Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 567
Filter
1.
J Biomech ; 176: 112309, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39260233

ABSTRACT

One of the main causes of implant failure and revision surgery in total hip replacement (THR) is aseptic loosening often caused by the accumulation of wear debris arising between the contact surfaces of the acetabular cup and femoral head during activities of daily living (ADL's). However, limited information is available regarding the contact force pathways between these two surfaces during specific ADL's. In this study, through musculoskeletal modelling, we aimed to estimate the orientation of the hip contact force pathway on the acetabular cup. One hundred and thirty-two THR patients underwent motion capture analysis whilst undertaking locomotor and non-locomotor ADL's. Musculoskeletal simulations were performed to calculate contact force pathways using inverse dynamics analysis. We then qualitatively compared differences in the contact force pathways between patients and between ADL's. Walking resulted in a typical figure-of-eight pattern, with the peak contact forces occurring in the superior-anterior area of the cup. The non-locomotive activities such as stand up, sit down and squat had a more linear shape, spanning across the superior-posterior quarter of the cup. Our results showed a large inter-patient variability in the shape and location of the contact force pathway. There is a distinct difference in the location and shape of the pathway between locomotor and non-locomotor activities and this could result in different wear accumulations. These results could enhance our understanding why revision rates vary across the population and could inform the development of personalised implant design.

2.
Heliyon ; 10(17): e36931, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39281588

ABSTRACT

Objective: This study aim to quantify the differences in knee biomechanics during gait between knee osteoarthritis (KOA) patients and healthy individuals. Methods: Twenty KOA patients (4 males and 16 females, 66.2 ± 7.7 years) and twenty controls (16 males and 4 females, 64.8 ± 5.4 years) were recruited for gait test using the motion capture system and force-platform system. The spatiotemporal parameters, knee kinematics and kinetics, and tibiofemoral contact force (TFCF) were calculated using an improved musculoskeletal model. Results: KOA patients walked with reduced speed (48.6 %), stride length (32.9 %), stride height (33.0 %), time proportions of single-support phases (19.2 %), increased gait cycle time (31.0 %), time proportions of stance (8.5 %) and double-support phases (57.7-75.9 %). KOA patients had significant smaller peak flexion angle (29.1 %), flexion ROM (50.6 %) and peak flexion moment (90.2 %), greater peak adduction moment (KAM) (40.7 %), peak rotation moments (KRM) (50.0 %), KAM impulse (106.2 %) and KRM impulse (126.0 %). In proximodistal direction, greater medial TFCF impulse (238 %), total and medial first-peak TFCF (9.6 % and 15.2 %), and smaller lateral peak TFCF (33.3 %) and TFCF impulse (38.4 %) were found in KOA patients. Besides, significant differences were found in the total, medial and lateral peak TFCFs and TFCF impulses in mediolateral direction, and the medial and lateral TFCFs and TFCF impulses in anteroposterior direction. Conclusions: Significant differences were found in the spatiotemporal parameters, knee kinematics and kinetics, and TFCF between the two groups. The results of this study have important implication for clinicians and rehabilitation physicians. These quantified biomechanical differences can provide data support for the personalized and quantified rehabilitation strategies, give suggestions for the exercises of KOA patients, help monitor disease, evaluate surgical treatment, and develop more effective preoperative planning and postoperative rehabilitation strategies.

3.
Heart Rhythm ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39304002

ABSTRACT

BACKGROUND: Data regarding the effects of pulsed field ablation (PFA) on atrioventricular nodal reentrant tachycardia (AVNRT) are limited. OBJECTIVE: This study was undertaken to evaluate the outcomes of PFA for AVNRT and its impact on dual-pathway electrophysiology. METHODS: A larger cohort of patients with typical AVNRT underwent slow pathway (SP) modification (SPM) using a focal PFA catheter in a biphasic/bipolar manner. The primary endpoints were the efficacy and safety of PFA during the procedure and at 6-month follow-up. RESULTS: The acute success of SPM was achieved in all 40 patients. The total ablation time was 7.9 ± 3.8 seconds for 6.4 ± 2.2 ablation sites (ASs). Slow junctional rhythm (SJR) was induced in 32 (80%) patients, lasting 28.9 ± 10.3 seconds in 3.0 ± 1.1 ASs per patient. SP was located 11.1 ± 1.2 mm from the largest His activation (LHA). At 9 ASs, SJR could be reinduced after an increase of contact force (CF) from 1.3 ± 0.5g to 6.4 ± 1.3 g (P < .0001). Transient atrioventricular block (AVB) was recorded in 7 (17.5%) patients (1 second-degree and 6 third-degree AVB) lasting 435.3 ± 227.4 seconds, with a shorter AS-LHA distance than patients without AVB (7.7 ± 0.6 mm vs. 11.3 ± 1 mm; P < .0001). PFA-related delayed atrial-His (n = 6) and His-atrial (n = 1) conduction preceded transient AVB with a constant His-ventricular interval. Normal PR interval was restored within 24 hours. All patients maintained sinus rhythm without any significant adverse events during 6-month follow-up. CONCLUSION: Despite the high efficiency of PFA for SPM, the notable incidence of transient AVB warranted caution when applying it near the His bundle. SJR frequently occurred during SPM and was dependent on moderate CF.

4.
Heart Rhythm ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39293497

ABSTRACT

BACKGROUND: Acutely effective repeated radiofrequency catheter ablation (RFCA) after previous atrial fibrillation ablation depends on several parameters, including local impedance (LI), contact force (CF), and power. OBJECTIVE: We aimed to investigate the relationship of LI, CF, and power to the LI drop in a repeated atrial RFCA environment. METHODS: Consecutive patients undergoing repeated atrial RFCA were studied. High-quality local electrograms were analyzed for morphology changes indicating effective RFCA and associated LI dynamics. The influence of baseline LI, mean CF, and power on the LI drop was analyzed. Investigated power levels included ≤25 W, 30 W, and ≥40 W. RESULTS: There were 1390 RFCA points from 48 patients (48% female; median age, 70 years) analyzed; 40.5% of 309 analyzed electrograms showed effective RFCA morphology changes with a higher median LI drop (effective, 19.7 Ω; partially effective, 14.1 Ω; P < .001). CF showed the highest correlation to the LI drop within high baseline LI and when applying ≥40 W (low baseline LI, R = 0.39; intermediate, R = 0.66; high, R = 0.72). Within low baseline LI regions, CF levels showed a lower correlation to the LI drop (≤25 W, R = 0.30; 30 W, R = 0.35; ≥40 W, R = 0.39). A mean CF ≥10 g resulted in elevated LI drops with higher power compared with lower power within all baseline LI tertiles (P < .001 each). CONCLUSION: Within high baseline LI regions, CF plays a greater role for the maximum LI drop when higher power is chosen. A mean CF ≥10 g ensures increased LI drops with increasing power levels.

5.
Gait Posture ; 114: 108-111, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39317028

ABSTRACT

BACKGROUND: Anatomical parameters of the pelvis, femur, and tibia derived from the full-length radiograph can be used to create a more accurate musculoskeletal model compared to marker-based linear scaling method. However, whether this model leads to more accurate estimations of medial knee contact force (MCF) and lateral knee contact force (LCF) than marker-based linear scaling method is still unknown. RESEARCH QUESTION: This main purpose of this study was to determine whether musculoskeletal model generated from full-length radiograph improves the estimations of MCF and LCF. METHODS: An open-source dataset including marker trajectories, ground reaction forces, in vivo knee contact forces, and full-length radiograph was used to evaluate the accuracy of full-length radiograph musculoskeletal modeling method. Subject-specific musculoskeletal models were created using anatomical parameters derived from the full-length radiograph or marker-based linear scaling methods. MCF and LCF were estimated using musculoskeletal simulations of normal walking trails. The accuracy of modeling methods was determined by comparing the estimated and in vivo measured MCF and LCF. RESULTS: Compared to the marker-based linear scaling approach, the full-length radiograph musculoskeletal modeling method exhibited decreases of 38.3 % and 41.3 % in root mean square error for MCF and LCF respectively, as well as reductions of 50.0 % and 49.3 % in mean peak errors for MCF and LCF respectively. SIGNIFICANCE: The full-length radiograph musculoskeletal modeling method provides a more accurate way to estimate MCF and LCF compared to the traditional maker-based linear scaling approach, which may contribute to understand the initiation, progression, and treatment of OA.

6.
Pacing Clin Electrophysiol ; 47(10): 1404-1411, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39107948

ABSTRACT

BACKGROUND: When using lesion size index (LSI) to guide catheter ablation, it is unclear what combination of power, contact force and time would be preferable to use and what LSI target value to aim for. This study aimed at identifying desirable ablation settings and LSI targets by using tissue impedance drop as indicator of lesion formation. METHODS: Consecutive patients, undergoing their first left atrial (LA) catheter ablation for atrial fibrillation, with radiofrequency energy (RF) powers of 20, 30 and 40 W were enrolled. Tissue impedance, contact force (CF), Force Time Integral (FTI) and LSI values were continuously recorded during ablation and sampled at 100 Hz. Mean CF and Contact Force Variability (CFV) were calculated for every lesion. The effect of RF power, ablation time, CF and CFV on impedance drop and LSI were assessed. RESULTS: A total of 3258 lesions were included in the analysis. For any target LSI value, use of higher RF powers translated into progressively higher impedance drops. The impact of lower CF and higher CFV on impedance drop was more relevant when using lower powers. Target LSI values corresponding to maximum impedance drop were identified depending on RF power, mean CF and CFV used. CONCLUSIONS: Even in the context of an LSI-guided ablation strategy, use of lower or higher powers might lead to different lesion sizes. Different LSI targets might be needed depending on the combination of RF power, CF and CFV used for ablation. Incorporating indicators of catheter stability, like CFV, in the LSI formula could improve the predictive value of LSI for lesion size. Studies with clinical outcomes are required to confirm the clinical relevance of these findings.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Electric Impedance , Humans , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Catheter Ablation/methods , Male , Female , Middle Aged , Aged , Treatment Outcome
7.
Clin Orthop Surg ; 16(4): 570-577, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092300

ABSTRACT

Background: Increased load bearing across the patellofemoral and tibiofemoral articulations has been associated with total knee arthroplasty (TKA) complications. Therefore, the purpose of this study was to quantify the biomechanical characteristics of the patellofemoral and tibiofemoral joints and simulate varying weight-bearing demands after posterior cruciate ligament-retaining (CR) and posterior-stabilized (PS) TKAs. Methods: Eight fresh-frozen cadaveric knees (average age, 68.4 years; range, 40-86 years) were tested using a custom knee system with muscle-loading capabilities. The TKA knees were tested with a CR and then a PS TKA implant and were loaded at 6 different flexion angles from 15° to 90° with progressively increasing loads. The independent variables were the implant types (CR and PS TKA), progressively increased loading, and knee flexion angle (KFA). The dependent variables were the patellofemoral and tibiofemoral kinematics and contact characteristics. Results: The results showed that at higher KFAs, the position of the femur translated significantly more posterior in CR implants than in PS implants (36.6 ± 5.2 mm and 32.5 ± 5.7 mm, respectively). The patellofemoral contact force and contact area were significantly greater in PS than in CR implants at higher KFAs and loads (102.4 ± 12.5 N and 88.1 ± 10.9 N, respectively). Lastly, the tibiofemoral contact force was significantly greater in the CR than the PS implant at flexion angles of 45°, 60°, 75°, and 90° KFA, the average at these flexion angles for all loads tested being 246.1 ± 42.1 N and 192.8 ± 54.8 N for CR and PS implants, respectively. Conclusions: In this biomechanical study, CR TKAs showed less patellofemoral contact force, but more tibiofemoral contact force than PS TKAs. For higher loads across the joint and at increased flexion angles, there was significantly more posterior femur translation in the CR design with a preserved posterior cruciate ligament and therefore significantly less patellofemoral contact area and force than in the PS design. The different effects of loading on implants are an important consideration for physicians as patients with higher load demands should consider the significantly greater patellofemoral contact force and area of the PS over the CR design.


Subject(s)
Arthroplasty, Replacement, Knee , Posterior Cruciate Ligament , Weight-Bearing , Humans , Aged , Biomechanical Phenomena , Aged, 80 and over , Weight-Bearing/physiology , Middle Aged , Posterior Cruciate Ligament/surgery , Adult , Male , Female , Cadaver , Knee Joint/surgery , Knee Joint/physiology , Knee Prosthesis , Patellofemoral Joint/surgery , Patellofemoral Joint/physiology , Range of Motion, Articular
8.
Ann Biomed Eng ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097542

ABSTRACT

PURPOSE: Estimating loading of the knee joint may be helpful in managing degenerative joint diseases. Contemporary methods to estimate loading involve calculating knee joint contact forces using musculoskeletal modeling and simulation from motion capture (MOCAP) data, which must be collected in a specialized environment and analyzed by a trained expert. To make the estimation of knee joint loading more accessible, simple input predictors should be used for predicting knee joint loading using artificial neural networks. METHODS: We trained feedforward artificial neural networks (ANNs) to predict knee joint loading peaks from the mass, height, age, sex, walking speed, and knee flexion angle (KFA) of subjects using their existing MOCAP data. We also collected an independent MOCAP dataset while recording walking with a video camera (VC) and inertial measurement units (IMUs). We quantified the prediction accuracy of the ANNs using walking speed and KFA estimates from (1) MOCAP data, (2) VC data, and (3) IMU data separately (i.e., we quantified three sets of prediction accuracy metrics). RESULTS: Using portable modalities, we achieved prediction accuracies between 0.13 and 0.37 root mean square error normalized to the mean of the musculoskeletal analysis-based reference values. The correlation between the predicted and reference loading peaks varied between 0.65 and 0.91. This was comparable to the prediction accuracies obtained when obtaining predictors from motion capture data. DISCUSSION: The prediction results show that both VCs and IMUs can be used to estimate predictors that can be used in estimating knee joint loading outside the motion laboratory. Future studies should investigate the usability of the methods in an out-of-laboratory setting.

9.
Med Biol Eng Comput ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046692

ABSTRACT

The estimation of joint contact forces in musculoskeletal multibody dynamics models typically requires the use of expensive and time-consuming technologies, such as reflective marker-based motion capture (Mocap) system. In this study, we aim to propose a more accessible and cost-effective solution that utilizes the dual smartphone videos (SPV)-driven musculoskeletal multibody dynamics modeling workflow to estimate the lower limb mechanics. Twelve participants were recruited to collect marker trajectory data, force plate data, and motion videos during walking and running. The smartphone videos were initially analyzed using the OpenCap platform to identify key joint points and anatomical markers. The markers were used as inputs for the musculoskeletal multibody dynamics model to calculate the lower limb joint kinematics, joint contact forces, and ground reaction forces, which were then evaluated by the Mocap-based workflow. The root mean square error (RMSE), mean absolute deviation (MAD), and Pearson correlation coefficient (ρ) were adopted to evaluate the results. Excellent or strong Pearson correlations were observed in most lower limb joint angles (ρ = 0.74 ~ 0.94). The averaged MADs and RMSEs for the joint angles were 1.93 ~ 6.56° and 2.14 ~ 7.08°, respectively. Excellent or strong Pearson correlations were observed in most lower limb joint contact forces and ground reaction forces (ρ = 0.78 ~ 0.92). The averaged MADs and RMSEs for the joint lower limb joint contact forces were 0.18 ~ 1.07 bodyweight (BW) and 0.28 ~ 1.32 BW, respectively. Overall, the proposed smartphone video-driven musculoskeletal multibody dynamics simulation workflow demonstrated reliable accuracy in predicting lower limb mechanics and ground reaction forces, which has the potential to expedite gait dynamics analysis in a clinical setting.

10.
Article in English | MEDLINE | ID: mdl-38972960

ABSTRACT

BACKGROUND: The combination of highly localized impedance (LI) and contact force (CF) may improve tissue characterization and lesion prediction during radiofrequency (RF) pulmonary vein isolation (PVI) in patients with atrial fibrillation (AF). OBJECTIVE: We report the outcomes of our acute and long-term clinical evaluation of CF-LI-guided PVI in consecutive AF ablation cases from an international multicenter clinical setting. METHODS: Three hundred twenty-four consecutive patients from 20 European centers undergoing RF catheter ablation with the Stablepoint™ catheter were enrolled in the CHARISMA registry. Of these, 275 had a minimum follow-up of 1 year and were included in the primary analysis. RESULTS: The mean procedure duration was 115 ± 47 min, and the mean fluoroscopy time was 9.9 ± 6 min. At the end of the procedures, all PVs had been successfully isolated in all study patients. Minor complications were reported in 12 patients (4.4%). At 1 year, 36 (13.1%) patients had had an AF recurrence, and freedom from antiarrhythmic drugs and AF recurrence was achieved in 228 (82.9%) patients. The recurrence rate was higher in patients with persistent AF (21/116, 18.1%) than in those with paroxysmal AF (15/159, 9.4%; p = 0.0459). On multivariate logistic analysis adjusted for baseline confounders, only time > 6 months from first diagnosis of AF to ablation (HR = 2.93, 95%CI 1.03 to 8.36, p = 0.0459) was independently associated with recurrences. CONCLUSION: An ablation strategy for PVI guided by CF-LI technology proved safe and effective and resulted in a low recurrence rate of AF over 1-year follow-up, irrespective of the underlying AF type. CLINICAL TRIAL REGISTRATION: Catheter Ablation of Arrhythmias with a High-Density Mapping System in Real-World Practice. (CHARISMA). URL: http://clinicaltrials.gov/ Identifier: NCT03793998.

11.
Rev Cardiovasc Med ; 25(2): 44, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39077337

ABSTRACT

Atrial fibrillation (AF) is a prevalent arrhythmia, while pulmonary vein isolation (PVI) has become a cornerstone in its treatment. The creation of durable lesions is crucial for successful and long-lasting PVI, as inconsistent lesions lead to reconnections and recurrence after ablation. Various approaches have been developed to assess lesion quality and transmurality in vivo, acting as surrogates for improved lesion creation and long-term outcomes utilizing radiofrequency (RF) energy. This review manuscript examines the biophysics of lesion creation and different lesion assessment techniques that can be used daily in the electrophysiology laboratory when utilizing RF energy. These methods provide valuable insights into lesion effectiveness, facilitating optimized ablation procedures and reducing atrial arrhythmia recurrences. However, each approach has its limitations, and a combination of techniques is recommended for comprehensive lesion assessment during AF catheter ablation. Future advancements in imaging techniques, such as magnetic Resonance Imaging (MRI), optical coherence tomography, and photoacoustic imaging, hold promise in further enhancing lesion evaluation and guiding treatment strategies.

12.
Micromachines (Basel) ; 15(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39064401

ABSTRACT

Inductive contact force sensors, known for their high precision and anti-interference capabilities, hold significant potential applications in fields such as wearable and medical monitoring devices. Most of the current research on inductive contact force sensors employed novel nanomaterials as sensitive elements to enhance their sensitivity and other performance characteristics. However, sensors developed through such methods typically involve complex preparation processes, high costs, and difficulty in biodegradation, which limit their further development. This article introduces a new flexible inductive contact force sensor using paper as a sensitive element. Paper inherently possesses micro- and nanostructures on its surface and interior, enabling it to sensitively convert changes in contact force into changes in displacement, making it suitable for use as the sensor's sensitive element. Additionally, the advantages of paper also include its great flexibility, low cost, wide availability, and biodegradability. Performance testing on this flexible sensor showed good repeatability, hysteresis, sensitivity, and consistency. When used in experiments for monitoring human motion and respiration, this sensor also exhibited great detection performance. The proposed inductive paper-based flexible contact force sensor, with its simple structure, easy manufacturing process, cost-effectiveness, eco-friendliness, and good sensing performance, provides new insights into research for contact force sensors.

13.
Med Biol Eng Comput ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822997

ABSTRACT

Cardiac catheter ablation requires an adequate contact between myocardium and catheter tip. Our aim was to quantify the relationship between the contact force (CF) and the resulting mechanical deformation induced by the catheter tip using an ex vivo model and computational modeling. The catheter tip was inserted perpendicularly into porcine heart samples. CF values ranged from 10 to 80 g. The computer model was built to simulate the same experimental conditions, and it considered a 3-parameter Mooney-Rivlin model based on hyper-elastic material. We found a strong correlation between the CF and insertion depth (ID) (R2 = 0.96, P < 0.001), from 0.7 ± 0.3 mm at 10 g to 6.9 ± 0.1 mm at 80 g. Since the surface deformation was asymmetrical, two transversal diameters (minor and major) were identified. Both diameters were strongly correlated with CF (R2 ≥ 0.95), from 4.0 ± 0.4 mm at 20 g to 10.3 ± 0.0 mm at 80 g (minor), and from 6.4 ± 0.7 mm at 20 g to 16.7 ± 0.1 mm at 80 g (major). An optimal fit between computer and experimental results was achieved, with a prediction error of 0.74 and 0.86 mm for insertion depth and mean surface diameter, respectively.

14.
J Arrhythm ; 40(3): 448-454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939764

ABSTRACT

Background: The concept of ablation index (AI) was introduced to evaluate radiofrequency (RF) ablation lesions. It is calculated from power, contact force (CF), and RF duration. However, other factors may also affect the quality of ablation lesions. To examine the difference in RF lesions made during sinus rhythm (SR) and atrial fibrillation (AF). Methods: Sixty patients underwent index pulmonary vein isolation during SR (n = 30, SR group) or AF (n = 30, AF group). All ablations were performed with a power of 50 W, a targeted CF of 5-15 g, and AI of 400-450 using Thermocool Smarttouch SF. The CF, AI, RF duration, temperature rise (Δtemp), impedance drop (Δimp), and the CF stability of each ablation point quantified as the standard deviation of the CF (CF-SD) were compared between the two groups. Results: A total of 3579 ablation points were analyzed, which included 1618 and 1961 points in the SR and the AF groups, respectively. Power, average CF, RF duration per point, and the resultant AI (389 ± 59 vs. 388 ± 57) were similar for the two rhythms. However, differences were seen in the CF-SD (3.5 ± 2.2 vs. 3.8 ± 2.1 g, p < .01), Δtemp (3.8 ± 1.3 vs. 4.0 ± 1.3°C, p < .005), and Δimp (10.3 ± 5.8 vs. 9.4 ± 5.4 Ω, p < .005). Conclusions: Despite similar AI, various RF parameters differed according to the underlying atrial rhythm. Ablation delivered during SR demonstrated less CF variability and temperature increase and greater impedance drop than during AF.

16.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732798

ABSTRACT

Photoplethysmography (PPG) is a non-invasive method used for cardiovascular monitoring, with multi-wavelength PPG (MW-PPG) enhancing its efficacy by using multiple wavelengths for improved assessment. This study explores how contact force (CF) variations impact MW-PPG signals. Data from 11 healthy subjects are analyzed to investigate the still understudied specific effects of CF on PPG signals. The obtained dataset includes simultaneous recording of five PPG wavelengths (470, 525, 590, 631, and 940 nm), CF, skin temperature, and the tonometric measurement derived from CF. The evolution of raw signals and the PPG DC and AC components are analyzed in relation to the increasing and decreasing faces of the CF. Findings reveal individual variability in signal responses related to skin and vasculature properties and demonstrate hysteresis and wavelength-dependent responses to CF changes. Notably, all wavelengths except 631 nm showed that the DC component of PPG signals correlates with CF trends, suggesting the potential use of this component as an indirect CF indicator. However, further validation is needed for practical application. The study underscores the importance of biomechanical properties at the measurement site and inter-individual variability and proposes the arterial pressure wave as a key factor in PPG signal formation.


Subject(s)
Photoplethysmography , Humans , Photoplethysmography/methods , Male , Adult , Female , Signal Processing, Computer-Assisted , Skin Temperature/physiology , Young Adult
17.
Europace ; 26(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38696675

ABSTRACT

AIMS: Contact force (CF)-sensing radiofrequency (RF) catheters with an ablation index have shown reproducible outcomes for the treatment of atrial fibrillation (AF) in large multicentre studies. A dual-energy (DE) focal CF catheter to deliver RF and unipolar/biphasic pulsed field ablation (PFA), integrated with a three-dimensional (3D) mapping system, can provide operators with additional flexibility. The SmartfIRE study assessed the safety and efficacy of this novel technology for the treatment of drug-refractory, symptomatic paroxysmal AF. Results at 3 months post-ablation are presented here. METHODS AND RESULTS: Pulmonary vein isolation (PVI) was performed using a DE focal, irrigated CF-sensing catheter with the recommendation of PFA at posterior/inferior and RF ablation at the anterior/ridge/carina segments. Irrespective of energy, a tag size of 3 mm; an inter-tag distance ≤6 mm; a target index of 550 for anterior, roof, ridge, and carina; and a target index of 400 for posterior and inferior were recommended. Cavotricuspid isthmus ablation was permitted in patients with documented typical atrial flutter. The primary effectiveness endpoint was acute procedural success. The primary safety endpoint was the rate of primary adverse events (PAEs) within 7 days of the procedure. A prespecified patient subset underwent oesophageal endoscopy (EE; 72 h post-procedure), neurological assessment (NA; pre-procedure and discharge), and cardiac computed tomography (CT)/magnetic resonance angiogram (MRA) imaging (pre-procedure and 3 months post-procedure) for additional safety evaluation, and a mandatory remapping procedure (Day 75 ± 15) for PVI durability assessment. Of 149 patients enrolled between February and June 2023, 140 had the study catheter inserted (safety analysis set) and 137 had ablation energy delivered (per-protocol analysis set). The median (Q1/Q3) total procedure and fluoroscopy times were 108.0 (91.0/126.0) and 4.2 (2.3/7.7) min (n = 137). The acute procedural success rate was 100%. First-pass isolation was achieved in 89.1% of patients and 96.8% of veins. Cavotricuspid isthmus ablations were successfully performed in 12 patients [pulsed field (PF) only: 6, RF only: 5, and RF/PF: 1]. The PAE rate was 4.4% [6/137 patients; 2 pulmonary vein (PV) stenoses, 2 cardiac tamponades/perforations, 1 stroke, and 1 pericarditis]. No coronary artery spasm was reported. No oesophageal lesion was seen in the EE subset (0/31, 0%). In the NA subset (n = 30), microemboli lesions were identified in 2 patients (2/30, 6.7%), both of which were resolved at follow-up; only 1 was symptomatic (silent cerebral lesion, 3.3%). In the CT/MRA subset (n = 30), severe PV narrowing (of >70%) was detected in 2 patients (2/30, 6.7%; vein level 2/128, 1.6%), of whom 1 underwent dilatation and stenting and 1 was asymptomatic; both were associated with high index values and a small inter-tag distance. In the PV durability subset (n = 30), 100/115 treated PVs (87%) were durably isolated and 18/30 patients (60.0%) had all PVs durably isolated. CONCLUSION: A DE focal CF catheter with 3D mapping integration showed a 100% acute success rate with an acceptable safety profile in the treatment of paroxysmal AF. Prespecified 3-month remapping showed notable PVI durability. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05752487.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Pulmonary Veins/surgery , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Male , Female , Catheter Ablation/methods , Catheter Ablation/instrumentation , Middle Aged , Treatment Outcome , Aged , Imaging, Three-Dimensional , Cardiac Catheters , Time Factors , Equipment Design , Prospective Studies , Recurrence
18.
Europace ; 26(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38801673

ABSTRACT

AIMS: Radiofrequency ablation is used as a first-line therapy for accessory pathways (APs). However, data regarding the effects of pulsed field ablation (PFA) on APs are limited. We sought to evaluate the acute procedural and 6-month success and safety of PFA in a cohort of patients with APs. METHODS AND RESULTS: A focal contact force-sensing PFA catheter was used for patients with APs. Pulsed field ablation generator generated a bipolar and biphasic waveform (±1000 V) with a duration of 100 ms from the tip of the PFA catheter. A 100% acute procedural success was achieved in 10 conscious patients with APs (7 left anterolateral, 2 left inferolateral, and 1 right posteroseptal APs) including 6 (60%) patients after an initial application. The average total ablation time was 6.3 ± 4.9 s for 4.7 ± 1.8 ablation sites (ASs), including 3.1 ± 2.4 s at targets and 3.2 ± 2.9 s at 3.2 ± 2 bolus ASs. The mean skin-to-skin time was 59.3 ± 15.5 min, and PFA catheter dwell time was 29.4 ± 7.8 min. One patient encountered transient sinus arrest during PFA due to parasympathetic overexcitation. Sinus rhythm was restored in all patients without any significant adverse events during the short-term follow-up. CONCLUSION: Pulsed field ablation of APs was feasible, effective, and safe. Its efficiency was remarkable for its ultrarapid termination of AP conduction. Further studies are warranted to prove whether utilization of PFA with current parameters can extend to manifold AP ablation.


Subject(s)
Accessory Atrioventricular Bundle , Catheter Ablation , Radiofrequency Ablation , Tachycardia, Ventricular , Radiofrequency Ablation/adverse effects , Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Pilot Projects , Tachycardia, Ventricular/therapy , Catheter Ablation/methods
19.
Proc Inst Mech Eng H ; 238(7): 755-763, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38818689

ABSTRACT

Toe-in gait is a pathology in which the child walks and turns the foot inward instead of pointing straight ahead. The alignment of the lower limb structure changes in this disease, increasing the incidence of knee and hip osteoarthritis. This study aimed to determine the kinematic and joint loading in subjects walking with a toe-in gait pattern. This study selected two groups of subjects: normal subjects and those with toe-in gait due to an increased femoral head anteversion angle (each group consisted of 15 subjects). A Qualisys motion analysis system and a Kistler force plate were used to record the motions and forces applied to the leg while walking. OpenSim software (version 3.3) was used to analyze the range of motion, moments, muscle forces, and joint contact forces in both groups of subjects. The mean values of stride length for normal subjects (1.1 ± 0.141 m) and those with toe-in gait (0.94 ± 0.183 m) differed significantly. The mediolateral component of the ground reaction force decreased significantly in the toe-in gait group compared to normal subjects (p-value = 0.05). The peak force of most of the hip joint muscles increased significantly in those with toe-in gait compared to normal subjects (p-value < 0.05). The results of this study showed that those with toe-in gait, due to an increase in femoral head anteversion angle, only had a change in rotation of the pelvic and hip joint. There was no significant difference between walking speed and most ground reaction force components between normal subjects and those with toe-in gait. As the peaks of most of the hip joint muscles increased significantly in the toe-in gait group, this increased joint contact forces (especially the anteroposterior component of the hip joint and the mediolateral component of the knee joint), which may ultimately increase the incidence of hip and knee joint osteoarthritis.


Subject(s)
Femur Head , Gait , Walking , Humans , Gait/physiology , Biomechanical Phenomena , Male , Walking/physiology , Femur Head/physiopathology , Female , Adult , Hip Joint/physiopathology , Mechanical Phenomena , Range of Motion, Articular , Young Adult
20.
J Arrhythm ; 40(2): 247-255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38586837

ABSTRACT

Background: Lesion size is reported to become larger as contact force (CF) increases. However, this has not been systematically evaluated in temperature-guided very high-power short-duration (vHPSD) ablation, which was therefore the purpose of this study. Methods: Radiofrequency applications (90 W/4 s, temperature-control mode) were performed in excised porcine myocardium with four different CFs of 5, 15, 25, and 35 g using QDOT-MICRO™ catheter. Ten lesions for each combination of settings were created, and lesion metrics and steam-pops were compared. Results: A total of 320 lesions were analyzed. Lesion depth, surface area, and volume were smallest for CF of 5 g than for 15, 25, and 35 g (depth: 2.7 mm vs. 2.9 mm, 3.0 mm, 3.15 mm, p < .01; surface area: 38.4 mm2 vs. 41.8 mm2, 43.3 mm2, 41.5 mm2, p < .05; volume: 98.2 mm3 vs. 133.3 mm3, 129.4 mm3, 126.8 mm3, p < .01 for all pairs of groups compared to CF = 5 g). However, no significant differences were observed between CFs of 15-35 g. Average power was highest for CF of 5 g, followed by 15, 25, and 35 g (83.2 W vs. 82.1 W vs. 77.1 W vs. 66.1 W, p < .01 for all pairs), reflecting the higher incidence of temperature-guided power titration with greater CFs (5 g:8.8% vs. 15 g:52.5% vs. 25 g:77.5% vs. 35 g:91.2%, p < .01 for all pairs except for 25 g vs. 35 g). The incidence of steam-pops did not significantly differ between four groups (5 g:3.8% vs. 15 g:10% vs. 25 g:6.2% vs. 35 g:2.5%, not significant for all pairs). Conclusions: For vHPSD ablation, lesion size does not become large once the CF reaches 15 g, and the risk of steam-pops may be mitigated through power titration even in high CFs.

SELECTION OF CITATIONS
SEARCH DETAIL