Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.652
Filter
1.
J Hosp Infect ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830542

ABSTRACT

Biofilm contributes significantly to bacterial persistence in endoscope channels. Enhanced cleaning methods capable of removing biofilm from all endoscope channels are required to decrease infection risk to patients. This head-to-head study compared cyclic build-up biofilm removal of an automated endoscope channel cleaner (AECC) to standard manual cleaning according to instructions for use (IFU) in polytetrafluorethylene channels. The automated cleaner significantly outperformed manual cleaning for all markers assessed (protein, total organic carbon, viable bacteria) in 1.4 mm and 3.7 mm channels representing air/water/auxiliary and suction/biopsy channels respectively. Manual cleaning failed to remove biofilm from the air/water and auxiliary channels. According to the IFU, these channels are not brushed, suggesting a potential root cause for a portion of the numerous endoscopy associated infections reported in the literature. AECC shows potential to deliver enhanced cleaning over current practice to all endoscope channels and may thereby address infection risk.

2.
Drug Test Anal ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830776

ABSTRACT

Hair analysis is a powerful tool to assess drug use, yet the challenge of external contamination complicates its interpretation. Understanding the influence of cosmetic hair treatments is pivotal as their presence may affect this phenomenon. This study investigated the effects of four cosmetic treatments (bleach, henna, gel, and dry shampoo) on the external in vitro contamination of cocaine and its primary metabolite, benzoylecgonine (BE). Hair samples were divided into four groups: A-hair treated with cosmetics then contaminated; B-hair contaminated then subjected to cosmetic treatment; and C-hair solely contaminated (control group). Negative hair samples (n = 24) were immersed in a cocaine and BE aqueous solution of 1 µg/mL for 24 h. All hair samples were analyzed by a LC-MSMS procedure successfully validated according to ANSI/ASB Standard 036 guidelines (limit of quantification at 10 pg/mg). Henna in Group A (n = 13) resulted in the most substantial reduction for cocaine (92%), while bleach in Group B (n = 15) showed an 80% decrease. For BE, Group A henna (n = 13) exhibited a 50% reduction, and Group B bleach (n = 15) demonstrated a 71% decrease, all compared to Group C (n = 24). The study found no significant differences concerning hair color (black (n = 3), brown (n = 10), red (n = 5) and blond (n = 6)) or shape (straight (n = 6), wavy (n = 16), curly (n = 1), and coily (n = 1)). All analysis were performed in triplicate with variations below 20%. These findings emphasize that cosmetic treatments do affect cocaine/BE concentrations in hair when exposed to external contamination, highlighting the importance of considering an individual's cosmetic history prior to interpretation.

3.
Int J Food Microbiol ; 421: 110779, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38852216

ABSTRACT

Airborne microorganisms in food processing environments pose a potential risk for food product contamination. Yet, the absence of established standards or guidelines setting quantitative limits on airborne microorganisms underscores a critical gap in current regulatory frameworks. This review seeks to explore the feasibility of establishing quantitative limits for airborne microorganisms in food processing facilities, aiming to provide evidence-based guidance to enhance food safety practices in the industry. The review begins by addressing the complexities of microbial air quality in the food industry through a general literature search covering sources of airborne microorganisms, factors affecting particle deposition, air sampling methods and preventive measures. Subsequently, it employs a structured approach to assess the significance of air quality and its impact on product quality. Utilizing the PRISMA method, relevant scientific literature from May 2002 to May 2022 was examined, resulting in 26 articles meeting inclusion criteria from a pool of 11,737 original research papers. Additionally, the review investigates existing probability models for assessing airborne contamination to enhance air quality risk assessment in food safety management systems. The literature reveals a lack of substantial evidence supporting a direct correlation between airborne microorganisms and food contamination. The absence of standardized air sampling methodologies in previous studies hinders the comparability and reliability of research findings. Additionally, the literature fails to establish a conclusive relationship between influencing factors such as total particle counts, temperature, relative humidity and airborne contamination. Contradictory probability models for quantifying airborne contamination, and the absence of tailored preventive measures, hinder effective control and undermine microbial contamination control in diverse food processing contexts. In conclusion, the development of numeric guidelines for airborne contamination necessitates a tailored approach, considering factors such as product characteristics and production context. By integrating risk assessment models into this process, a more thorough comprehension of contamination risks can be achieved, providing tailored guidance based on the identified risk levels for each product. Ongoing collaborative efforts are essential to develop evidence-based guidelines that effectively mitigate risks without incurring unnecessary costs.

4.
Environ Monit Assess ; 196(7): 605, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856803

ABSTRACT

Petroleum hydrocarbons (PHCs) are produced from industrial discharges, storage leakages, accidental spills, and operational failures. The hazardous nature of PHCs causes serious health risks and threatens the entire aquatic habitat. In this research work, the investigation of the removal of total petroleum hydrocarbons (TPHs) from the contaminated water is carried out utilizing a novel hypercross-linked resin, MAICY, which is generated by condensation of commercially available precursors. The chemical structures of MAICY have been examined extensively by FESEM, FT-IR, solid (CP-MAS) 13C-NMR, and TGA. A comprehensive analysis for adsorption parameters of TPHs has been performed, and different models such as Langmuir and Freundlich isotherms have been employed where the Freundlich isotherm was found to be the best fit for removal of THPs (R2= 0.9991). The results revealed that the performance of MAICY for the adsorption of TPHs from contaminated water gives a maximum adsorption capacity (qe) of 146 mg.g-1. The results of various parameters hinted that the contact time (0.25-4 h), the dosage of adsorbent (0.17 g/L), pH (7), and concentration of TPHs (26.5 mg/L) have controlled the overall adsorptive performance. Moreover, the kinetic data of qe(expt.) and qe(calc.) for adsorption of TPHs disclosed the regression values (R2) for pseudo-first order (R2= 0.9921) and pseudo-second order (R2= 0.9891). Additionally, based on CHI factor (X2) error estimations, the data was shown to be more consistent with pseudo-first-order kinetics. Moreover, MAICY demonstrated excellent reusability and recycling properties for up to four consecutive adsorption-desorption cycles.


Subject(s)
Hydrocarbons , Petroleum , Triazines , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Adsorption , Petroleum/analysis , Triazines/chemistry , Triazines/analysis , Kinetics
5.
Ultramicroscopy ; 264: 113995, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38851016

ABSTRACT

A time-dependent reaction-diffusion model was elaborated to better understand the dynamical growth of contamination on surfaces illuminated by an electron beam. The goal of this work was to fully describe the flow of hydrocarbon molecules, denoted as contaminants, and their polymerization in the irradiated area with the number of parameters reduced to a minimum necessary. It was considered that the diffusion process of contaminants is driven by the gradient of their surface density generated by the impact of a circular homogeneous electron beam. The contribution of the residual gas atmosphere in the instrument was described by the tendency to reestablish the initial equilibrium surface density of contaminants before irradiation. The four unknown parameters of the model, the electron interaction cross-section, the diffusion coefficient, the initial surface density of contaminants, and the frequency of the supply of contaminants from the residual gas atmosphere were determined by comparing the modeled contamination growth with experimental results. The experiments were designed such that the influence of the single parameters could be unequivocally separated. To follow the dynamical evolution of the system and to generate time-resolved distinct experimental data, successive contamination measurements were performed at short time intervals up to 20 min. The local height and shape of the grown contamination were quantified by evaluating high-angle annular dark-field (HAADF) scanning-transmission- electron-microcopy (STEM) image intensities and corresponding Monte-Carlo simulations. Our model also applies to nonhomogeneous initial conditions like the reduced local surface density of contaminants after previous beam-showering. The dynamic analyses of this process might provide hints regarding the relative size of the contaminant molecules and also indicate some measures for the reduction of contamination growth.

6.
J Contam Hydrol ; 265: 104379, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38851130

ABSTRACT

During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.

7.
Environ Geochem Health ; 46(7): 241, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849713

ABSTRACT

Soil contamination due to industrial activity in ceramics production is of concern because of the risk of heavy metal pollution. Successive extraction was used to measure and identify the concentrations of Cd, Mn, Ni, and Pb in farming soils near a ceramics company in Nigeria. Furthermore, soil pH and particle size analyses were determined. The concentration of Pb was the highest, followed by that of Ni, Mn, and Cd (lowest), and the mean level of Cd exceeded the regulatory allowed limit of 1.4 mg kg-1. The order of the metals' mobility factors was as follows: Cd > Mn > Ni, Pb. While the Fe-Mn oxide phase had 37% (Mn) and 20 to 83% (Ni), the residual fraction had approximately 30% (Cd) and 19 to 50% (Pb). Soil pollution evaluation was performed using enrichment factor (EF), contamination factor (CF), pollution load index (PLI), and geoaccumulation index (Igeo). Values of EF indicated significant enrichment for all metals, as the EF mean values for Cd, Ni, and Pb in soil were > 1.5. Total EF is of the order Cd > Pb > Ni > Mn. CF results revealed moderate to very high contamination (CF < 1: 3 ≤ CF ≥ 6). Similarly, the PLI indicated moderately to severely polluted soil. The order is 100 m > 200 m > 300 m > 400 m. The Igeo ranged from 1.46 to 2.76 (Cd), 0.07 to 1.62 (Ni), and 0.05 to 2.81 (Pb). The PCA, CA, and EF analyses suggest that the metals are a consequence of anthropogenic activities.


Subject(s)
Ceramics , Environmental Monitoring , Metals, Heavy , Soil Pollutants , Soil , Soil Pollutants/analysis , Ceramics/chemistry , Soil/chemistry , Metals, Heavy/analysis , Nigeria , Chemical Fractionation , Particle Size , Lead/analysis , Farms , Nickel/analysis , Cadmium/analysis , Hydrogen-Ion Concentration , Manganese/analysis
8.
Environ Pollut ; 356: 124283, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823546

ABSTRACT

Alaska contains over 600 formerly used defense (FUD) sites, many of which serve as point sources of pollution. These sites are often co-located with rural communities that depend upon traditional subsistence foods, especially lipid-rich animals that bioaccumulate and biomagnify persistent organic pollutants (POPs). Many POPs are carcinogenic and endocrine-disrupting compounds that are associated with adverse health outcomes. Therefore, elevated exposure to POPs from point sources of pollution may contribute to disproportionate incidence of disease in arctic communities. We investigated PCB concentrations and the health implications of POP exposure in sentinel fishes collected near the Northeast Cape FUD site on Sivuqaq (St. Lawrence Island), Alaska. Sivuqaq residents are almost exclusively Yupik and rely on subsistence foods. At the request of the Sivuqaq community, we examined differential gene expression and developmental pathologies associated with exposure to POPs originating at the Northeast Cape FUD site. We found significantly higher levels of PCBs in Alaska blackfish (Dallia pectoralis) collected from contaminated sites downstream of the FUD site compared to fish collected from upstream reference sites. We compared transcriptomic profiles and histopathologies of these same blackfish. Blackfish from contaminated sites overexpressed genes involved in ribosomal and FoxO signaling pathways compared to blackfish from reference sites. Contaminated blackfish also had significantly fewer thyroid follicles and smaller pigmented macrophage aggregates. Conversely, we found that ninespine stickleback (Pungitius pungitius) from contaminated sites exhibited thyroid follicle hyperplasia. Despite our previous research reporting transcriptomic and endocrine differences in stickleback from contaminated vs. reference sites, we did not find significant differences in kidney or gonadal histomorphologies. Our results demonstrate that contaminants from the Northeast Cape FUD site are associated with altered gene expression and thyroid development in native fishes. These results are consistent with our prior work demonstrating disruption of the thyroid hormone axis in Sivuqaq residents.

9.
Microbiol Spectr ; : e0027324, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888358

ABSTRACT

During construction work (2017-2019), an increase in Aspergillus flavus infections was noted among pediatric patients, the majority of whom were receiving amphotericin B prophylaxis. Microsatellite genotyping was used to characterize the outbreak. A total of 153 A. flavus isolates of clinical and environmental origin were included. Clinical isolates included 140 from 119 patients. Eight patients were outbreak-related patients, whereas 111 were outbreak-unrelated patients from Danish hospitals (1994-2023). We further included four control strains. Nine A. flavus isolates were from subsequent air sampling in the outbreak ward (2022-2023). Typing followed Rudramurthy et al.(S. M. Rudramurthy, H. A. de Valk, A. Chakrabarti, J. Meis, and C. H. W. Klaassen, PLoS One 6:e16086, 2011, https://doi.org/10.1371/journal.pone.0016086). Minimum spanning tree (MST) and discriminant analysis of principal components (DAPC) were used for cluster analysis. DAPC analysis placed all 153 isolates in five clusters. Microsatellite marker pattern was clearly distinct for one cluster compared to the others. The same cluster was observed in an MST. This cluster included all outbreak isolates, air-sample isolates, and additional patient isolates from the outbreak hospital, previously undisclosed as outbreak related. The highest air prevalence of A. flavus was found in two technical risers of the outbreak ward, which were then sealed. Follow-up air samples were negative for A. flavus. Microsatellite typing defined the outbreak as nosocomial and facilitated the identification of an in-hospital source. Six months of follow-up air sampling was without A. flavus. Outbreak-related/non-related isolates were easily distinguished with DAPC and MST, as the outbreak clone's distinct marker pattern was delineated in both statistical analyses. Thus, it could be a variant of A. flavus, with a niche ability to thrive in the outbreak-hospital environment. IMPORTANCE: Aspergillus flavus can cause severe infections and hospital outbreaks in immunocompromised individuals. Although lack of isogeneity does not preclude an outbreak, our study underlines the value of microsatellite genotyping in the setting of potential A. flavus outbreaks. Microsatellite genotyping documented an isogenic hospital outbreak with an internal source. This provided the "smoking gun" that prompted the rapid allocation of resources for thorough environmental sampling, the results of which guided immediate and relevant cleaning and source control measures. Consequently, we advise that vulnerable patients should be protected from exposure and that genotyping be included early in potential A. flavus outbreak investigations. Inspection and sampling are recommended at any site where airborne spores might disperse from. This includes rarely accessed areas where air communication to the hospital ward cannot be disregarded.

10.
Cont Lens Anterior Eye ; : 102252, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890070

ABSTRACT

PURPOSE: This study sought to assess contact lens solutions care practices, and their microbial contamination among contact lens wearers in Ghana and to profile their antibiotic susceptibility pattern. METHODS: The study employed a biphasic approach which involved a cross-sectional design that investigated participants' habits related to care for the solutions with a two-part questionnaire and a microbiological analysis of samples of contact lens care solutions of the participants for microbial contamination. A snowball sampling method provided access to 32 different contact lens wearers in four care facilities in Ghana. In most cases, the participants had no pre-existing familial relationship with each other or with the care facilities. RESULTS: Out of 32 samples of contact lens solutions, 30 were tested for microbial contamination. A total of 23 (76.67 %) samples of contact lens solution were found to be contaminated with Enterobacter sp. (34.80 %), Pseudomonas sp. (21.70 %), Bacilli sp. (21.70 %), Klebsiella sp. (17.20 %), and Escherichia coli (4.60 %). The duration of solution storage in the open bottle and nonadherence to manufacturer instructions for solution storage showed a statistically significant association with microbial contamination (p ≤ 0.05). CONCLUSION: Contact lens care solutions have been found to harbour multiple antibiotic-resistant bacteria that are potentially pathogenic to the corneal surface. The contamination is associated with some unhealthy solution-care practices among wearers.

11.
AAPS PharmSciTech ; 25(6): 138, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890193

ABSTRACT

Unexpected cross-contamination by foreign components during the manufacturing and quality control of pharmaceutical products poses a serious threat to the stable supply of drugs and the safety of customers. In Japan, in 2020, a mix-up containing a sleeping drug went undetected by liquid chromatography during the final quality test because the test focused only on the main active pharmaceutical ingredient (API) and known impurities. In this study, we assessed the ability of a powder rheometer to analyze powder characteristics in detail to determine whether it can detect the influence of foreign APIs on powder flow. Aspirin, which was used as the host API, was combined with the guest APIs (acetaminophen from two manufacturers and albumin tannate) and subsequently subjected to shear and stability tests. The influence of known lubricants (magnesium stearate and leucine) on powder flow was also evaluated for standardized comparison. Using microscopic morphological analysis, the surface of the powder was observed to confirm physical interactions between the host and guest APIs. In most cases, the guest APIs were statistically detected due to characteristics such as their powder diameter, pre-milling, and cohesion properties. Furthermore, we evaluated the flowability of a formulation incorporating guest APIs for direct compression method along with additives such as microcrystalline cellulose, potato starch, and lactose. Even in the presence of several additives, the influence of the added guest APIs was successfully detected. In conclusion, powder rheometry is a promising method for ensuring stable product quality and reducing the risk of unforeseen cross-contamination by foreign APIs.


Subject(s)
Drug Contamination , Powders , Rheology , Powders/chemistry , Rheology/methods , Drug Contamination/prevention & control , Excipients/chemistry , Acetaminophen/chemistry , Cellulose/chemistry , Pharmaceutical Preparations/chemistry , Quality Control , Aspirin/chemistry , Chemistry, Pharmaceutical/methods , Lactose/chemistry , Drug Compounding/methods , Lubricants/chemistry , Bulk Drugs
12.
Article in English | MEDLINE | ID: mdl-38890249

ABSTRACT

The aim of this paper was to evaluate the degree of mycological air contamination and determine the taxonomic diversity of airborne fungi residing in the air of 20 different animal facilities in a zoological garden. The concentrations of fungi in the zoological garden were measured using a MAS-100 air sampler. The collected microorganisms were identified using the combination of molecular and morphological methods. The fungal concentration ranged from 50 to 3.65 × 104 CFU/m3 during the whole study. The quantitative analysis of the fungal aerosol showed that the obtained concentration values were lower than the recommended permissible limits (5 × 104 CFU/m3 for fungi). Environmental factors, including temperature and relative humidity, exerted a varying effect on the presence and concentration of isolated fungi. Relative humidity was shown to correlate positively with the concentration of fungal spores in the air of the facilities studied (rho = 0.57, p < 0.0021). In parallel, no significant correlation was established between temperature and total fungal concentration (rho = - 0.1, p < 0.2263). A total of 112 fungal strains belonging to 50 species and 10 genera were isolated. Penicillium was the dominant genera, including 58.9% of total fungal strains, followed by Aspergillus 25.89%, Cladosporium 3.57%, Talaromyces 3.57%, Mucor 1.78%, Schizophyllum 1.78%, Syncephalastrum 0.89%, Alternaria 0.89%, Absidia 0.89%, and Cunninghamella 0.89%. Our preliminary studies provide basic information about the fungal concentrations, as well as their biodiversity in zoological garden. Further studies are needed to generate additional data from long-term sampling in order to increase our understanding of airborne fungal composition in the zoological garden.

13.
Article in English | MEDLINE | ID: mdl-38890256

ABSTRACT

The present study reports findings related to the treatment of polluted groundwater using macrophyte-assisted phytoremediation. The potential of three macrophyte species (Phragmites australis, Scirpus holoschoenus, and Typha angustifolia) to tolerate exposure to multi-metal(loid) polluted groundwater was first evaluated in mesocosms for 7- and 14-day batch testing. In the 7-day batch test, the polluted water was completely replaced and renewed after 7 days, while for 14 days exposure, the same polluted water, added in the first week, was maintained. The initial biochemical screening results of macrophytes indicated that the selected plants were more tolerant to the provided conditions with 14 days of exposure. Based on these findings, the plants were exposed to HRT regimes of 15 and 30 days. The results showed that P. australis and S. holoschoenus performed better than T. angustifolia, in terms of metal(loid) accumulation and removal, biomass production, and toxicity reduction. In addition, the translocation and compartmentalization of metal(loid)s were dose-dependent. At the 30-day loading rate (higher HRT), below-ground phytostabilization was greater than phytoaccumulation, whereas at the 15-day loading rate (lower HRT), below- and above-ground phytoaccumulation was the dominant metal(loid) removal mechanism. However, higher levels of toxicity were noted in the water at the 15-day loading rate. Overall, this study provides valuable insights for macrophyte-assisted phytoremediation of polluted (ground)water streams that can help to improve the design and implementation of phytoremediation systems.

15.
Chemosphere ; : 142641, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906184

ABSTRACT

Increasing microplastic (MP) pollution, mainly by anthropogenic sources such as plastic film mulching, waste degradation, and agricultural practices, has emerged as a demanding global environmental concern. This review examines the direct and indirect effects of MPs on crops, both in isolation and in conjunction with other contaminants, to elucidate their combined toxicological impacts. Organic fertilizers predominantly contain 78.6% blue, 9.5% black, and 8.3% red MPs, while irrigation water in agroecosystems contains 66.2% white, 15.4% blue, and 8.1% black MPs, ranging from 0-1mm to 4-5mm in size. We elucidate five pivotal insights: Firstly, soil MPs exhibit affinity towards crop roots, seeds, and vascular systems, impeding water and nutrient uptake. Secondly, MPs induce oxidative stress in crops, disrupting vital metabolic processes. Thirdly, leachates from MPs elicit cytotoxic and genotoxic responses in crops. Fourthly, MPs disrupt soil biotic and abiotic dynamics, influencing water and nutrient availability for crops. Lastly, the cumulative effects of MPs and co-existing contaminants in agricultural soils detrimentally affect crop yield. Thus, we advocate agronomic interventions as practical remedies. These include biochar input, application of growth regulators, substitution of plastic mulch with crop residues, promotion of biological degradation, and encouragement of crop diversification. However, the efficacy of these measures varies based on MP type and dosage. As MP volumes increase, exploration of alternative mitigation strategies such as bio-based plastics and environmentally friendly biotechnological solutions is imperative. Recognizing the persistence of plastics, policymakers should enact legislation favoring the mitigation and substitution of non-degradable materials with bio-derived or compostable alternatives. This review demonstrates the urgent need for collective efforts to alleviate MP pollution and emphasizes sustainable interventions for agricultural ecosystems.

16.
Mar Pollut Bull ; 205: 116591, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908189

ABSTRACT

Recreational bathing waters are complex systems with diverse inputs from multiple anthropogenic and zoogenic sources of faecal contamination. Faecal contamination is a substantial threat to water quality and public health. Here we present a comprehensive strategy to estimate the contribution of faecal indicator bacteria (FIB) from different biological sources on two at-risk beaches in Dublin, Ireland. The daily FIB loading rate was determined for three sources of contamination: a sewage-impacted urban stream, dog and wild bird fouling. This comparative analysis determined that the stream contributed the highest daily levels of FIB, followed by dog fouling. Dog fouling may be a significant source of FIB, contributing approximately 20 % of E. coli under certain conditions, whereas wild bird fouling contributed a negligible proportion of FIB (<3 %). This study demonstrates that source-specific quantitative microbial source apportionment (QMSA) strategies are vital to identify primary public health risks and target interventions to mitigate faecal contamination.

17.
Chemosphere ; : 142677, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908448

ABSTRACT

Landfills, especially those poorly managed, can negatively affect the environment and human beings through chemical contamination of soils and waters. This study investigates the soils of a historical municipal solid waste (MSW) landfill situated in the heart of a residential zone in the capital of Slovakia, Bratislava, with an emphasis on metal(loid) contamination and its consequences. Regardless of the depth, many of the soils exhibited high metal(loid) concentrations, mainly Cd, Cu, Pb, Sb, Sn and Zn (up to 24, 2620, 2420, 134, 811 and 6220 mg/kg, respectively), classifying them as extremely contaminated based on the geo-accumulation index (Igeo >5). The stable lead isotopic ratios of the landfill topsoil varied widely (1.1679-1.2074 for 206Pb/207Pb and 2.0573-2.1111 for 208Pb/206Pb) and indicated that Pb contained a natural component and an anthropogenic component, likely municipal solid waste incineration (MSWI) ash and construction waste. Oral bioaccessibility of metal(loid)s in the topsoil was variable with Cd (73.2-106%) and Fe (0.98-2.10%) being the most and least bioaccessible, respectively. The variation of metal(loid) bioaccessibility among the soils could be explained by differences in their geochemical fractionation as shown by positive correlations of bioaccessibility values with the first two fractions of BCR (Community Bureau of Reference) sequential extraction for As, Cd, Mn, Ni, Pb, Sn and Zn. The results of geochemical fractionation coupled with the mineralogical characterisation of topsoil showed that the reservoir of bioaccessible metal(loid)s was calcite and Fe (hydr)oxides. Based on aqua regia metal(loid) concentrations, a non-carcinogenic risk was demonstrated for children (HI = 1.59) but no risk taking into account their bioaccessible concentrations (HI = 0.65). This study emphasises the need for detailed research of the geochemistry of wastes deposited in urban soils to assess the potentially hazardous sources and determine the actual bioaccessibility and human health risks of the accumulated metal(loid)s.

18.
Syst Biol Reprod Med ; 70(1): 174-182, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38908909

ABSTRACT

The assessment of epigenetic profiles in sperm is sensitive to somatic cell contamination, which can influence methylation signals at gene promoters. This contamination is particularly problematic in the assessment of DNA methylation in samples with low sperm counts, where fractional amounts of somatic cell DNA can lead to significant shifts in measured methylation state. In this study, a new method of detecting possible somatic cell contamination is proposed through two multi-region bioinformatic models: a traditional differential methylation analysis and a machine learning logistic regression model. These models were trained on publicly available sperm (n = 489) and blood (n = 1029) DNA methylation array data and tested on a contamination set, wherein the sperm of four donors with normal sperm counts were run on a 450k methylation array with four permutations each, including pure blood, half blood and half sperm by DNA concentration, half blood and half sperm by cell count, and pure sperm (n = 16). The DMR and logistic regression model classified the contamination testing set with 100% and 94% accuracy, respectively. These new methods of detecting the effects of somatic cell contamination allow for more accurate differentiation between epigenetic profiles that contain a biological somatic-like shift and those that have somatic-like signatures because of contamination.


Subject(s)
Computational Biology , DNA Methylation , Spermatozoa , Male , Humans , Machine Learning , Epigenesis, Genetic , Logistic Models , Sperm Count
19.
Environ Monit Assess ; 196(7): 649, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909348

ABSTRACT

The presence of elevated levels of heavy metals in soil poses a significant environmental concern with implications for human health and other organisms. The main objective of our study was to reduce the gap information of seasonal abundance, distribution of heavy metals in soil, leaf litter, and some macroinvertebrates in a citrus orchard (Citrus sinensis) in Sohag Governorate, Egypt. The heavy metals copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were determined by atomic absorption spectrometry. Degree of contamination (DC) was determined for both soil and leaf litter contamination. However, the bioaccumulation factor (BAF) was estimated to determine metal accumulation in the macroinvertebrates including earwigs Anisolabis maritima, chilopoda Scolopendra moristans, spider Dysdera crocata, and earthworm Aporrectodea caliginosa. The study area had clay-loam with varying organic matter, salinity, and pH levels. The degree of contamination varied among seasons, with the highest levels typically observed in autumn in both soil and leaf litter. The soil ranged from low contamination (1.82) to high contamination levels (4.4), while the leaf litter showed extremely high (30.03) to ultra-high (85.92) contamination levels. The mean ecological risk index results indicated that the sampling area had moderate ecological risk levels for Cd (44.3), Zn (42.17), and Pb (80.05), and extremely high levels for Cu (342.5). Heavy metal concentrations in the selected fauna were the highest in autumn, and the bioaccumulation factor varied among species and seasons with some species classified as e-concentrators, micro-concentrators, and macro-concentrators of certain heavy metals. Scolopendra moristans exhibited the highest mean metal concentrations (Cd, Pb, and Zn), while Aporrectodea caliginosa had the lowest. Thus, the differences in heavy metal concentrations found in different soil taxa highlight the significance of taxing a holistic understanding of feeding mechanisms into account when evaluating the potential risk for animals that consume invertebrates.


Subject(s)
Environmental Monitoring , Invertebrates , Metals, Heavy , Plant Leaves , Soil Pollutants , Soil , Metals, Heavy/analysis , Metals, Heavy/metabolism , Egypt , Animals , Soil Pollutants/analysis , Soil Pollutants/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Soil/chemistry , Invertebrates/metabolism , Bioaccumulation
20.
Water Res ; 259: 121843, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38824794

ABSTRACT

Escherichia coli (E. coli) plays a central role as an indicator for fecal contamination to predict the possible presence of microbial pathogens in drinking water. Current detection methods for E. coli are based on time-consuming culture-based techniques. There is a strong need for methods to detect fecal contamination rapidly in distributed drinking water to prevent outbreaks of waterborne disease and support water utilities to efficiently manage their operations like actions to repair or maintain distribution pipes, to minimize impact on consumers. This study describes the validation and application of a qualitative real time reverse transcription PCR (RT-PCR) method targeting 16S ribosomal RNA (rRNA) for rapid detection of E. coli in distributed drinking water. The RT-PCR assay targets 16S rRNA, a highly abundant RNA in viable cells, enabling robust detection at the required sensitivity of 1 CFU/100 ml. The validation was performed by comparing the RT-PCR method with the culture-based chromogenic reference method (CCA) using the protocol and criteria described in ISO 16,140-2:2016. The validation demonstrated that this RT-PCR method can be used to specifically detect E. coli in a broad range of drinking water samples with at least the same limit of detection as the culture method (Relative Limit Of Detection = 0.75, range 0.43-1.43). The inclusivity study showed that the RT-PCR method was able to detect a broad range of E. coli strains derived from different sources and geographic areas, including pathogenic serotype O157 strains that are not detected with the culture method. The exclusivity study determined that other bacterial genera are not detected with this RT-PCR. However, Escherichia fergusonii was detected and, based on "in silico" analysis, it is expected that also E. albertii and E. marmotae and Shigella species will be detectable using this RT-PCR. An interlaboratory study confirmed that the RT-PCR and culture method have comparable sensitivities when tested by different participants at different laboratories. The application of RT-PCR to confirm the hygienic quality of distributed drinking water after actions to repair or maintain distribution pipes was compared with the culture method on 8076 routine samples, analyzed by the drinking water laboratories in the Netherlands. This comparison study showed a 96.4 % agreement between RT-PCR and culture. In 3.3 % of the samples E. coli was detected with RT-PCR and not with the culture method and in 0.1 % of the samples E. coli was only detected by culture confirming either a higher sensitivity for RT-PCR or the detection of RNA from uncultivable cells. Finally, the application of RT-PCR was highlighted during a contamination event in Belgium where we demonstrate the potency of RT-PCR as a tool to rapidly monitor the spread of microbial contamination and to monitor the effect of measures to remove the contamination This is the first fully validated rapid nucleic based method for detection of E. coli in distributed drinking water. These results demonstrate that this RT-PCR method can be used as a rapid alternative to the culture method to monitor E. coli in distributed drinking water. However, it should be emphasized that nucleic acid based detection methods rely on highly different detection principles (detection of captured nucleic acids present in a sample) than culture base methods (presence of cells cultivable on a selective medium) resulting in occasional different analysis results. Varying treatment and disinfection steps (UV, chlorine, monochloramine, Ozone) or environmental factors (decay) can influence the results and cause differences between RT-PCR and culture methods.


Subject(s)
Drinking Water , Escherichia coli , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Drinking Water/microbiology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Water Microbiology , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...