Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Animals (Basel) ; 14(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612243

ABSTRACT

Wetlands are among the most important habitats of highly wetland-dependent waterbirds but are subject to ongoing habitat loss and degradation owing to intensified anthropogenic activities. The scarcity of human and natural resources makes effective habitat protection an important concern. Here, we aimed to investigate waterbird habitat protection methods for Anhui Province, China, a critical stopover and wintering area on the East Asian-Australasian Flyway that features rich wetland resources subject to significant habitat loss and degradation. We evaluated the status and importance of 306 wintering waterbird habitats and identified the key environmental influences and current protection gaps using the entropy weights method and generalized additive modeling. We found 73 important habitats for waterbirds in Anhui Province, which were classified into levels of importance (descending from I to V) according to the natural discontinuity method. Level I and Level II habitats were mainly located in the Yangtze River floodplain and Level IV habitats in the Huaihe River floodplain. The gap analysis showed that 42 important waterbird habitats had protection gaps, accounting for 57.53% of the total area. Waterbird habitat importance was significantly correlated with elevation, normalized vegetation index, lake area, and lake circumference but not with distance from roads or population density. The results of this study provide scientific information for waterbird habitat conservation planning, which is crucial for maintaining wetland ecosystem functions.

2.
J Environ Manage ; 356: 120555, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38527384

ABSTRACT

Protected areas (PAs) possess generous biodiversity, making them great potential for human and wildlife well-being. Nevertheless, rising anthropogenic sounds may pose a serious challenge and threat to the habitats. Therefore, understanding the acoustic environments of PAs and implementing proper conservation strategies are essential for maintaining species richness within the territory. In this study, we investigate the spatial-temporal variations of soundscape distribution in the Dashanbao Protected Area (DPA) of China, ultimately discussing the planning and management strategies. Firstly, to systematically analyse the spatial-temporal soundscape distribution of the reserve, we generated single and multi-acoustic source maps by classifying geographical, biological, and anthropogenic sounds. In the region, we installed 35 recording points and collected sounds using the synchronic recording method. Secondly, we conducted Spearman correlation analyses to examine the relationships between the sound sources and i) temporal variations, ii) landscape feature indicators. Thirdly, we identified the dominant sound sources in the region and their conflict areas through the cross-analysis module of Grass Geographic Information Systems (GIS). Finally, we provided sound control strategies by discussing landscape indicators and land-use management policies. The results show that even though there is conservation planning in the DPA, anthropogenic sounds dominate in certain parts of the reserve depending on diurnal and seasonal cycles. This reveals deficiencies in the DPA's current planning concerning the soundscape and highlights the effectiveness of spatial-temporal mapping. Additionally, our correlation analyses demonstrate that landscape feature indicators can represent how sound environment is affected by landscape. The patch diversity (PD), landscape shape index (LSI), Shannon's Diversity Index (SHDI), woodland, shrubland, and water distance (WD) were identified as the primary predictors for both biological and anthropogenic sounds. None of the indicators exhibited a significant positive or negative correlation with geological sounds. Consequently, to enhance and conserve the acoustic quality of the region, spatial-temporal mapping with landscape indicators can be employed in the management and planning processes.


Subject(s)
Biodiversity , Ecosystem , Humans , Animals , Forests , Animals, Wild , Geography , Conservation of Natural Resources/methods
3.
Primates ; 65(2): 125-133, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38238485

ABSTRACT

The southern black-horned capuchin, Sapajus nigritus cucullatus, is considered Near Threatened on the IUCN Red List and Vulnerable in Argentina. The species is mainly threatened by habitat loss and fragmentation. The aim of this study was to compare range size, group size, and density in S. n. cucullatus groups between areas of continuous and fragmented habitat in the Atlantic Forest in Argentina. The study was carried out in two areas in northern Misiones province, one continuous and one anthropogenic fragment. Fieldwork was carried out for 5 days each month from November 2019 to March 2020 and from November 2020 to March 2021. SARS-CoV-2 restrictions meant we could not survey in the intervening period. Group counts were made on existing trails and subsequent group follows. We georeferenced encounters and follows to estimate home range sizes. We calculated density based on home range modeling using 100% minimum convex polygons (MCP), and compared these using generalized linear models (GLM). Smaller groups and lower density of S. n. cucullatus were found in continuous forest, with group sizes between 12 and 23 individuals, and density of 0.14 ind/ha, whereas in the fragmented forest, group sizes were between 32 and 36, with density of 0.62 ind/ha (n = 107; zero-inflated negative binomial regression [ZINB], p < 0.05). The higher density in forest fragments may be due to reduced dispersal ability. This work highlights data on species plasticity that could contribute to the development of conservation management strategies for S. n. cucullatus and its habitat.


Subject(s)
Cebinae , Forests , Sapajus , Humans , Animals , Ecosystem , Argentina
4.
Ecol Evol ; 14(1): e10844, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38230370

ABSTRACT

While the impact of introduced predators is a widely acknowledged issue and key component of conservation considerations for endemic waterbird populations in the Hawaiian Islands, the impact of native predators on endemic, endangered waterbirds is not as frequently discussed or factored into recovery models. The Pueo (Hawaiian Short-eared Owl; Asio flammeus sandwichensis) is a subspecies of Short-eared Owl endemic to the Hawaiian Islands and is State-listed as Endangered on the island of O'ahu. The Ae'o (Hawaiian Stilt; Himantopus mexicanus knudensi) is a subspecies of the Black-necked Stilt endemic to Hawai'i and is federally listed as Endangered throughout its range. A variety of non-native predators are confirmed to consume Ae'o eggs, chicks, and adults, including invasive mammals (e.g., feral cats), birds (e.g., Barn Owls), and amphibians (e.g., bullfrogs). While predation by native predators was suspected, there are no cases documented in the literature to date describing Pueo preying upon Ae'o. Here, we describe four events that provide evidence of Pueo predating Ae'o during the 2019-2021 breeding seasons in a wetland area on the island of O'ahu: (1) confirmed Pueo predating an Ae'o chick, (2) a suspected predation attempt of a Pueo chasing adult Ae'o, and (3) two suspected predation events based on (a) 10 adult-sized Ae'o carcasses and remains found near an active Pueo nest and (b) game camera photos of Pueo visiting two Ae'o nests. To our knowledge, these novel observations are the first published accounts of predator-prey interactions between these two subspecies.

5.
BMC Plant Biol ; 24(1): 11, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163918

ABSTRACT

BACKGROUND: Corybas taliensis is an endemic species of sky islands in China. Its habitat is fragile and unstable, and it is likely that the species is threatened. However, it is difficult to determine the conservation priority or unit without knowing the genetic background and the overall distribution of this species. In this study, we used double digest restriction-site associated DNA-sequencing (ddRAD-seq) to investigate the conservation genomics of C. taliensis. At the same time, we modeled the extent of suitable habitat for C. taliensis in present and future (2030 and 2090) habitat using the maximum-entropy (MaxEnt) model. RESULTS: The results suggested that the related C. fanjingshanensis belongs to C. taliensis and should not be considered a separate species. All the sampling locations were divided into three genetic groups: the Sichuan & Guizhou population (SG population), the Hengduan Mountains population (HD population) and Himalayan population (HM population), and we found that there was complex gene flow between the sampling locations of HD population. MT was distinct genetically from the other sampling locations due to the unique environment in Motuo. The genetic diversity (π, He) of C. taliensis was relatively high, but its contemporary effective population size (Ne) was small. C. taliensis might be currently affected by inbreeding depression, although its large population density may be able to reduce the effect of this. The predicted areas of suitable habitat currently found in higher mountains will not change significantly in the future, and these suitable habitats are predicted to spread to other higher mountains under future climate change. However, suitable habitat in relatively low altitude areas may disappear in the future. This suggests that C. taliensis will be caught in a 'summit trap' in low altitude areas, however, in contrast, the high altitude of the Himalaya and the Hengduan Mountains are predicted to act as 'biological refuges' for C. taliensis in the future. CONCLUSIONS: These results not only provide a new understanding of the genetic background and potential resource distribution of C. taliensis, but also lay the foundation for its conservation and management.


Subject(s)
Climate Change , Ecosystem , China , Sequence Analysis, DNA , Altitude
6.
Mol Ecol Resour ; 24(2): e13893, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37966259

ABSTRACT

Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed. Here, we review practical guidance to improve applied conservation genomics. We share insights aimed at ensuring effectiveness of conservation actions around three themes: (1) improving pedagogy and training in conservation genomics including for online global audiences, (2) conducting rigorous population genomic analyses properly considering theory, marker types and data interpretation and (3) facilitating communication and collaboration between managers and researchers. We aim to update students and professionals and expand their conservation toolkit with genomic principles and recent approaches for conserving and managing biodiversity. The biodiversity crisis is a global problem and, as such, requires international involvement, training, collaboration and frequent reviews of the literature and workshops as we do here.


Subject(s)
Conservation of Natural Resources , Genomics , Humans , Conservation of Natural Resources/methods , Biodiversity , Genome
7.
Pathogens ; 12(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38003761

ABSTRACT

The silver perch, Bidyanus bidyanus (Mitchell) (Terapontidae) is a freshwater fish, endemic to the Murray-Darling river system in south-eastern Australia. Population declines have led to the fish being listed as critically endangered by the Australian Government. Knowledge about parasites and diseases of wild populations of freshwater fish are limited in Australia. During an examination of wild-caught silver perch, digenean mesocercaria were observed in the head tissues. A total of five of the 11 silver perch collected from the Wakool River, New South Wales, were infected with mesocercaria. All mesocercaria were found in the head tissues; no mesocercaria were found encysted in the eye lens. The mesocercaria were found to belong to the family Strigeidae based on the sequences of their internal transcribed spacer (ITS) region. The lack of comparable sequences of strigeid digeneans from Australian hosts precludes being able to determine if the mesocercaria found in this study are a new species or representatives of an already described species. However, genetic results confirm that this is a different species to other digeneans previously described from silver perch, thus increasing the number of digeneans reported from B. bidyanus to three species. The presence of digenean mesocercaria in the head tissues of a wild population of silver perch, as found in the present study, is of potential conservation significance. Given the critically endangered conservation status of B. bidyanus, and previous evidence of strigeid infection altering fish behaviour, ecology, and predation mortality, further research on the potential impacts of infection on wild populations is warranted.

8.
Ecol Evol ; 13(11): e10686, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38020703

ABSTRACT

Metacommunity theory has advanced scientific understanding of how species interactions and spatial processes influence patterns of biodiversity and community structure across landscapes. While the central tenets of metacommunity theory have been promoted as pivotal considerations for conservation management, few field experiments have tested the validity of metacommunity predictions. Here, we tested one key prediction of metacommunity theory-that decreasing habitat connectivity should erode metacommunity structure by hindering species movement between patches. For 2 years, we manipulated an experimental old-field grassland ecosystem via mowing to represent four levels of habitat connectivity: (1) open control, (2) full connectivity, (3) partial connectivity, and (4) no connectivity. Within each treatment plot (10 × 10 m, n = 4 replicates), we measured the abundance and diversity (i.e., alpha and beta) of both flying and ground arthropods using sticky and pitfall traps, respectively. We found that the abundance and diversity of highly mobile flying arthropods were unaffected by habitat connectivity, whereas less mobile ground arthropods were highly impacted. The mean total abundance of ground arthropods was 2.5× and 2× higher in the control and partially connected plots compared to isolated patches, respectively. We also reveal that habitat connectivity affected the trophic interactions of ground arthropods, with predators (e.g., wolf spiders, ground spiders) being highly positively correlated with micro-detritivores (springtails, mites) but not macro-detritivores (millipedes, isopods) as habitat connectivity increased. Together these findings indicate that changes in habitat connectivity can alter the metacommunity structure for less mobile organisms such as ground arthropods. Because of their essential roles in terrestrial ecosystem functioning and services, we recommend that conservationists, restoration practitioners, and land managers include principles of habitat connectivity for ground arthropods when designing biodiversity management programs.

9.
Planta ; 258(6): 117, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957258

ABSTRACT

MAIN CONCLUSION: Environmental DNA-based monitoring provides critical insights for enhancing our understanding of plant-animal interactions in the context of worldwide biodiversity decrease for developing a global framework for effective plant biodiversity conservation. To understand the ecology and evolutionary patterns of plant-animal interactions (PAI) and their pivotal roles in ecosystem functioning advances in molecular ecology tools such as Environmental DNA (eDNA) provide unprecedented research avenues. These methods being non-destructive in comparison to traditional biodiversity monitoring methods, enhance the discernment of ecosystem health, integrity, and complex interactions. This review intends to offer a systematic and critical appraisal of the prospective of eDNA for investigating PAI. The review thoroughly discusses and analyzes the recent reports (2015-2022) employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) to outline the recent progression in eDNA approaches for elucidating PAI. The current review envisages that eDNA has a significant potential to monitor both plants and associated cohort of prospective pollinators (avian species and flowering plants, bees and plants, arthropods and plants, bats and plants, etc.). Furthermore, a brief description of the factors that influence the utility and interpretation of PAI eDNA is also presented. The review establishes that factors such as biotic and abiotic, primer selection and taxonomic resolution, and indeterminate spatio-temporal scales impact the availability and longevity of eDNA. The study also identified the limitations that influence PAI detection and suggested possible solutions for better execution of these molecular approaches. Overcoming these research caveats will augment the assortment of PAI analysis through eDNA that could be vital for ecosystem health and integrity. This review forms a critical guide and offers prominent insights for ecologists, environmental managers and researchers to assess and evaluate plant-animal interaction through environmental DNA.


Subject(s)
DNA, Environmental , Ecosystem , Animals , Biodiversity , DNA Barcoding, Taxonomic/methods , Ecology , Environmental Monitoring/methods , Plants/genetics
10.
Zool Res ; 44(5): 860-866, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37537140

ABSTRACT

Animals that live in seasonal environments adjust their reproduction cycle to optimize seasonal forage quality. Giant pandas ( Ailuropoda melanoleuca) are seasonal altitudinal migrants that feed on bamboo shoots and leaves with different nutritional quality. However, the importance of bamboo shoots to giant pandas, especially small and isolated populations, is not fully appreciated. Here, we explored whether mating time of giant pandas is shaped by bamboo shoot phenology. We also assessed the intensity of ongoing bamboo shoot harvesting by local communities in 42 giant panda reserves based on questionnaire surveys. Varying intensity and protection levels of bamboo shoot harvesting were found. From these data, we developed a priority ranking scheme of protection areas for this key food resource. Our study showed that pandas time their mating behavior to coincide with bamboo shoot phenology due to the high nutritional demands associated with mating and pregnancy. We also found that bamboo shoots were not well protected in many places. Liangshan, Daxiangling, and Xiaoxiangling, containing the most isolated panda populations, were identified as the areas with the most urgent need of protection. Furthermore, equal attention should be paid to the QiongL-B population, as this region holds considerable potential to serve as a corridor between the Minshan and Qionglai populations. To address the challenges posed by bamboo shoot harvesting, we recommend establishing more practical bamboo shoot management policies, increasing public awareness of bamboo shoot protection, and providing alternative sources of income for local communities.


Subject(s)
Conservation of Natural Resources , Ursidae , Animals , Animal Feed
11.
Front Plant Sci ; 14: 1184556, 2023.
Article in English | MEDLINE | ID: mdl-37564387

ABSTRACT

Human activities and climate change have significantly impacted the quantity and sustainable utilization of medicinal plants. Gentiana manshurica Kitagawa, a high-quality original species of Gentianae Radix et Rhizoma, has significant medicinal value. However, wild resources have experienced a sharp decline due to human excavation, habitat destruction, and other factors. Consequently, it has been classified as an Endangered (EN) species on the IUCN Red List and is considered a third-level national key-protected medicinal material in China. The effects of climate change on G. manshurica are not yet known in the context of the severe negative impacts of climate change on most species. In this study, an optimized MaxEnt model was used to predict the current and future potential distribution of G. manshurica. In addition, land use data in 1980, 2000, and 2020 were used to calculate habitat quality by InVEST model and landscape fragmentation by the Fragstats model. Finally, using the above-calculated results, the priority protection areas and wild tending areas of G. manshurica were planned in ZONATION software. The results show that the suitable area is mainly distributed in the central part of the Songnen Plain. Bio15, bio03, bio01, and clay content are the environmental variables affecting the distribution. In general, the future potential distribution is expected to show an increasing trend. However, the species is expected to become threatened as carbon emission scenarios and years increase gradually. At worst, the high suitability area is expected to disappear completely under SSP585-2090s. Combined with the t-test, this could be due to pressure from bio01. The migration trends of climate niche centroid are inconsistent and do not all move to higher latitudes under different carbon emission scenarios. Over the past 40 years, habitat quality in the current potential distribution has declined yearly, and natural habitat has gradually fragmented. Existing reserves protect only 9.52% of G. manshurica's priority conservation area. To avoid extinction risk and increase the practicality of the results, we clarified the hotspot counties of priority protection area gaps and wild tending areas. These results can provide an essential reference and decision basis for effectively protecting G. manshurica under climate change.

12.
Int J Parasitol Parasites Wildl ; 21: 255-263, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37483309

ABSTRACT

Although parasites make up a substantial proportion of the biotic component of ecosystems, in terms of both biomass and number of species, they are rarely considered in conservation planning, except where they are thought to pose a threat to the conservation of their hosts. In this review, we address a number of unresolved questions concerning parasite conservation. Arguments for conserving parasite species refer to the intrinsic value conferred by their evolutionary heritage and potential, their functional role in the provision of ecosystem services, and their value as indicators of ecosystem quality. We propose that proper consideration of these arguments mean that it is not logically defensible to automatically exclude parasite species from conservation decisions; rather, endangered hosts and parasites should be considered together as a threatened ecological community. The extent to which parasites are threatened with extinction is difficult to estimate with any degree of confidence, because so many parasite species have yet to be identified and, even for those which have been formally described, we have limited information on the factors affecting their distribution and abundance. This lack of ecological information may partially explain the under-representation of parasites on threatened species lists. Effective conservation of parasites requires maintaining access to suitable hosts and the ecological conditions that permit successful transmission between hosts. When implementing recovery plans for threatened host species, this may be best achieved by attempting to restore the ecological conditions that maintain the host and its parasite fauna in dynamic equilibrium. Ecosystem-centred conservation may be a more effective strategy than species-centred (or host-parasite community-centred) approaches for preventing extinction of parasites, but the criteria which are typically used to identify protected areas do not provide information on the ecological conditions required for effective transmission. We propose a simple decision tree to aid the identification of appropriate conservation actions for threatened parasites.

13.
Animals (Basel) ; 13(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37443923

ABSTRACT

Few studies test whether education can help increase support for wildlife management interventions. This mixed methods study sought to test the importance of educating a community on the use of a baboon-proof electric fence to mitigate negative interactions between humans and Chacma baboons (Papio ursinus) in a residential suburb of the City of Cape Town, South Africa. An educational video on the welfare, conservation and lifestyle benefits of a baboon-proof electric fence was included in a short online survey. The positioning of the video within the survey was randomised either to fall before or after questions probing the level of support for an electric fence. The results showed that watching the video before most survey questions increased the average marginal probability of supporting an electric fence by 15 percentage points. The study also explored whether the educational video could change people's minds. Those who saw the video towards the end of the survey were questioned again about the electric fence. Many changed their minds after watching the video, with support for the fence increasing from 36% to 50%. Of these respondents, the results show that being female raised the average marginal probability of someone changing their mind in favour of supporting the fence by 19%. Qualitative analysis revealed that support for or against the fence was multi-layered and that costs and concern for baboons were not the only relevant factors influencing people's choices. Conservation often needs to change people's behaviours. We need to know what interventions are effective. We show in the real world that an educational video can be effective and can moderately change people's opinions and that women are more likely to change their position in light of the facts than men. This study contributes to the emerging literature on the importance of education in managing conservation conflicts and the need for evidence-based interventions.

14.
Environ Sci Pollut Res Int ; 30(40): 92581-92593, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37493908

ABSTRACT

Amphibian populations are declining worldwide. These declines are caused by a variety of factors, one of which is the use of fertilizers in agriculture. This is especially true for tadpoles, which may develop in fertilizer-polluted agricultural water bodies. Nevertheless, there is little data on the toxicological consequences of fertilizers on amphibians. The goal of this study was to determine the acute and chronic toxicity of urea fertilizer on marsh frogs' (Pelophylax sp.) embryonic, larval, and metamorphic stages. For this purpose, in a static-renewal test, individuals were exposed to twelve nominal concentrations (0 to 15000 mg/L) of urea for 122 days to determine hatching success, survival, growth, development, and metamorphic traits, as well as histological consequences. Based on the results, at concentrations greater than 500 mg/L, no hatching occurred. Survivorship was unaffected for the first 72 hours, but it reached 0% on day 26 at concentrations greater than 150 mg/L. Survival and development rates decreased significantly in 100 and 150 mg/L treatments after a longer duration (day 86). Growth was reduced as well, but it was only significant at 150 mg/L. Metamorphosis time and percentage were significantly impacted, but not metamorphosis size. Increased urea fertilizer concentrations had significant histopathological consequences for the skin, gills, liver, kidneys, and striated muscles. Our results suggest that urea fertilizer, at concentrations commonly found in agroecosystems, may pose a serious threat to temperate anuran species inhabiting these conditions.


Subject(s)
Fertilizers , Urea , Humans , Animals , Larva , Wetlands , Anura , Metamorphosis, Biological
15.
Heliyon ; 9(6): e17405, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37416643

ABSTRACT

Globally, endemic species and natural habitats have been significantly impacted by climate change, and further considerable impacts are predicted. Therefore, understanding how endemic species are impacted by climate change can aid in advancing the necessary conservation initiatives. The use of niche modeling is becoming a popular topic in biological conservation to forecast changes in species distributions under various climate change scenarios. This study used the Australian Community Climate and Earth System Simulator version 1 (ACCESS-CM2) general circulation model of coupled model intercomparison project phase 6 (CMIP6) to model the current distribution of suitable habitat for the four threatened Annonaceae species endemic to East Africa (EA), to determine the impact of climate change on their suitable habitat in the years 2050 (average for 2041-2060) and 2070 (average for 2061-2080). Two shared socio-economic pathways (SSPs) SSP370 and SSP585 were used to project the contraction and expansion of suitable habitats for Uvariodendron kirkii, Uvaria kirkii, Uvariodendron dzomboense and Asteranthe asterias endemic to Kenya and Tanzania in EA. The current distribution for all four species is highly influenced by precipitation, temperature, and environmental factors (population, potential evapotranspiration, and aridity index). Although the loss of the original suitable habitat is anticipated to be significant, appropriate habitat expansion and contraction are projections for all species. More than 70% and 40% of the original habitats of Uvariodendron dzombense and Uvariodendron kirkii are predicted to be destroyed by climate change, respectively. Based on our research, we suggest that areas that are expected to shrink owing to climate change be classified as important protection zones for the preservation of Annonaceae species.

16.
Glob Chang Biol ; 29(18): 5224-5239, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37430455

ABSTRACT

Climate change, habitat loss, and human disturbance are major threats to biodiversity. Protecting habitats plays a pivotal role in biodiversity conservation, and there is a global imperative to establish an effective system of protected areas (PAs) to implement habitat conservation and halt biodiversity decline. However, the protected patch size of habitat for a species is just as important for biodiversity conservation as the expansion of areas already under protection. In China, conservation management is often carried out based on administrative divisions. Therefore, here, an analytical conservation management framework was developed based on administrative divisions to assess whether the current network of PAs can effectively meet species' conservation needs using the minimum area requirements (MARs) of species as criteria for medium and large-sized mammals in China. This study found that the MAR of medium and large-sized mammals was larger in the northwest and smaller in the southeast, while taking the Hu line as the dividing line. Precipitation seasonality, elevation, annual mean temperature, and annual precipitation are the main environmental factors driving the distribution of a species MAR. Compared with MAR for each species, the maximum protected patch size of habitat is severely undersized in most provinces where those species primarily distribute, and this is particularly true for large carnivores and threatened species. The densely populated provinces of eastern China are particularly affected by this. The present study's framework can identify the provinces needing to expand PAs or implement other effective area-based conservation measures and habitat restoration. This analytical framework is also relevant for biodiversity conservation in different taxa and regions around the globe.

17.
PeerJ ; 11: e15162, 2023.
Article in English | MEDLINE | ID: mdl-37013142

ABSTRACT

Background: Hydrothermal vents, cold seeps, pockmarks and seamounts are widely distributed on the ocean floor. Over the last fifty years, the knowledge about these volcanic-associated marine ecosystems has notably increased, yet available information is still limited, scattered, and unsuitable to support decision-making processes for the conservation and management of the marine environment. Methods: Here we searched the Scopus database and the platform Web of Science to collect the scientific information available for these ecosystems in the Mediterranean Sea. The collected literature and the bio-geographic and population variables extracted are provided into a systematic map as an online tool that includes an updated database searchable through a user-friendly R-shiny app. Results: The 433 literature items with almost one thousand observations provided evidence of more than 100 different volcanic-associated marine ecosystem sites, mostly distributed in the shallow waters of the Mediterranean Sea. Less than 30% of these sites are currently included in protected or regulated areas. The updated database available in the R-shiny app is a tool that could guide the implementation of more effective protection measures for volcanic-associated marine ecosystems in the Mediterranean Sea within existing management instruments under the EU Habitats Directive. Moreover, the information provided in this study could aid policymakers in defining the priorities for the future protection measures needed to achieve the targets of the UN Agenda 2030.


Subject(s)
Ecosystem , Hydrothermal Vents , Mediterranean Sea , Biodiversity , Bibliometrics
18.
Animals (Basel) ; 13(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37106848

ABSTRACT

Leatherback turtles migrate long distances between nesting beaches and distant foraging areas worldwide. This study analyzes the genetic diversity, life history stage, spatiotemporal distribution, and associated threats of a foraging aggregation in the Southwest Atlantic Ocean. A total of 242 leatherbacks stranded or bycaught by artisanal fisheries were recorded from 1997 to 2021 in Uruguay, with sizes ranging from 110.0 to 170.0 cm carapace lengths, indicating that the aggregation is composed of large juveniles and adults. Results of Bayesian mixed-stock analysis show that leatherbacks come primarily from the West African rookeries, based on mitochondrial DNA sequences obtained from 59 of the turtles representing seven haplotypes, including a novel one (Dc1.7). The main threat identified in the area is the fisheries bycatch but most of the carcasses observed were badly decomposed. There was significant seasonal and interannual variability in strandings that is likely associated with the availability of prey and the intensity of the fishing effort. Taken together, these findings reinforce the importance of these South American foraging areas for leatherbacks and the need to determine regional habitat use and migratory routes across the broader Atlantic region, in order to develop effective conservation measures to mitigate threats both at nesting beaches and foraging areas.

19.
Ecol Lett ; 26(5): 805-815, 2023 May.
Article in English | MEDLINE | ID: mdl-36946283

ABSTRACT

Species' distributions are moving polewards in response to climate change, and although range expansions of relatively warm-adapted species are widely reported, reports of range retractions in cool-adapted species are less common. Here, we analysed species' distribution shifts for 76 cool-adapted moths in Great Britain using citizen science occurrence records from the National Moth Recording Scheme over a 40-year period. Although we find evidence for trailing edge shifts to higher latitudes, shifts in species' range centroids are oriented towards the north-west, and are more closely correlated with directional changes in total precipitation than average temperature. We also found that species' local extinction risk is higher in areas where temperature is high and precipitation is low, but this risk diminishes as precipitation increases. Adaptation efforts should therefore focus on maintaining or increasing water availability as the climate continues to change.


Subject(s)
Moths , Animals , Temperature , Acclimatization , Adaptation, Physiological , Climate Change , Ecosystem
20.
J Environ Manage ; 337: 117709, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36989919

ABSTRACT

Eutrophication due to elevated nitrogen (N) and phosphorus (P) loss from croplands remains one of the most pressing water quality issues throughout the world. Understanding the effect of implementing conservation management practices is critical for meeting nutrient reduction goals as well as informing conservation programs and policies. A before-after-control-impact (BACI) analysis was used to evaluate the individual and combined effect of cover crops and manure application rate on discharge and nutrient loss using six water years (WY2014-WY2019) of measured data across four distinct drainage zones (1X-NCC; 1X-CC; 2X-NCC; 2X-CC) within an Ohio, USA, crop production field. White mustard significantly reduced mean monthly nitrate (NO3--N) concentration regardless of manure application rate (i.e., 65 m3 ha-1 and 130 m3 ha-1). However, neither the use of white mustard, doubling manure rate, or the combination of the two had a significant impact on mean monthly drainage discharge, dissolved-reactive P (DRP), or total P (TP) loss. Seasonal analysis confirmed that NO3--N concentration in the cover crop zones was signficantly less in fall, winter, and spring. However, significant increases in spring discharge, NO3--N, DRP, and TP loads as well as TP concentration were noted with cover crop and greater manure rate treatments. These findings confirm that cover crops have a reducing effect on NO3--N concentration but may not have any effect on addressing P concerns. Further research is warranted; however, this study highlights that the resource concern (e.g., N or P) should be considered prior to implementing cover crops as a conservation management practice.


Subject(s)
Agriculture , Manure , Manure/analysis , Crop Production , Water Quality , Phosphorus/analysis , Nitrogen/analysis , Nutrients
SELECTION OF CITATIONS
SEARCH DETAIL
...