Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 369
Filter
1.
Biomimetics (Basel) ; 9(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39056859

ABSTRACT

Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these properties, develop cost-effective production techniques, and integrate emerging technologies like 3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and regenerative medicine.

2.
Mater Today Bio ; 26: 101107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952538

ABSTRACT

Smart dressings integrated with bioelectronics have attracted considerable attention and become promising solutions for skin wound management. However, due to the mechanical distinction between human body and the interface of electronics, previous smart dressings often suffered obvious degradation in electrical performance when attached to the soft and curvilinear wound sites. Here, we report a stretchable dressing integrated with temperature and pH sensor for wound status monitoring, as well as an electrically controlled drug delivery system for infection treatment. The wound dressing was featured with the deployment of liquid metal for seamless connection between rigid electrical components and gold particle-based electrodes, achieving a stretchable soft-hard interface. Stretching tests showed that both the sensing system and drug delivery system exhibited good stretchability and long-term stable conductivity with the resistance change rate less than 6 % under 50 % strain. Animal experiments demonstrated that the smart dressing was capable of detecting bacterial infection via the biomarkers of temperature and pH value and the infection factors of wound were significantly improved with therapy through electrically controlled antibiotics releasing. This proof-of-concept prototype has potential to significantly improve management of the wound, especially those with dynamic strain.

3.
Bioact Mater ; 36: 427-454, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39044728

ABSTRACT

Tumor microenvironments (TMEs) have received increasing attention in recent years as they play pivotal roles in tumorigenesis, progression, metastases, and resistance to the traditional modalities of cancer therapy like chemotherapy. With the rapid development of nanotechnology, effective antineoplastic nanotherapeutics targeting the aberrant hallmarks of TMEs have been proposed. The appropriate design and fabrication endow nanomedicines with the abilities for active targeting, TMEs-responsiveness, and optimization of physicochemical properties of tumors, thereby overcoming transport barriers and significantly improving antineoplastic therapeutic benefits. This review begins with the origins and characteristics of TMEs and discusses the latest strategies for modulating the TMEs by focusing on the regulation of biochemical microenvironments, such as tumor acidosis, hypoxia, and dysregulated metabolism. Finally, this review summarizes the challenges in the development of smart anti-cancer nanotherapeutics for TME modulation and examines the promising strategies for combination therapies with traditional treatments for further clinical translation.

4.
ACS Appl Mater Interfaces ; 16(27): 34669-34683, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38946103

ABSTRACT

In this research, a novel MgSiO3 fiber membrane (MSFM) loaded with indocyanine green (ICG) and doxorubicin (DOX) was prepared. Because of MgSiO3's unique lamellar structure composed of a silicon-oxygen tetrahedron, magnesium ion (Mg2+) moves easily and can be further replaced with other cations. Therefore, because of the positively charged functional group of ICG, MSFM has a rather high drug loading for ICG. In addition, there is electrostatic attraction between DOX (a cationic drug) and ICG (an anionic drug). Hence, after loading ICG, more DOX can be adsorbed into MSFM because of electrostatic interaction. The ICG endows the MSFM outstanding photothermal therapy (PTT) performance, and DOX as a chemotherapeutic drug can restrain tumor growth. On the one hand, H+ exchanged with the positively charged DOX based on the MgSiO3 special lamellar structure. On the other hand, the thermal effect could break the electrostatic interaction between ICG and DOX. Based on the above two points, both tumor acidic microenvironment and photothermal effect can trigger DOX release. What's more, in vitro and in vivo antiosteosarcoma therapy evaluations displayed a superior synergetic PTT-chemotherapy anticancer treatment and excellent biocompatibility of DOX&ICG-MSFM. Finally, the MSFM was proven to greatly promote cell proliferation, differentiation, and bone regeneration performance in vitro and in vivo. Therefore, MSFM provides a creative perspective in the design of multifunctional scaffolds and shows promising applications in controlled drug delivery, antitumor performance, and osteogenesis.


Subject(s)
Bone Regeneration , Doxorubicin , Indocyanine Green , Osteosarcoma , Doxorubicin/chemistry , Doxorubicin/pharmacology , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Bone Regeneration/drug effects , Animals , Humans , Indocyanine Green/chemistry , Indocyanine Green/pharmacology , Mice , Magnesium Silicates/chemistry , Photothermal Therapy , Cell Line, Tumor , Drug Delivery Systems , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Drug Liberation
5.
Adv Colloid Interface Sci ; 331: 103248, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39033588

ABSTRACT

Polypeptides have shown an excellent potential in nanomedicine thanks to their biocompatibility, biodegradability, high functionality, and responsiveness to several stimuli. Polypeptides exhibit high propensity to organize at the supramolecular level; hence, they have been extensively considered as building blocks in the layer-by-layer (LbL) assembly. The LbL technique is a highly versatile methodology, which involves the sequential assembly of building blocks, mainly driven by electrostatic interactions, onto planar or colloidal templates to fabricate sophisticated multilayer nanoarchitectures. The simplicity and the mild conditions required in the LbL approach have led to the inclusion of biopolymers and bioactive molecules for the fabrication of a wide spectrum of biodegradable, biocompatible, and precisely engineered multilayer films for biomedical applications. This review focuses on those examples in which polypeptides have been used as building blocks of multilayer nanoarchitectures for tissue engineering and drug delivery applications, highlighting the characteristics of the polypeptides and the strategies adopted to increase the stability of the multilayer film. Cross-linking is presented as a powerful strategy to enhance the stability and stiffness of the multilayer network, which is a fundamental requirement for biomedical applications. For example, in tissue engineering, a stiff multilayer coating, the presence of adhesion promoters, and/or bioactive molecules boost the adhesion, growth, and differentiation of cells. On the contrary, antimicrobial coatings should repel and inhibit the growth of bacteria. In drug delivery applications, mainly focused on particles and capsules at the micro- and nano-meter scale, the stability of the multilayer film is crucial in terms of retention and controlled release of the payload. Recent advances have shown the key role of the polypeptides in the adsorption of genetic material with high loading efficiency, and in addressing different pathways of the particles/capsules during the intracellular uptake, paving the way for applications in personalized medicine. Although there are a few studies, the responsiveness of the polypeptides to the pH changes, together with the inclusion of stimuli-responsive entities into the multilayer network, represents a further key factor for the development of smart drug delivery systems to promote a sustained release of therapeutics. The degradability of polypeptides may be an obstacle in certain scenarios for the controlled intracellular release of a drug once an external stimulus is applied. Nowadays, the highly engineered design of biodegradable LbL particles/capsules is oriented on the development of theranostics that, limited to use of polypeptides, are still in their infancy.

6.
Regen Biomater ; 11: rbae056, 2024.
Article in English | MEDLINE | ID: mdl-38845853

ABSTRACT

Bacteria-infected wounds healing has been greatly hindered by antibiotic resistance and persistent inflammation. It is crucial to develop multifunctional nanocomposites that possess effective antibacterial properties and can simultaneously accelerate the wound healing process to overcome the above challenges. Herein, we prepared a yolk-shell structured Ag nanowires (NWs)@amorphous hollow ZIF-67 by etching ZIF-67 onto the Ag NWs for infected wound healing for the first time. The etched hollow structure of amorphous ZIF-67 in the nanocomposite makes it a promising platform for loading healing-promoting drugs. We extensively studied the antibacterial and healing-promoting properties of the curcumin (CCM)-loaded nanocomposite (Ag NWs@C-HZ67). Ag NWs, being noble metal materials with plasmonic effects, can absorb a broad range of natural light and convert it to thermal energy. This photothermal conversion further improves the release of antibacterial components and wound healing drugs when exposed to light. During the healing process of an infected wound, Ag and Co ions were released from Ag NWs@C-HZ67 upon direct contact with the wound exudate and under the influence of light irradiation. Simultaneously, the loaded CCM leaked out to repair the infected wound. The minimum inhibitory concentrations of the Ag NWs@C-HZ67 groups against Escherichia coli and Staphylococcus aureus bacteria decreased to 3 and 3 µg ml-1 when exposed to white light. Furthermore, an in vivo assessment of infected wound healing demonstrated that combining Ag NWs@C-HZ67 with light significantly accelerated the wound healing process, achieving 70% healing by the 6th day and almost complete healing by the 8th day. This advanced nanocomposite, consisting of components that possess antibacterial and growth-promoting properties, offers a safe, effective and clinically-translatable solution for accelerating the healing process of infected wounds.

7.
Int J Biol Macromol ; : 133200, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38942673

ABSTRACT

Controlled drug delivery systems offer numerous advantages. This research evaluates Opuntia leaf mucilage grafted with polyacrylamide (OPM-g-PAM) as a promising controlled-release polymer. PAM chains were grafted onto the backbone of OPM using a microwave-assisted method. Optimization of the best grade was based on % grafting efficiency and intrinsic viscosity, followed by extensive physical and analytical characterizations. Analytical characterizations revealed semicrystalline nature of the biomaterial. SEM and AFM observations revealed rough and porous surfaces, indicating effective grafting. Swelling behavior showed maximum sensitivity at pH 7, with reduced swelling at higher sodium chloride concentrations. A comparative study of % drug release of Rosuvastatin over 24 h showed that the optimized grade controlled drug release effectively, achieving 78.5 % release compared to 98.8 % for GF-3. The release data fitted the Korsmeyer-Peppas model, with an "n" value of 0.8334, indicating non-Fickian (anomalous) diffusion. Bacterial biodegradability studies confirmed the high biodegradability of the graft copolymer. In vitro acute toxicity tests showed no toxicity, as confirmed by histopathological studies of heart, liver, and kidney. Overall, the results indicate that OPM-g-PAM is a highly promising material for use in drug delivery systems, demonstrating potential as a novel controlled-release polymer.

8.
Int J Pharm ; : 124362, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901538

ABSTRACT

In this part, drug concentration in blood after ingesting slow-release gastroretentive fibrous dosage forms and immediate-release particulate forms is modeled. The tyrosine kinase inhibitor nilotinib, which is slightly soluble in low-pH gastric fluid but practically insoluble in pH-neutral intestinal fluid is used as drug. The models suggest that upon ingestion, the fibrous dosage form expands, is retained in the stomach for prolonged time, and releases drug into the gastric fluid at a constant rate. The released drug molecules flow into the duodenum with the gastric fluid, and are absorbed by the blood. The drug is eliminated from the blood by the liver at a rate proportional to its concentration. Eventually, the elimination and absorption rates will be equal, and the drug concentration in blood plateaus out. After the gastric residence time drug absorption stops, and the drug concentration in blood drops to zero. By contrast, after administering an immediate-release particulate dosage form the drug particles are swept out of the stomach rapidly, and drug absorption stops much earlier. The drug concentration in blood rises and falls without attaining steady state. The gastroretentive fibrous dosage forms enable a constant drug concentration in blood for drugs that are insoluble in intestinal fluids.

9.
Int J Pharm ; : 124361, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909924

ABSTRACT

In Part 1, we have introduced expandable gastroretentive fibrous dosage forms for prolonged delivery of sparingly-soluble tyrosine kinase inhibitors. The expansion rate, post-expansion mechanical strength, and drug release rate were modeled for a dosage form containing 200 mg nilotinib. In the present part, the dosage form was prepared and tested in vitro to validate the models. Upon immersing in a dissolution fluid, the fibrous dosage form expanded at a constant rate to a normalized radial expansion of 0.5 by 4 h, and then formed an expanded viscoelastic mass of high strength. The drug was released at a constant rate over a day. For comparison, a particle-filled gelatin capsule with the same amount of nilotinib disintegrated almost immediately, and released eighty percent of the drug content in just 10 min. The experimental data validate the theoretical models of Part 1 reasonably.

10.
Int J Pharm ; : 124360, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909925

ABSTRACT

At present, the efficacy and safety of many sparingly-soluble tyrosine kinase inhibitors (TKIs) delivered by the prevalent oral dosage forms are compromised by excessive fluctuations in the drug concentration in blood. To mitigate this limitation, in this four-part study gastroretentive fibrous dosage forms that deliver drug into the gastric fluid (and into the blood) at a controlled rate for prolonged time are presented. The dosage form comprises a cross-ply structure of expandable, water-absorbing, high-molecular-weight hydroxypropyl methylcellulose (HPMC)-based fibers coated with a strengthening, enteric excipient. The intervening spaces between the coated fibers are solid annuli of drug particles, and low-molecular-weight HPMC and enteric excipients. The central regions of the annuli are open channels. In this part, models are developed for dosage form expansion, post-expansion mechanical strength, and drug release. The models suggest that upon immersing in a dissolution fluid, the fluid percolates the open channels, diffuses into the annuli and the coated fibers, and the dosage form expands. The expansion rate is inversely proportional, and the post-expansion mechanical strength proportional to the thickness of the strengthening coating. Drug particles are released from the annuli as the surrounding excipient dissolves. The drug release rate is proportional to the concentration of low-molecular-weight HPMC at the annulus/dissolution fluid interface. The dosage forms can be readily designed for expansion in a few hours, formation of a high-strength viscoelastic mass, and drug release at a constant rate over a day.

11.
Int J Pharm ; : 124363, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906497

ABSTRACT

In this final part, the models of drug concentration in blood developed in Part 3 are validated on dogs. Both slow-release gastroretentive fibrous and immediate-release particulate dosage forms containing 200 mg nilotinib were tested. After administering, the fibrous dosage form expanded linearly with time in the stomach, to about 1.5 times the initial radius by 4 h. The expanded dosage form fractured after 10 h, and then passed into the intestines. The drug concentration in blood exhibited a broad peak with a maximum of 0.51 µg/ml and a width at half-height of 10.2 h. By contrast, after administering the immediate-release capsule the drug concentration in blood exhibited a sharp peak with a maximum of 0.68 µg/ml and a width at half-height of just 3.6 h. The experimental data validate the theoretical models reasonably. The gastroretentive fibrous dosage forms designed in this study enable a steady drug concentration in blood for increasing the efficacy and mitigating side effects of drug therapies.

12.
ACS Appl Mater Interfaces ; 16(29): 37468-37485, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38938118

ABSTRACT

Herein, poly(N-(4-aminophenyl)methacrylamide)-carbon nano-onions [abbreviated as PAPMA-CNOs (f-CNOs)] integrated gallic acid cross-linked zein composite fibers (ZG/f-CNOs) were developed for the removal/recovery of phosphate from wastewater along with controlled drug delivery and intrinsic antibacterial characteristics. The composite fibers were produced by Forcespinning followed by a heat-pressure technique. The obtained ZG/f-CNOs composite fibers presented several favorable characteristics of nanoadsorbents and drug carriers. The composite fibers exhibited excellent adsorption capabilities for phosphate ions. The adsorption assessment demonstrated that composite fibers process highly selective sequestration of phosphate ions from polluted water, even in the presence of competing anions. The ZG/f-CNOs composite fibers presented a maximum phosphate adsorption capacity (qmax) of 2500 mg/g at pH 7.0. This represents the most efficient phosphate adsorption system among all of the reported nanocomposites to date. The isotherm studies and adsorption kinetics of the adsorbent showed that the adsorption experiments followed the pseudo-second-order and Langmuir isotherm model (R2 = 0.9999). After 13 adsorption/desorption cycles, the adsorbent could still maintain its adsorption efficiency of 96-98% at pH 7.0 while maintaining stability under thermal and chemical conditions. The results mark significant progress in the design of composite fibers for removing phosphates from wastewater, potentially aiding in alleviating eutrophication effects. Owing to the f-CNOs incorporation, ZG/f-CNOs composite fibers exhibited controlled drug delivery. An antibiotic azithromycin drug-encapsulated composite fibers presented a pH-mediated drug release in a controlled manner over 18 days. Furthermore, the composite fibers displayed excellent antibacterial efficiency against Gram-positive and Gram-negative bacteria without causing resistance. In addition, zein composite fibers showed augmented mechanical properties due to the presence of f-CNOs within the zein matrix. Nonetheless, the robust zein composite fibers with inherent stimuli-responsive drug delivery, antibacterial properties, and phosphate adsorption properties can be considered promising multifunctional composites for biomedical applications and environmental remediation.


Subject(s)
Anti-Bacterial Agents , Phosphates , Zein , Zein/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Phosphates/chemistry , Adsorption , Nanocomposites/chemistry , Drug Carriers/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Drug Delivery Systems , Water Purification/methods , Escherichia coli/drug effects , Wastewater/chemistry , Azithromycin/chemistry , Azithromycin/pharmacology
13.
Pharm Nanotechnol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803187

ABSTRACT

Skin injury is one of the most prevalent lesions in humans, and many such wounds, including deep burns and chronic skin wounds, are notoriously difficult to heal. It has been established by medical practitioners that current wound therapies are not perfectly effective and are far from satisfactory. Meanwhile, nanotechnologies have made it possible to develop pharmaceutical formulations that can elevate the effectiveness of conventional pharmacotherapies to entirely new heights. Most nanostructured biomaterials used to treat wounds, including those that have helped establish this fascinating subject, have been polymeric. The bibliographic analysis presented here shows a steady growth in the research output of studies on the use of polymeric nanoparticles in wound healing therapies. This article provides an overview of polymeric nanoparticles for the treatment of wounds with an emphasis on different chemistries and polymer-drug combinations that have been proven the most effective. The wound age, pathophysiology, wound healing treatments of the present and past, as well as the physicochemical nature and methods for the synthesis of polymeric nanoparticles, are all covered in the opening parts of the review. The existing polymeric nano-drug delivery systems with the greatest promise for wound healing and skin regeneration are subsequently addressed and their potentials summarized.

14.
Article in English | MEDLINE | ID: mdl-38782881

ABSTRACT

Postoperative pain management is an important aspect of the overall surgical care process. Effective pain management not only provides patient comfort but also promotes faster recovery and reduces the risk of complications. Bupivacaine (BUP) and Lidocaine (LID) transdermal drug deliveries via thermoplastic polyurethane matrix (TPU) and iontophoresis technique are proposed here as alternative routes for postoperative pain instead of the injection route. Under applied electric field, the amounts of BUP and LID released were 95% and 97% from the loaded amounts, which were higher than the passive patch of 40%. The time to equilibrium of BUP turned out to be faster than the time to equilibrium of LID by approximately 1.5 times. This was due to 2 factors namely the drug molecular weight and the drug pKa value; they play an important role in the selection of a suitable drug for fast-acting or long-acting for the postoperative patients. By using this transdermal patch via iontophoresis system, BUP was deemed as the suitable drug for fast-acting due to the shorter time to equilibrium, whereas LID was the suitable drug for long-acting. The in-vitro drug release - permeation study through a porcine skin indicated the efficiency and potential of the system with the amounts of drug permeated up to 76% for BUP and 81% for LID. The TPU transdermal system was demonstrated here as potential to deliver BUP and LID for postoperative patients.

15.
Int J Biol Macromol ; 271(Pt 2): 132531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777011

ABSTRACT

In this study, we investigate the influence of montmorillonite (MMT) on the loading and release of Piper betle L. extract (PLE)-a medicinal herb containing active secondary metabolites with antibacterial, antioxidant, and anti-inflammatory effects. MMT (1 %, 3 %, 5 %) was blended into the chitosan/polyvinyl alcohol (CS/PVA) biocomposite film by the solution evaporation method, and then PLE was loaded onto this biocomposite using the immersion method. The tensile strength and the ability to absorb exudates of the CS/PVA film improved with the increase in MMT content. The MMT 3 % film was considered to have the best properties: good mechanical properties with a tensile strength of 27.44 ± 0.27 MPa and elongation at break of 14.57 ± 0.30 %, potential for wound dressing due to its ability to absorb wound exudate (swelling degree 61.70 ± 0.30 %) and a suitable water vapor transmission rate (1999 ± 47 g/m2·d). The presence of MMT (1 %, 3 %, 5 %) in the CS/PVA film led to an increase in the PLE loading efficiency of the films compared to the film without MMT, up to 1.65, 1.73, and 1.87 times, respectively. The MMT 3 % and 5 % films also exhibited a sustained PLE release effect for up to 24 h. MMT increased PLE bioavailability through bioactivity tests: antibacterial activity against both E. coli and S. aureus, antioxidant activity, effective healing of 2nd-degree burn wounds, and biocompatibility with the L929 fibroblasts cell line. The combination of physicochemical properties and biological activities proved that the MMT/PLE drug delivery system based on the CS/PVA biocomposite is promising for wound dressing.


Subject(s)
Bandages , Bentonite , Chitosan , Piper betle , Plant Extracts , Polyvinyl Alcohol , Wound Healing , Bentonite/chemistry , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Wound Healing/drug effects , Piper betle/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Tensile Strength , Mice , Drug Liberation , Staphylococcus aureus/drug effects , Cell Line , Rats
16.
Int J Biol Macromol ; 274(Pt 1): 132767, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821296

ABSTRACT

This study introduces a pH-responsive hydrogel developed from Delonix regia and mucin co-poly(acrylate) through free radical polymerization to enhance controlled drug delivery systems. Characterization using FTIR, DSC, TGA, SEM, PXRD, and EDX spectroscopy detailed the hydrogel's amorphous and crystalline structures, thermal stability, surface characteristics, and elemental composition. Tested at a pH of 7.4-mimicking intestinal conditions-the hydrogel demonstrated significant swelling, indicating its capability for targeted drug release. With Metformin HCl as a model drug, the hydrogel exhibited a promising sustained release profile, underscoring its potential for oral administration. Safety and biocompatibility were assessed through acute oral toxicity studies in albino rabbits, encompassing biochemical, hematological, and histopathological evaluations. X-ray imaging confirmed the hydrogel's navigability through the gastrointestinal tract, affirming its application in drug delivery. By potentially mitigating gastrointestinal side effects, enhancing patient compliance, and improving therapeutic efficacy, this Delonix regia/mucin co-poly(acrylate) hydrogel represents a step in pharmaceutical sciences, exploring innovative materials and methodologies for drug delivery.


Subject(s)
Drug Liberation , Hydrogels , Metformin , Mucins , Metformin/chemistry , Metformin/administration & dosage , Metformin/pharmacology , Metformin/pharmacokinetics , Hydrogels/chemistry , Hydrogen-Ion Concentration , Animals , Rabbits , Mucins/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Delayed-Action Preparations/chemistry , Acrylic Resins/chemistry
17.
Asian J Pharm Sci ; 19(2): 100886, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590795

ABSTRACT

Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood-brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.

18.
Future Med Chem ; 16(8): 791-809, 2024.
Article in English | MEDLINE | ID: mdl-38573051

ABSTRACT

This manuscript proposes an innovative approach to mitigate the gastrointestinal adversities linked with nonsteroidal anti-inflammatory drugs (NSAIDs) by exploiting amylose as a novel drug delivery carrier. The intrinsic attributes of V-amylose, such as its structural uniqueness, biocompatibility and biodegradability, as well as its capacity to form inclusion complexes with diverse drug molecules, are meticulously explored. Through a comprehensive physicochemical analysis of V-amylose and ulcerogenic NSAIDs, the plausibility of amylose as a protective carrier for ulcerogenic NSAIDs to gastrointestinal regions is elucidated. This review further discusses the potential therapeutic advantages of amylose-based drug delivery systems in the management of gastric ulcers. By providing controlled release kinetics and enhanced bioavailability, these systems offer promising prospects for the development of more effective ulcer therapies.


[Box: see text].


Subject(s)
Amylose , Anti-Inflammatory Agents, Non-Steroidal , Amylose/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Humans , Drug Carriers/chemistry , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Drug Delivery Systems , Animals
19.
Gels ; 10(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38534607

ABSTRACT

Chitosan, being a biocompatible and mucoadhesive polysaccharide, is one of the most preferred hydrogel-forming materials for drug delivery. The objectives of the present study are to obtain spray-dried microparticles based on low-molecular-weight chitosan and study their potential application as cargo systems for the orally active drug benzydamine hydrochloride. Three types of particles are obtained: raw chitosan particles (at three different concentrations), cross-linked with sodium tripolyphosphate (NaTPP) particles (at three different chitosan:NaTPP ratios), and particles coated with mannitol (at three different chitosan:mannitol ratios), all of them in the size range between 1 and 10 µm. Based on the loading efficiency and the yields of the formulated hydrogel particles, one model of each type is chosen for further investigation of the effect of the cross-linker or the excipient on the properties of the gel structures. The morphology of both empty and benzydamine hydrochloride-loaded chitosan particles was examined by scanning electron microscopy, and it was quite regular and spherical. Interactions and composition in the samples are investigated by Fourier-transformed infrared spectroscopy. The thermal stability and phase state of the drug and drug-containing polymer matrixes were tested by differential scanning calorimetry and X-ray powdered diffraction, revealing that the drug underwent a phase transition. A drug release kinetics study of the chosen gel-based structures in simulated saliva buffer (pH = 6.8) and mathematical modeling of the process were performed, indicating the Weibull model as the most appropriate one.

20.
Article in English | MEDLINE | ID: mdl-38530607

ABSTRACT

Polyelectrolyte complexes (PECs) are polymeric structures formed by the self-assembly of oppositely charged polymers. Novel biomaterials based on PECs are currently under investigation as drug delivery systems, among other applications. This strategy leverages the ability of PECs to entrap drugs under mild conditions and control their release. In this study, we combined a novel and sustainably produced hemicellulose-rich lignosulphonate polymer (EH, negatively charged) with polyethyleneimine (PEI) or chitosan (CH, positively charged) and agar for the development of drug-releasing PECs. A preliminary screening demonstrated the effect of several parameters (polyelectrolyte ratio, temperature, and type of polycation) on PECs formation. From this, selected formulations were further characterized in terms of thermal properties, surface morphology at the microscale, stability, and ability to load and release methylene blue (MB) as a model drug. EH/PEI complexes had a more pronounced gel-like behaviour compared to the EH/CH complexes. Differential scanning calorimetry (DSC) results supported the establishment of polymeric interactions during complexation. Overall, PECs' stability was positively affected by low pH, ratios close to 1:1, and the addition of agar. PECs with higher EH content showed a higher MB loading, likely promoted by stronger electrostatic interactions. The EH/CH formulation enriched with agar showed the best sustained release profile of MB during the first 30 h in a pH-dependent environment simulating the gastrointestinal tract. Overall, we defined the conditions to formulate novel PECs based on a sustainable hemicellulose-rich lignosulphonate for potential applications in drug delivery, which promotes the valuable synergy between sustainability and the biomedical field.

SELECTION OF CITATIONS
SEARCH DETAIL
...