Sixty wistar rats were randomly divided into a control group(re = 20) and a experimental group(re = 4 0) . Rats in the experimental group received intraperitoneally injection of 10 mg/L streptozotocin to establish model of type 2 diabetes. Auditory brainstem response (ABR) was tested before and after molding at month 1, 2, 3, 4, 5. The morphology of cochlea was observed by HE staining, and the level and pattern of Cx26 and Cx30 expression within the cochlea were detected by immunofluorescence and Western blotting. Results In rats in the diabetes group, wave IH and V latency, I -IH and I - V interval of Click-ABRs (60 dBSPL) prolonged at month 1, 2, 3, 4, 5 after molding compared to the control (P < 0 . 0 5) . The number of cells was obvious reduced in the spiral ligament and ganglion of the experimental group (P < 0. 0 5) . Immunofluorescence and Western blotting results showed decreased expression of Cx26 and Cx30 in the experimental group at 2, 3, 4, 5 month(P<0. 05), and the expression of the two proteins decreased gradually with the time extension. Conclusion Expression of Cx26 and Cx30 is reduced at the same time as the occurrence of hearing impairment in rat cochlea with type 2 diabetes.

14.
Brain Res Bull ; 174: 153-160, 2021 09.
Article in English | MEDLINE | ID: mdl-34139316

ABSTRACT

Chromosome 13q deletions encompassing EFNB2, which encodes the transmembrane protein ephrin-B2, are likely to cause syndromic forms of sensorineural hearing loss of unclear origin. Thus, unravelling the pathogenic mechanisms could help to improve therapeutic strategies. In the cochlea, adjacent non-sensory epithelial cells are connected via gap junction channels, the activity of which is critical to maintain cochlear homeostasis. Here we show that ephrin-B2 promotes the assembly of connexin 30 (Cx30) gap junction plaques (GJPs) between adjacent non-sensory Deiters' cells. An in situ proximity ligation assay revealed that ephrin-B2 preferentially interacts with Cx30 in the periphery of the GJPs, i.e. where newly synthesized connexin hemichannels accrue to the GJP. Moreover, we observed that heterozygous mice encoding an Efnb2 null allele display excessive clathrin-mediated internalization of Cx30 GJPs in early postnatal stages. Finally, an in vitro organotypic assay revealed that ectopic activation of ephrin-B2 reverse signalling promotes the internalization of Cx30 GJPs. These data argue in favor of a cell-autonomous, Eph receptor-independent role of ephrin-B2 in the assembly of Cx30 GJPs. According to recent observations, early GJP degradation could certainly play a role in the pathogenic process leading to progressive sensorineural hearing loss due to Efnb2/EFNB2 haploinsufficiency.


Subject(s)
Cochlea/pathology , Electrical Synapses/pathology , Endocytosis/genetics , Ephrin-B2/genetics , Animals , Connexin 30/biosynthesis , Connexin 30/genetics , Ephrin-B2/pharmacology , Haploinsufficiency , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Heterozygote , Mice , Mice, Knockout , Signal Transduction/genetics
15.
Glia ; 69(9): 2178-2198, 2021 09.
Article in English | MEDLINE | ID: mdl-33973274

ABSTRACT

Astrocytes play important roles in brain function via dynamic structural and functional interactions with neurons. Yet the underlying mechanisms remain poorly defined. A typical feature of astrocytes is the high expression of connexins, which mediate their extensive intercellular communication and regulate their structural properties. In particular, connexin 30 (Cx30), one of the two connexins abundantly expressed by astrocytes, was recently shown to be a critical regulator of excitatory synaptic transmission by controlling the astroglial coverage of synapses. However, the role of Cx30 in the regulation of inhibitory synaptic transmission and excitatory/inhibitory balance remains elusive. Here, we investigated the role of astroglial Cx30 on the electrophysiological and morphological properties of five classes of hippocampal CA1 stratum oriens and pyramidale neurons, defined by the unsupervised Ward's clustering. Using Cx30 knockout mice, we found that Cx30 alters specific properties of some subsets of CA1 interneurons, such as resting membrane potential and sag ratio, while other parameters, such as action potential threshold and saturation frequency, were more frequently altered among the different classes of neurons. The excitation-inhibition balance was also differentially and selectively modulated among the different neuron subtypes. Only slight morphological differences were observed on reconstructed neurons. Altogether, these data indicate that Cx30 differentially alters the electrophysiological and morphological properties of hippocampal cell populations, and modulates both their excitatory and inhibitory inputs. Astrocytes, via Cx30, are thus active modulators of both excitatory and inhibitory synapses in the hippocampus.


Subject(s)
Astrocytes , Hippocampus , Animals , Astrocytes/metabolism , Connexin 30/genetics , Connexin 30/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Interneurons/metabolism , Mice , Synapses/metabolism , Synaptic Transmission/physiology
16.
Front Cell Dev Biol ; 9: 647240, 2021.
Article in English | MEDLINE | ID: mdl-33718389

ABSTRACT

OBJECTIVE: To report the phenotypic heterogeneity of GJB2 c.235delC homozygotes associated with post-lingual and/or milder hearing loss, and explore the possible mechanism of these unconditional phenotypes. METHODS: Mutation screening of GJB2 was performed on all ascertained members from Family 1006983 and three sporadic patients by polymerase chain reaction (PCR) amplification and Sanger sequencing. Next generation sequencing (NGS) was successively performed on some of the affected members and normal controls from Family 1006983 to explore additional possible genetic codes. Reverse transcriptase-quantitative PCR was conducted to test the expression of Connexin30. RESULTS: We identified a Chinese autosomal recessive hearing loss family with the GJB2 c.235delC homozygous mutation, affected members from which had post-lingual moderate to profound hearing impairment, and three sporadic patients with post-lingual moderate hearing impairment, instead of congenital profound hearing loss. NGS showed no other particular variants. Overexpression of Connexin30 in some of these cases was verified. CONCLUSION: Post-lingual and/or moderate hearing impairment phenotypes of GJB2 c.235delC homozygotes are not the most common phenotype, revealing the heterogeneity of GJB2 pathogenic mutations. To determine the possible mechanism that rescues part of the hearing or postpones onset age of these cases, more cases are required to confirm both Connexin30 overexpression and the existence of modifier genes.

17.
Dis Model Mech ; 14(1)2021 01 26.
Article in English | MEDLINE | ID: mdl-33735099

ABSTRACT

Connexin 30 (Cx30; also known as Gjb6 when referring to the mouse gene) is expressed in ependymal cells of the brain ventricles, in leptomeningeal cells and in astrocytes rich in connexin 43 (Cx43), leading us to question whether patients harboring GJB6 mutations exhibit any brain anomalies. Here, we used mice harboring the human disease-associated A88V Cx30 mutation to address this gap in knowledge. Brain Cx30 levels were lower in male and female Cx30A88V/A88V mice compared with Cx30A88V/+ and Cx30+/+ mice, whereas Cx43 levels were lower only in female Cx30 mutant mice. Characterization of brain morphology revealed a disrupted ependymal cell layer, significant hydrocephalus and enlarged ventricles in 3- to 6-month-old adult male and female Cx30A88V/A88V mice compared with Cx30A88V/+ or Cx30+/+ sex-matched littermate mice. To determine the functional significance of these molecular and morphological changes, we investigated a number of behavioral activities in these mice. Interestingly, only female Cx30A88V/A88V mice exhibited abnormal behavior compared with all other groups. Cx30A88V/A88V female mice demonstrated increased locomotor and exploratory activity in both the open field and the elevated plus maze. They also exhibited dramatically reduced ability to learn the location of the escape platform during Morris water maze training, although they were able to swim as well as other genotypes. Our findings suggest that the homozygous A88V mutation in Cx30 causes major morphological changes in the brain of aging mice, possibly attributable to an abnormal ependymal cell layer. Remarkably, these changes had a more pronounced consequence for cognitive function in female mice, which is likely to be linked to the dysregulation of both Cx30 and Cx43 levels in the brain.


Subject(s)
Brain/metabolism , Connexin 30/genetics , Connexin 43/genetics , Hydrocephalus/genetics , Mutation , Animals , Astrocytes/metabolism , Behavior, Animal , Brain/pathology , Disease Models, Animal , Female , Gap Junctions/genetics , Homozygote , Male , Maze Learning , Mice , Mice, Mutant Strains , Neuroglia/metabolism , Sex Factors
18.
Front Cell Neurosci ; 15: 819194, 2021.
Article in English | MEDLINE | ID: mdl-35110999

ABSTRACT

GJB2 and GJB6 are adjacent genes encoding connexin 26 (Cx26) and connexin 30 (Cx30), respectively, with overlapping expressions in the inner ear. Both genes are associated with the commonest monogenic hearing disorder, recessive isolated deafness DFNB1. Cx26 plays an important role in auditory development, while the role of Cx30 in hearing remains controversial. Previous studies found that Cx30 knockout mice had severe hearing loss along with a 90% reduction in Cx26, while another Cx30 knockout mouse model showed normal hearing with nearly half of Cx26 preserved. In this study, we used CRISPR/Cas9 technology to establish a new Cx30 knockout mouse model (Cx30-/-), which preserves approximately 70% of Cx26. We found that the 1, 3, and 6-month-old Cx30-/- mice showed mild hearing loss at full frequency. Immunofluorescence and HE staining suggested no significant differences in microstructure of the cochlea between Cx30-/- mice and wild-type mice. However, transmission electron microscopy showed slight cavity-like damage in the stria vascularis of Cx30-/- mice. And Cx30 deficiency reduced the production of endocochlear potential (EP) and the release of ATP, which may have induced hearing loss. Taken together, this study showed that lack of Cx30 can lead to hearing loss with an approximately 30% reduction of Cx26 in the present Cx30 knockout model. Hence, Cx30 may play an important rather than redundant role in hearing development.

19.
Hear Res ; 400: 108137, 2021 02.
Article in English | MEDLINE | ID: mdl-33291008

ABSTRACT

In the cochlea, connexins 26 (Cx26) and 30 (Cx30) largely co-assemble into heteromeric gap junctions, which connect adjacent non-sensory epithelial cells. These channels are believed to ensure the rapid removal of K+ away from the base of sensory hair cells, resulting in K+ recycling back to the endolymph to maintain cochlear homeostasis. Many of the mutations in GJB2 and GJB6, which encode CX26 and CX30, impair the formation of membrane channels and cause autosomal hearing loss in humans. Although recent advances have been made, several important questions remain about connexin trafficking and gap junction biogenesis. Here we show that tricellular adherens junctions present at the crossroad between adjacent gap junction plaques, provide an unexpected cell surface delivery platform for Cx26/Cx30 oligomers. Using an in situ proximity ligation assay, we detected the presence of non-junctional Cx26/Cx30 oligomers within lipid raft-enriched tricellular junction sites. In addition, we observed that cadherin homophilic interactions are critically involved in microtubule-mediated trafficking of Cx26/Cx30 oligomers to the cell surface. Overall, our results unveil an unexpected role for tricellular junctions in the trafficking and assembly of membrane channels.


Subject(s)
Adherens Junctions , Cochlea , Connexin 26/genetics , Connexin 30 , Connexins/genetics , Gap Junctions , Humans
20.
Cells ; 9(5)2020 05 22.
Article in English | MEDLINE | ID: mdl-32455934

ABSTRACT

Nonsyndromic hearing loss (NSHL) is of great clinical importance, and mutations in the GJB2 gene and the encoded human CONNEXIN 26 (CX26) protein play important roles in the genetic pathogenesis. The CX26 p.R184Q mutation was shown to be a dominant-negative effect in our previous study. Previously, we also demonstrated that zebrafish Cx30.3 is orthologous to human CX26. In the present study, we established transgenic zebrafish models with mutated Cx30.3 specifically expressed in the supporting cells of zebrafish inner ears driven by the agr2 promoter, to demonstrate and understand the mechanism by which the human CX26 R.184 mutation causes NSHL. Our results indicated that significant structural changes in the inner ears of transgenic lines with mutations were measured and compared to wild-type zebrafish. Simultaneously, significant alterations of transgenic lines with mutations in swimming behavior were analyzed with the zebrafish behavioral assay. This is the first study to investigate the functional results of the CX26 p.R184Q mutation with in vivo disease models. Our work supports and confirms the pathogenic role of the CX26 p.R184Q mutation in NSHL, with a hypothesized mechanism of altered interaction among amino acids in the connexins.


Subject(s)
Connexin 26/genetics , Connexins/genetics , Deafness/genetics , Mutation/genetics , Zebrafish/genetics , Animals , Animals, Genetically Modified , Behavior, Animal , Biological Assay , Connexins/chemistry , Disease Models, Animal , Ear, Inner/metabolism , Ear, Inner/pathology , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Mutant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...