Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Front Plant Sci ; 15: 1427471, 2024.
Article in English | MEDLINE | ID: mdl-39109059

ABSTRACT

In modern agriculture, Controlled environment agriculture (CEA) stands out as a contemporary production mode that leverages precise control over environmental conditions such as nutrient, temperature, light, and other factors to achieve efficient and high-quality agricultural production. Numerous studies have demonstrated the efficacy of manipulating these environmental factors in the short period before harvest to enhance crop yield and quality in CEA. This comprehensive review aims to provide insight into various pre-harvest practices employed in CEA, including nutrient deprivation, nutrient supply, manipulation of the light environment, and the application of exogenous hormones, with the objective of improving yield and quality in horticultural crops. Additionally, we propose an intelligent pre-harvest management system to cultivate high-quality horticultural crops. This system integrates sensor technology, data analysis, and intelligent control, enabling the customization of specific pre-harvest strategies based on producers' requirements. The envisioned pre-harvest intelligent system holds the potential to enhance crop quality, increase yield, reduce resource wastage, and offer innovative ideas and technical support for the sustainable development of CEA.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124820, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39032229

ABSTRACT

As demand for food continues to rise, innovative methods are needed to sustainably and efficiently meet the growing pressure on agriculture. Indoor farming and controlled environment agriculture have emerged as promising approaches to address this challenge. However, optimizing fertilizer usage, ensuring homogeneous production, and reducing agro-waste remain substantial challenges in these production systems. One potential solution is the use of optical sensing technology, which can provide real-time data to help growers make informed decisions and enhance their operations. optical sensing can be used to analyze plant tissues, evaluate crop quality and yield, measure nutrients, and assess plant responses to stress. This paper presents a systematic literature review of the current state of using spectral-optical sensors and hyperspectral imaging for indoor farming, following the PRISMA 2020 guidelines. The study surveyed existing studies from 2017 to 2023 to identify gaps in knowledge, provide researchers and farmers with current trends, and offer recommendations and inspirations for possible new research directions. The results of this review will contribute to the development of sustainable and efficient methods of food production.


Subject(s)
Agriculture , Spectrum Analysis , Agriculture/methods , Spectrum Analysis/methods , Crops, Agricultural/chemistry , Crops, Agricultural/growth & development , Hyperspectral Imaging/methods , Fertilizers/analysis , Optical Imaging/methods
4.
Foods ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998646

ABSTRACT

This study investigates the effect of continuous blue light (CBL) treatment on quality-related metabolites, focusing on ascorbic acid (AsA) accumulation in hydroponically grown Eruca vesicaria (L.). Plants were subjected to CBL treatment, consisting of 24-h exposure to constant-intensity blue light (48 µmol m-2 s-1) and 12-h exposure to the remaining spectrum (192 µmol m-2 s-1). The activities of key enzymes in AsA biosynthesis and recycling were analyzed, including L-galactono-1,4-lactone dehydrogenase (GalLDh), monodehydroascorbate reductase (MDhAR), dehydroascorbate reductase (DhAR), and ascorbate peroxidase (APX). The results showed a significant increase in AsA accumulation of 65.9% during the "day" and 69.1% during the "night" phases under CBL compared to controls. GalLDh activity increased by 20% during the "day phase" in CBL-treated plants. APX activity also rose significantly under CBL conditions, by 101% during the "day" and 75.6% during the "night". However, this did not affect dehydroascorbic acid levels or the activities of MDhAR and DhAR. These findings highlight the potential of tailored light treatments to enhance the nutraceutical content of horticultural species, offering valuable insights for sustainably improving food quality in controlled-environment agriculture (CEA) systems and understanding the roles of blue light in ascorbic acid biosynthesis.

5.
Life Sci Space Res (Amst) ; 42: 140-147, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39067985

ABSTRACT

Despite the precise environmental manipulation enabled by controlled environment agriculture (CEA), plant genotype remains a key factor in producing desirable traits. Brassica rapa var. nipposinica (mizuna) is a leading candidate for supplementing deficiencies in the space diet, however, which cultivar of mizuna will respond best to the environment of the international space station (ISS) is unknown. It is also unclear if there are more inter-varietal (mizuna - mustards) or intra-varietal (mizuna - mizuna) differences in response to the ISS environment. Twenty-two cultivars of mustard greens, including 13 cultivars of mizuna, were grown under ISS-like conditions to determine which would provide the greatest yield and highest concentrations of carotenoids, anthocyanins, calcium, potassium, iron, magnesium, ascorbic acid, thiamine, and phylloquinone. The experiment was conducted thrice, and data were analyzed to determine which cultivar is most suited for further optimization of space-based cultivation. It was found that phylloquinone and ß-carotene concentrations did not vary between cultivars, while all other metrics of interest showed some variation. 'Amara' mustard (B. carinata) provided the best overall nutritional profile, despite its low biomass yield of 36.8 g, producing concentrations of 27.85, 0.40, and 0.65 mg·g - 1 of ascorbic acid, thiamine, and lutein, respectively. Of the mizuna cultivars evaluated, open pollinated mibuna provided the best profile, while 'Red Hybrid' mizuna provided a complimentary profile to that of 'Amara', minimally increasing dietary iron while providing beneficial anthocyanins lacking in 'Amara'.


Subject(s)
Brassica rapa , Brassica rapa/growth & development , Brassica rapa/genetics , Brassica rapa/metabolism , Dietary Supplements/analysis , Brassica/growth & development , Brassica/genetics , Brassica/metabolism , Space Flight
6.
Farm Hosp ; 2024 Jun 12.
Article in English, Spanish | MEDLINE | ID: mdl-38871538

ABSTRACT

OBJECTIVE: To describe the process of implementing a traceability and safe manufacturing system in the clean room of a pharmacy service to increase patient safety, in accordance with current legislation. METHODS: The process was carried out between September 2021 and July 2022. The software program integrated all the recommended stages of the manufacturing process outlined in the "Good Practices Guide for Medication Preparation in Pharmacy Services" (GBPP). The following sections were parameterised in the software program: personnel, facilities, equipment, starting materials, packaging materials, standardised work procedures, and quality controls. RESULTS: A total of 50 users, 4 elaboration areas and 113 equipments were included. 435 components were parameterized (195 raw materials and 240 pharmaceutical specialties), 54 packaging materials, 376 standardised work procedures (123 of them corresponding to sterile medicines and 253 to non-sterile medicines, of which 52 non-sterile were dangerous), in addition, 17 were high risk, 327 medium risk, and 32 low risk, and 13 quality controls. CONCLUSIONS: The computerization of the production process has allowed the implementation of a traceability and secure manufacturing system in a controlled environment in accordance with current legislation.

7.
Biology (Basel) ; 13(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38927270

ABSTRACT

Photomorphogenic development in seedlings may be diagnostic of future plant performance. In this report, we characterize the Thai Oakleaf lettuce genotype, as it exhibited abnormalities in photomorphogenic development that were the most conspicuous under red light, including defects in hypocotyl growth inhibition, decreased cotyledon expansion, and constitutive shade avoidance tendencies. These observations are consistent with defects in red light sensing through the phytochrome B (phyB) photoreceptor system. This genotype is sold commercially as a heat-tolerant variety, which aligns with the evidence that phyB acts as a thermosensor.

8.
Front Plant Sci ; 15: 1365266, 2024.
Article in English | MEDLINE | ID: mdl-38903437

ABSTRACT

Introduction: Indoor agriculture, especially plant factories, becomes essential because of the advantages of cultivating crops yearly to address global food shortages. Plant factories have been growing in scale as commercialized. Developing an on-site system that estimates the fresh weight of crops non-destructively for decision-making on harvest time is necessary to maximize yield and profits. However, a multi-layer growing environment with on-site workers is too confined and crowded to develop a high-performance system.This research developed a machine vision-based fresh weight estimation system to monitor crops from the transplant stage to harvest with less physical labor in an on-site industrial plant factory. Methods: A linear motion guide with a camera rail moving in both the x-axis and y-axis directions was produced and mounted on a cultivating rack with a height under 35 cm to get consistent images of crops from the top view. Raspberry Pi4 controlled its operation to capture images automatically every hour. The fresh weight was manually measured eleven times for four months to use as the ground-truth weight of the models. The attained images were preprocessed and used to develop weight prediction models based on manual and automatic feature extraction. Results and discussion: The performance of models was compared, and the best performance among them was the automatic feature extraction-based model using convolutional neural networks (CNN; ResNet18). The CNN-based model on automatic feature extraction from images performed much better than any other manual feature extraction-based models with 0.95 of the coefficients of determination (R2) and 8.06 g of root mean square error (RMSE). However, another multiplayer perceptron model (MLP_2) was more appropriate to be adopted on-site since it showed around nine times faster inference time than CNN with a little less R2 (0.93). Through this study, field workers in a confined indoor farming environment can measure the fresh weight of crops non-destructively and easily. In addition, it would help to decide when to harvest on the spot.

9.
Front Nutr ; 11: 1386988, 2024.
Article in English | MEDLINE | ID: mdl-38899321

ABSTRACT

With the growing global population and climate change, achieving food security is a pressing challenge. Vertical farming has the potential to support local food production and security. As a Total Controlled Environment Agriculture (TCEA) system, vertical farming employs LED lighting which offers opportunities to modulate light spectrum and intensity, and thus can be used to influence plant growth and phytochemical composition, including antioxidants beneficial for human health. In this study, we investigated the effect of four red-to-blue light ratios of LEDs (R:B 1, 2.5, 5 and 9) on the growth and antioxidant components in red amaranth microgreens and red lettuce. Plant growth, total phenols, betalains, anthocyanins, vitamin C and antioxidant capacity (ferric reducing antioxidant power assay) were evaluated. A higher proportion of red light resulted in biometric responses, i.e., stem elongation in red amaranth and longer leaves in red lettuce, while the increase in the blue light fraction led to the upregulation of antioxidative components, especially total phenols, betalains (in red amaranth) and anthocyanins (in red lettuce). The antioxidant capacity of both crops was strongly positively correlated with the levels of these phytochemicals. Optimizing the red-to-blue ratio in LED lighting could be effective in promoting antioxidant-rich crops with potential health benefits for consumers.

10.
Curr Allergy Asthma Rep ; 24(7): 395-406, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878249

ABSTRACT

PURPOSE OF REVIEW: This review investigates occupational inhalation hazards associated with biologically derived airborne particles (bioaerosols) generated in indoor cannabis cultivation and manufacturing facilities. RECENT FINDINGS: Indoor cannabis production is growing across the US as are recent reports of respiratory diseases among cannabis workers, including occupational asthma morbidity and mortality. More information is needed to understand how bioaerosol exposure in cannabis facilities impacts worker health and occupational disease risk. Preliminary studies demonstrate a significant fraction of airborne particles in cannabis facilities are comprised of fungal spores, bacteria, and plant material, which may also contain hazardous microbial metabolites and allergens. These bioaerosols may pose pathogenic, allergenic, toxigenic, and pro-inflammatory risks to workers. The absence of multi-level, holistic bioaerosol research in cannabis work environments necessitates further characterization of the potential respiratory hazards and effective risk prevention methods to safeguard occupational health as the cannabis industry continues to expand across the US and beyond.


Subject(s)
Aerosols , Cannabis , Occupational Exposure , Humans , Cannabis/adverse effects , Occupational Exposure/adverse effects , Aerosols/adverse effects , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/etiology , Air Pollutants, Occupational/adverse effects , Air Pollutants, Occupational/analysis
11.
Front Plant Sci ; 15: 1383100, 2024.
Article in English | MEDLINE | ID: mdl-38745919

ABSTRACT

In controlled environment agriculture, customized light treatments using light-emitting diodes are crucial to improving crop yield and quality. Red (R; 600-700 nm) and blue light (B; 400-500 nm) are two major parts of photosynthetically active radiation (PAR), often preferred in crop production. Far-red radiation (FR; 700-800 nm), although not part of PAR, can also affect photosynthesis and can have profound effects on a range of morphological and physiological processes. However, interactions between different red and blue light ratios (R:B) and FR on promoting yield and nutritionally relevant compounds in crops remain unknown. Here, lettuce was grown at 200 µmol m-2 s-1 PAR under three different R:B ratios: R:B87.5:12.5 (12.5% blue), R:B75:25 (25% blue), and R:B60:40 (40% blue) without FR. Each treatment was also performed with supplementary FR (50 µmol m-2 s-1; R:B87.5:12.5+FR, R:B75:25+FR, and R:B60:40+FR). White light with and without FR (W and W+FR) were used as control treatments comprising of 72.5% red, 19% green, and 8.5% blue light. Increasing the R:B ratio from R:B87.5:12.5 to R:B60:40, there was a decrease in fresh weight (20%) and carbohydrate concentration (48% reduction in both sugars and starch), whereas pigment concentrations (anthocyanins, chlorophyll, and carotenoids), phenolic compounds, and various minerals all increased. These results contrasted the effects of FR supplementation in the growth spectra; when supplementing FR to different R:B backgrounds, we found a significant increase in plant fresh weight, dry weight, total soluble sugars, and starch. Additionally, FR decreased concentrations of anthocyanins, phenolic compounds, and various minerals. Although blue light and FR effects appear to directly contrast, blue and FR light did not have interactive effects together when considering plant growth, morphology, and nutritional content. Therefore, the individual benefits of increased blue light fraction and supplementary FR radiation can be combined and used cooperatively to produce crops of desired quality: adding FR increases growth and carbohydrate concentration while increasing the blue fraction increases nutritional value.

12.
J Photochem Photobiol B ; 256: 112939, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761748

ABSTRACT

The visible light spectrum (400-700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590-620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420-430 nm and 590-620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.


Subject(s)
Light , Photosynthesis , Solanum lycopersicum , Photosynthesis/radiation effects , Solanum lycopersicum/growth & development , Solanum lycopersicum/radiation effects , Solanum lycopersicum/metabolism , Lactuca/growth & development , Lactuca/radiation effects , Lactuca/metabolism
13.
J Exp Bot ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814918

ABSTRACT

Medicinal plants (MPs) are valued for their contributions to human health. However, the growing demand for MPs and the concerns regarding their quality and sustainability have prompted the reassessment of conventional production practices. Controlled environment cropping systems, such as vertical farms, offer a transformative approach to MP production. By enabling precise control over environment factors, such as light, carbon dioxide, temperature, humidity, nutrients, and airflow, controlled environments can improve the consistency, concentration, and yield of bioactive phytochemicals in MPs. This review explores the potential of controlled environment systems for enhancing MP production. First, we describe how controlled environments can overcome the limitations of conventional production in improving the quality of MP. Next, we propose strategies based on plant physiology to manipulate environment conditions for enhancing the levels of bioactive compounds in plants. These strategies include improving photosynthetic carbon assimilation, light spectrum signalling, purposeful stress elicitation, and chronoculture. We describe the underlying mechanisms and practical applications of these strategies. Finally, we highlight the major knowledge gaps and challenges that limit the application of controlled environments, and discuss future research directions.

14.
J Agric Food Chem ; 72(17): 9587-9598, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38588384

ABSTRACT

Far-red (FR) light influences plant development significantly through shade avoidance response and photosynthetic modulation, but there is limited knowledge on how FR treatments influence the growth and nutrition of vegetables at different maturity stages in controlled environment agriculture (CEA). Here, we comprehensively investigated the impacts of FR on the yield, morphology, and phytonutrients of ruby streaks mustard (RS) at microgreen, baby leaf, and flowering stages. Treatments including white control, white with supplementary FR, white followed by singularly applied FR, and enhanced white (WE) matching the extended daily light integral (eDLI) of FR were designed for separating the effects of light intensity and quality. Results showed that singular and supplemental FR affected plant development and nutrition similarly throughout the growth cycle, with light intensity and quality playing varying roles at different stages. Specifically, FR did not affect the fresh and dry weight of microgreens but increased those values for baby leaves, although not as effectively as WE. Meanwhile, FR caused significant morphological change and accelerated the development of leaves, flowers, and seedpods more dramatically than WE. With regard to phytonutrients, light treatments affected the metabolomic profiles for baby leaves more dramatically than microgreens and flowers. FR decreased the glucosinolate and anthocyanin contents in microgreens and baby leaves, while WE increased the contents of those compounds in baby leaves. This study illustrates the complex impacts of FR on RS and provides valuable information for selecting optimal lighting conditions in CEA.


Subject(s)
Biomass , Flowers , Mustard Plant , Phytochemicals , Plant Leaves , Red Light , Anthocyanins/analysis , Flowers/chemistry , Flowers/growth & development , Flowers/radiation effects , Mustard Plant/chemistry , Mustard Plant/growth & development , Mustard Plant/radiation effects , Photosynthesis/radiation effects , Phytochemicals/chemistry , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/radiation effects
15.
Farm Hosp ; 2024 Apr 03.
Article in English, Spanish | MEDLINE | ID: mdl-38575411

ABSTRACT

OBJECTIVE: To describe the process of implementing a traceability and safe drug manufacturing system in the clean room of a Pharmacy Service to increase patient safety, in accordance with current legislation. METHODS: The process was carried out between September 2021 and July 2022. The software program integrated all the recommended stages of the manufacturing process outlined in the "Good Practices Guide for Medication Preparation in Pharmacy Services" (GBPP). The following sections were parameterized in the software program: personnel, facilities, equipment, starting materials, packaging materials, standardized work procedures, and quality controls. RESULTS: A total of 50 users, 4 elaboration areas and 113 equipments were included. 435 components were parameterized (195 raw materials and 240 pharmaceutical specialties), 54 packaging materials, 376 standardized work procedures (123 of them corresponding to sterile medicines and 253 to non-sterile medicines, of which 52 non-sterile were dangerous), in addition 17 were high risk, 327 medium risk, 32 low risk, and 13 quality controls. CONCLUSIONS: The computerization of the production process has allowed the implementation of a traceability and secure drug manufacturing system in a controlled environment in accordance with current legislation.

16.
Sensors (Basel) ; 24(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38676029

ABSTRACT

The increasing use of inertial measurement units (IMU) in biomedical sciences brings new possibilities for clinical research. The aim of this paper is to demonstrate the accuracy of the IMU-based wearable Syde® device, which allows day-long and remote continuous gait recording in comparison to a reference motion capture system. Twelve healthy subjects (age: 23.17 ± 2.04, height: 174.17 ± 6.46 cm) participated in a controlled environment data collection and performed a series of gait tasks with both systems attached to each ankle. A total of 2820 strides were analyzed. The results show a median absolute stride length error of 1.86 cm between the IMU-based wearable device reconstruction and the motion capture ground truth, with the 75th percentile at 3.24 cm. The median absolute stride horizontal velocity error was 1.56 cm/s, with the 75th percentile at 2.63 cm/s. With a measurement error to the reference system of less than 3 cm, we conclude that there is a valid physical recovery of stride length and horizontal velocity from data collected with the IMU-based wearable Syde® device.


Subject(s)
Ankle , Gait , Wearable Electronic Devices , Humans , Gait/physiology , Male , Ankle/physiology , Female , Adult , Young Adult , Biomechanical Phenomena/physiology , Accelerometry/instrumentation , Accelerometry/methods , Gait Analysis/methods , Gait Analysis/instrumentation
17.
Trends Plant Sci ; 29(5): 572-588, 2024 May.
Article in English | MEDLINE | ID: mdl-38494370

ABSTRACT

In controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances. The central regulator of light signal transduction elongated hypocotyl 5 (HY5) controls transcriptional regulation of terpenoids under UV, red (R), and blue (B) light. The larger the fraction of R and green (G) light, the more beneficial the effect on monoterpenoid and sesquiterpenoid biosynthesis, and such an effect may depend on the presence of B light. A large fraction of R light is mostly detrimental to tetraterpenoid production. We conclude that light is a promising tool to steer terpenoid production and potentially tailor the quality of plants.


Subject(s)
Light , Plants , Terpenes , Gene Expression Regulation, Plant , Plants/metabolism , Terpenes/metabolism
18.
Ophthalmol Ther ; 13(5): 1197-1210, 2024 May.
Article in English | MEDLINE | ID: mdl-38446281

ABSTRACT

INTRODUCTION: To evaluate the short-term efficacy of cyclosporine A (CsA)-0.1% cationic emulsion (CE) in patients with dry eye disease (DED) and mitigation of the inflammatory flares triggered by desiccating stress environments. METHODS: A single-center non-randomized clinical trial was performed at a tertiary care setting. Twenty patients with DED treated with CsA 0.1% CE were exposed to a normal controlled environment (NCE) (23 °C, 50% relative humidity) and an adverse controlled environment (ACE) (23 °C, 10% relative humidity, 0.43 m/s localized airflow) during baseline and the 1- and 3-month visits. Patients underwent the following evaluations: conjunctival hyperemia and staining, corneal fluorescein staining (CFS) using the Oxford and Cornea and Contact Lens Research Unit (CCLRU) scale, meibomian gland (MG) secretion quality, Dry Eye Questionnaire-5, Symptom Assessment in Dry Eye (SANDE II), and Change in Dry Eye Symptoms Questionnaire. Multivariate models were adjusted for statistical analysis. RESULTS: Nineteen women and one man (mean age, 58.9 ± 12.3 years) completed the study. All symptom questionnaires, CFS, conjunctival hyperemia and staining, and MG secretion quality improved (p ≤ 0.003) with 1 month of treatment; improvements were maintained after 3 months (p ≤ 0.02), except for SANDE II (p ≥ 0.07). The CFS worsening (total CCLRU) after baseline ACE exposure (from 8.6 to 10.1) was higher, although not significant (p = 0.64), compared with 1 month (from 5.4 to 5.8) and 3 months (from 5.0 to 5.9) after treatment. CONCLUSION: Topical CsA-0.1% CE improved DED signs and symptoms after 1 month of treatment under controlled environmental conditions. Future studies should confirm the benefit of CsA-0.1% CE in desiccating stress environments. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT04492878.

19.
Food Environ Virol ; 16(2): 261-268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413543

ABSTRACT

Controlled environment agriculture (CEA), or indoor agriculture, encompasses non-traditional farming methods that occur inside climate-controlled structures (e.g., greenhouses, warehouses, high tunnels) allowing for year-round production of fresh produce such as leaf lettuce. However, recent outbreaks and recalls associated with hydroponically grown lettuce contaminated with human pathogens have raised concerns. Few studies exist on the food safety risks during hydroponic cultivation of leaf lettuce; thus, it is important to identify contributing risk factors and potential mitigation strategies to prevent foodborne transmission via hydroponically grown produce. In this study, the concentration of infectious Tulane virus (TV), a human norovirus surrogate, in hydroponic nutrient solution at 15 °C, 25 °C, 30 °C, and 37 °C was determined over a duration of 21 days to mimic the time from seedling to mature lettuce. The mean log PFU reduction for TV was 0.86, 1.80, 2.87, and ≥ 3.77 log10 at 15 °C, 25 °C, 30 °C, and 37 °C, respectively, at the end of the 21-day period. Similarly, average decimal reduction values (D-values) of TV at 15 °C, 25 °C, 30 °C, and 37 °C were 48.0, 11.3, 8.57, and 7.02 days, respectively. This study aids in the (i) identification of possible food safety risks associated with hydroponic systems specifically related to nutrient solution temperature and (ii) generation of data to perform risk assessments within CEA leaf lettuce operations to inform risk management strategies for the reduction of foodborne outbreaks, fresh produce recalls, and economic losses.


Subject(s)
Hydroponics , Lactuca , Temperature , Lactuca/virology , Lactuca/growth & development , Caliciviridae/growth & development , Caliciviridae/physiology , Food Contamination/analysis , Nutrients/metabolism , Humans , Food Safety
20.
J Environ Manage ; 353: 120208, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38301481

ABSTRACT

Aquaponics is an integrated food production system that intensively produces a diverse array of seafood and specialty crops in one closed-loop system, which is a potential solution to global challenges of food security. While current aquaponics systems are commonly operated with freshwater, marine aquaponics is an emerging opportunity to grow saltwater animals and plants. Although marine aquaponics can reduce the dependence on freshwater for food production, its environmental sustainability has not been systematically studied. This paper presents the first life cycle assessment (LCA) on a marine aquaponic production system growing shrimp and three halophytes. The system assessed covered from shrimp larvae nursery to grow-out. The effects of salinity, carbon/nitrogen (C/N) ratio and shrimp-to-plant stocking density ratio of aquaponics on its midpoint and endpoint environmental impacts were evaluated using a functional unit based on the economic value of the four products. Electricity use for aquaponic operation was the environmental hotspot, contributing ∼90 % to all the midpoint impacts. The system produced higher environmental impacts when operated at higher salinity, but lower C/N ratio and stocking density. Replacing fossil fuel with wind power for electricity generation can decrease the environmental impacts by 95-99 %. Variation in the shrimp price can change the impacts by up to 62 %. This study provides a useful tool to help marine aquaponic farmers improve their production from an environmental perspective, and can serve as groundwork for further assessing more marine aquaponic systems with different animal-plant combinations.


Subject(s)
Aquaculture , Crops, Agricultural , Animals , Hydroponics , Nitrogen , Seafood , Life Cycle Stages
SELECTION OF CITATIONS
SEARCH DETAIL