Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
1.
Front Neurorobot ; 18: 1428785, 2024.
Article in English | MEDLINE | ID: mdl-38947247

ABSTRACT

Next Point-of-Interest (POI) recommendation aims to predict the next POI for users from their historical activities. Existing methods typically rely on location-level POI check-in trajectories to explore user sequential transition patterns, which suffer from the severe check-in data sparsity issue. However, taking into account region-level and category-level POI sequences can help address this issue. Moreover, collaborative information between different granularities of POI sequences is not well utilized, which can facilitate mutual enhancement and benefit to augment user preference learning. To address these challenges, we propose multi-granularity contrastive learning (MGCL) for next POI recommendation, which utilizes multi-granularity representation and contrastive learning to improve the next POI recommendation performance. Specifically, location-level POI graph, category-level, and region-level sequences are first constructed. Then, we use graph convolutional networks on POI graph to extract cross-user sequential transition patterns. Furthermore, self-attention networks are used to learn individual user sequential transition patterns for each granularity level. To capture the collaborative signals between multi-granularity, we apply the contrastive learning approach. Finally, we jointly train the recommendation and contrastive learning tasks. Extensive experiments demonstrate that MGCL is more effective than state-of-the-art methods.

2.
ISA Trans ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38876952

ABSTRACT

Bearing fault diagnosis is significant in ensuring large machinery and equipment's safe and stable operation. However, inconsistent operating environments can lead to data distribution differences between source and target domains. As a result, models trained solely on source-domain data may not perform well when applied to the target domain, especially when the target-domain data is unlabeled. Existing approaches focus on improving domain adaptive methods for effective transfer learning but neglect the importance of extracting comprehensive feature information. To tackle this challenge, we present a bearing fault diagnosis approach using dual-path convolutional neural networks (CNNs) and multi-parallel graph convolutional networks (GCNs), called DPC-MGCN, which can be applied to variable working conditions. To obtain complete feature information, DPC-MGCN leverages dual-path CNNs to extract local and global features from vibration signals in both the source and target domains. The attention mechanism is subsequently applied to identify crucial features, which are converted into adjacency matrices. Multi-parallel GCNs are then employed to further explore the structural information among these features. To minimize the distribution differences between the two domains, we incorporate the multi-kernel maximum mean discrepancy (MK-MMD) domain adaptation method. By applying the DPC-MGCN approach for diagnosing bearing faults under diverse working conditions and comparing it with other methods, we demonstrate its superior performance on various datasets.

3.
Diagnostics (Basel) ; 14(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928728

ABSTRACT

Computed tomography (CT) scans have recently emerged as a major technique for the fast diagnosis of lung diseases via image classification techniques. In this study, we propose a method for the diagnosis of COVID-19 disease with improved accuracy by utilizing graph convolutional networks (GCN) at various layer formations and kernel sizes to extract features from CT scan images. We apply a U-Net model to aid in segmentation and feature extraction. In contrast with previous research retrieving deep features from convolutional filters and pooling layers, which fail to fully consider the spatial connectivity of the nodes, we employ GCNs for classification and prediction to capture spatial connectivity patterns, which provides a significant association benefit. We handle the extracted deep features to form an adjacency matrix that contains a graph structure and pass it to a GCN along with the original image graph and the largest kernel graph. We combine these graphs to form one block of the graph input and then pass it through a GCN with an additional dropout layer to avoid overfitting. Our findings show that the suggested framework, called the feature-extracted graph convolutional network (FGCN), performs better in identifying lung diseases compared to recently proposed deep learning architectures that are not based on graph representations. The proposed model also outperforms a variety of transfer learning models commonly used for medical diagnosis tasks, highlighting the abstraction potential of the graph representation over traditional methods.

4.
J Phys Condens Matter ; 36(38)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870994

ABSTRACT

This study proposes a novel long short-term memory (LSTM)-based model for predicting future physical properties based on partial data of molecular dynamics (MD) simulation. It extracts latent vectors from atomic coordinates of MD simulations using graph convolutional network, utilizes LSTM to learn temporal trends in latent vectors and make one-step-ahead predictions of physical properties through fully connected layers. Validating with MD simulations of Ni solid-liquid systems, the model achieved accurate one-step-ahead prediction for time variation of the potential energy during solidification and melting processes using residual connections. Recursive use of predicted values enabled long-term prediction from just the first 20 snapshots of the MD simulation. The prediction has captured the feature of potential energy bending at low temperatures, which represents completion of solidification, despite that the MD data in short time do not have such a bending characteristic. Remarkably, for long-time prediction over 900 ps, the computation time was reduced to 1/700th of a full MD simulation of the same duration. This approach has shown the potential to significantly reduce computational cost for prediction of physical properties by efficiently utilizing the data of MD simulation.

5.
Biomed Eng Online ; 23(1): 60, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909231

ABSTRACT

BACKGROUND: Left ventricular enlargement (LVE) is a common manifestation of cardiac remodeling that is closely associated with cardiac dysfunction, heart failure (HF), and arrhythmias. This study aimed to propose a machine learning (ML)-based strategy to identify LVE in HF patients by means of pulse wave signals. METHOD: We constructed two high-quality pulse wave datasets comprising a non-LVE group and an LVE group based on the 264 HF patients. Fourier series calculations were employed to determine if significant frequency differences existed between the two datasets, thereby ensuring their validity. Then, the ML-based identification was undertaken by means of classification and regression models: a weighted random forest model was employed for binary classification of the datasets, and a densely connected convolutional network was utilized to directly estimate the left ventricular diastolic diameter index (LVDdI) through regression. Finally, the accuracy of the two models was validated by comparing their results with clinical measurements, using accuracy and the area under the receiver operating characteristic curve (AUC-ROC) to assess their capability for identifying LVE patients. RESULTS: The classification model exhibited superior performance with an accuracy of 0.91 and an AUC-ROC of 0.93. The regression model achieved an accuracy of 0.88 and an AUC-ROC of 0.89, indicating that both models can quickly and accurately identify LVE in HF patients. CONCLUSION: The proposed ML methods are verified to achieve effective classification and regression with good performance for identifying LVE in HF patients based on pulse wave signals. This study thus demonstrates the feasibility and potential of the ML-based strategy for clinical practice while offering an effective and robust tool for diagnosing and intervening ventricular remodeling.


Subject(s)
Heart Failure , Machine Learning , Pulse Wave Analysis , Humans , Heart Failure/physiopathology , Female , Male , Middle Aged , Aged , Signal Processing, Computer-Assisted , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/diagnostic imaging
6.
Entropy (Basel) ; 26(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38920486

ABSTRACT

Link prediction is recognized as a crucial means to analyze dynamic social networks, revealing the principles of social relationship evolution. However, the complex topology and temporal evolution characteristics of dynamic social networks pose significant research challenges. This study introduces an innovative fusion framework that incorporates entropy, causality, and a GCN model, focusing specifically on link prediction in dynamic social networks. Firstly, the framework preprocesses the raw data, extracting and recording timestamp information between interactions. It then introduces the concept of "Temporal Information Entropy (TIE)", integrating it into the Node2Vec algorithm's random walk to generate initial feature vectors for nodes in the graph. A causality analysis model is subsequently applied for secondary processing of the generated feature vectors. Following this, an equal dataset is constructed by adjusting the ratio of positive and negative samples. Lastly, a dedicated GCN model is used for model training. Through extensive experimentation in multiple real social networks, the framework proposed in this study demonstrated a better performance than other methods in key evaluation indicators such as precision, recall, F1 score, and accuracy. This study provides a fresh perspective for understanding and predicting link dynamics in social networks and has significant practical value.

7.
Dig Dis Sci ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837111

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a malignant tumor within the digestive tract with both a high incidence rate and mortality. Early detection and intervention could improve patient clinical outcomes and survival. METHODS: This study computationally investigates a set of prognostic tissue and cell features from diagnostic tissue slides. With the combination of clinical prognostic variables, the pathological image features could predict the prognosis in CRC patients. Our CRC prognosis prediction pipeline sequentially consisted of three modules: (1) A MultiTissue Net to delineate outlines of different tissue types within the WSI of CRC for further ROI selection by pathologists. (2) Development of three-level quantitative image metrics related to tissue compositions, cell shape, and hidden features from a deep network. (3) Fusion of multi-level features to build a prognostic CRC model for predicting survival for CRC. RESULTS: Experimental results suggest that each group of features has a particular relationship with the prognosis of patients in the independent test set. In the fusion features combination experiment, the accuracy rate of predicting patients' prognosis and survival status is 81.52%, and the AUC value is 0.77. CONCLUSION: This paper constructs a model that can predict the postoperative survival of patients by using image features and clinical information. Some features were found to be associated with the prognosis and survival of patients.

8.
Comput Biol Chem ; 112: 108115, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38865861

ABSTRACT

Accurately identifying essential proteins is vital for drug research and disease diagnosis. Traditional centrality methods and machine learning approaches often face challenges in accurately discerning essential proteins, primarily relying on information derived from protein-protein interaction (PPI) networks. Despite attempts by some researchers to integrate biological data and PPI networks for predicting essential proteins, designing effective integration methods remains a challenge. In response to these challenges, this paper presents the ACDMBI model, specifically designed to overcome the aforementioned issues. ACDMBI is comprised of two key modules: feature extraction and classification. In terms of capturing relevant information, we draw insights from three distinct data sources. Initially, structural features of proteins are extracted from the PPI network through community division. Subsequently, these features are further optimized using Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT). Moving forward, protein features are extracted from gene expression data utilizing Bidirectional Long Short-Term Memory networks (BiLSTM) and a multi-head self-attention mechanism. Finally, protein features are derived by mapping subcellular localization data to a one-dimensional vector and processing it through fully connected layers. In the classification phase, we integrate features extracted from three different data sources, crafting a multi-layer deep neural network (DNN) for protein classification prediction. Experimental results on brewing yeast data showcase the ACDMBI model's superior performance, with AUC reaching 0.9533 and AUPR reaching 0.9153. Ablation experiments further reveal that the effective integration of features from diverse biological information significantly boosts the model's performance.

9.
Anal Biochem ; 692: 115554, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38710353

ABSTRACT

A series of biological experiments has demonstrated that circular RNAs play a crucial regulatory role in cellular processes and may be potentially associated with diseases. Uncovering these connections helps in understanding potential disease mechanisms and advancing the development of treatment strategies. However, in biology, traditional experiments face limitations in terms of efficiency and cost, especially when enumerating possible associations. To address these limitations, several computational methods have been proposed, but existing methods only measure from a nodal perspective and cannot capture structural similarities between edges. In this study, we introduce an advanced computational method called SATPIC2CD for analyzing potential associations between circular RNAs and diseases. Specifically, we first employ an Structure-Aware Graph Transformer (SAT), which extracts five predefined metapath representations before calculating attention. This adaptive network integrates structural information into the original self-attention by aggregating information within and between paths. Subsequently, we use Path Integral Convolutional Networks (PACN) to integrate feature information for all path weights between two nodes. Afterward, we complement the network node features with feature loss and feature smoothing using Gated Recurrent Units (GRU) and node centrality. Finally, a Multi-Layer Perceptron (MLP) is employed to obtain the ultimate prediction scores for each circular RNA-disease pair. SATPIC2CD performs remarkably well, with an accuracy of up to 0.9715 measured by the Area Under the Curve (AUC) in a 5-fold cross-validation, surpassing other comparative models. Case studies further emphasize the high precision of our method in identifying circular RNA-disease associations, laying a solid foundation for guiding future biological research efforts.


Subject(s)
RNA, Circular , RNA, Circular/genetics , Humans , Computational Biology/methods , Neural Networks, Computer , Algorithms
10.
Sensors (Basel) ; 24(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793976

ABSTRACT

Human motion capture technology, which leverages sensors to track the movement trajectories of key skeleton points, has been progressively transitioning from industrial applications to broader civilian applications in recent years. It finds extensive use in fields such as game development, digital human modeling, and sport science. However, the affordability of these sensors often compromises the accuracy of motion data. Low-cost motion capture methods often lead to errors in the captured motion data. We introduce a novel approach for human motion reconstruction and enhancement using spatio-temporal attention-based graph convolutional networks (ST-ATGCNs), which efficiently learn the human skeleton structure and the motion logic without requiring prior human kinematic knowledge. This method enables unsupervised motion data restoration and significantly reduces the costs associated with obtaining precise motion capture data. Our experiments, conducted on two extensive motion datasets and with real motion capture sensors such as the SONY (Tokyo, Japan) mocopi, demonstrate the method's effectiveness in enhancing the quality of low-precision motion capture data. The experiments indicate the ST-ATGCN's potential to improve both the accessibility and accuracy of motion capture technology.


Subject(s)
Movement , Humans , Movement/physiology , Biomechanical Phenomena , Algorithms , Neural Networks, Computer , Motion , Image Processing, Computer-Assisted/methods
11.
J Mol Biol ; : 168609, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38750722

ABSTRACT

The increasing research evidence indicates that long non-coding RNAs (lncRNAs) play important roles in regulating biological processes and are closely associated with many human diseases. Computational methods have emerged as indispensable tools for identifying associations between long non-coding RNA (lncRNA) and diseases, primarily due to the time-consuming and costly nature of traditional biological experiments. Given the scarcity of verified lncRNA-disease associations, the intensifying focus on deep learning is playing a crucial role in refining the accuracy of predictive models. Moreover, the contrastive learning method exhibits a clear advantage in situations where data is scarce or annotation costs are high. In this paper, we leverage the advantages of graph neural networks and contrastive learning to innovatively propose a similarity-guided graph contrastive learning (SGGCL) model for predicting lncRNA-disease associations. In the SGGCL model, we employ a novel similarity-guided graph data augmentation method to generate high-quality positive and negative sample pairs, addressing the scarcity of verified data. Additionally, we utilize the RWR algorithm and a graph convolutional neural network for contrastive learning, facilitating the capture of global topology and high-level node embeddings. The experimental results on several datasets demonstrate the superior predictive performance and scalability of our method in lncRNA-disease association prediction compared to state-of-the-art methods.

12.
Article in English | MEDLINE | ID: mdl-38584483

ABSTRACT

A heart attack is intended as top prevalent among all ruinous ailments. Day by day, the number of affected people count is increasing globally. The medical field is struggling to detect heart disease in the initial step. Early prediction can help patients to save their life. Thus, this paper implements a novel heart disease prediction model with the help of a hybrid deep learning strategy. The developed framework consists of various steps like (i) Data collection, (ii) Deep feature extraction, and (iii) Disease prediction. Initially, the standard medical data from various patients are acquired from the clinical standard datasets. Here, a One-Dimensional Convolutional Neural Network (1DCNN) is utilized for extracting the deep features from the acquired medical data to minimize the number of redundant data from the gathered large-scale data. The acquired deep features are directly fed to the Hybrid Optimized Deep Classifier (HODC) with the integration of Temporal Convolutional Networks (TCN) with Long Short-Term Memory (LSTM), where the parameters in both classifiers are optimized using the newly suggested Enhanced Forensic-Based Investigation (EFBI) inspired meta-optimization algorithm. Throughout the result analysis, the accuracy and precision rate of the offered approach is 98.67% and 99.48%. The evaluation outcomes show that the recommended system outperforms the extant systems in terms of performance metrics examination.

13.
Sensors (Basel) ; 24(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38610563

ABSTRACT

Mobile crowdsensing (MCS) systems rely on the collective contribution of sensor data from numerous mobile devices carried by participants. However, the open and participatory nature of MCS renders these systems vulnerable to adversarial attacks or data poisoning attempts where threat actors can inject malicious data into the system. There is a need for a detection system that mitigates malicious sensor data to maintain the integrity and reliability of the collected information. This paper addresses this issue by proposing an adaptive and robust model for detecting malicious data in MCS scenarios involving sensor data from mobile devices. The proposed model incorporates an adaptive learning mechanism that enables the TCN-based model to continually evolve and adapt to new patterns, enhancing its capability to detect novel malicious data as threats evolve. We also present a comprehensive evaluation of the proposed model's performance using the SherLock datasets, demonstrating its effectiveness in accurately detecting malicious sensor data and mitigating potential threats to the integrity of MCS systems. Comparative analysis with existing models highlights the performance of the proposed TCN-based model in terms of detection accuracy, with an accuracy score of 98%. Through these contributions, the paper aims to advance the state of the art in ensuring the trustworthiness and security of MCS systems, paving the way for the development of more reliable and robust crowdsensing applications.

14.
Sci Rep ; 14(1): 8660, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622177

ABSTRACT

Agriculture plays a pivotal role in the economic development of a nation, but, growth of agriculture is affected badly by the many factors one such is plant diseases. Early stage prediction of these disease is crucial role for global health and even for game changers the farmer's life. Recently, adoption of modern technologies, such as the Internet of Things (IoT) and deep learning concepts has given the brighter light of inventing the intelligent machines to predict the plant diseases before it is deep-rooted in the farmlands. But, precise prediction of plant diseases is a complex job due to the presence of noise, changes in the intensities, similar resemblance between healthy and diseased plants and finally dimension of plant leaves. To tackle this problem, high-accurate and intelligently tuned deep learning algorithms are mandatorily needed. In this research article, novel ensemble of Swin transformers and residual convolutional networks are proposed. Swin transformers (ST) are hierarchical structures with linearly scalable computing complexity that offer performance and flexibility at various scales. In order to extract the best deep key-point features, the Swin transformers and residual networks has been combined, followed by Feed forward networks for better prediction. Extended experimentation is conducted using Plant Village Kaggle datasets, and performance metrics, including accuracy, precision, recall, specificity, and F1-rating, are evaluated and analysed. Existing structure along with FCN-8s, CED-Net, SegNet, DeepLabv3, Dense nets, and Central nets are used to demonstrate the superiority of the suggested version. The experimental results show that in terms of accuracy, precision, recall, and F1-rating, the introduced version shown better performances than the other state-of-art hybrid learning models.


Subject(s)
Mental Recall , Recognition, Psychology , Agriculture , Algorithms , Plant Diseases
15.
J Healthc Inform Res ; 8(2): 370-399, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38681757

ABSTRACT

With an increased interest in the production of personal health technologies designed to track user data (e.g., nutrient  intake, step counts), there is now more opportunity than ever to surface meaningful behavioral insights to everyday users in the form of natural language. This knowledge can increase their behavioral awareness and allow them to take action to meet their health goals. It can also bridge the gap between the vast collection of personal health data and the summary generation required to describe an individual's behavioral tendencies. Previous work has focused on rule-based time-series data summarization methods designed to generate natural language summaries of interesting patterns found within temporal personal health data. We examine recurrent, convolutional, and Transformer-based encoder-decoder models to automatically generate natural language summaries from numeric temporal personal health data. We showcase the effectiveness of our models on real user health data logged in MyFitnessPal (Weber and Achananuparp 2016) and show that we can automatically generate high-quality natural language summaries. Our work serves as a first step towards the ambitious goal of automatically generating novel and meaningful temporal summaries from personal health data.

16.
J Mol Graph Model ; 130: 108783, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677034

ABSTRACT

Drug repurposing is an effective method to reduce the time and cost of drug development. Computational drug repurposing can quickly screen out the most likely associations from large biological databases to achieve effective drug repurposing. However, building a comprehensive model that integrates drugs, proteins, and diseases for drug repurposing remains challenging. This study proposes a drug repurposing method based on the ternary heterogeneous graph attention network (DRTerHGAT). DRTerHGAT designs a novel protein feature extraction process consisting of a large-scale protein language model and a multi-task autoencoder, so that protein features can be extracted accurately and efficiently from amino acid sequences. The ternary heterogeneous graph of drug-protein-disease comprehensively considering the relationships among the three types of nodes, including three homogeneous and three heterogeneous relationships. Based on the graph and the extracted protein features, the deep features of the drugs and the diseases are extracted by graph convolutional networks (GCN) and heterogeneous graph node attention networks (HGNA). In the experiments, DRTerHGAT is proven superior to existing advanced methods and DRTerHGAT variants. DRTerHGAT's powerful ability for drug repurposing is also demonstrated in Alzheimer's disease.


Subject(s)
Drug Repositioning , Drug Repositioning/methods , Humans , Proteins/chemistry , Algorithms , Alzheimer Disease/drug therapy , Neural Networks, Computer , Computational Biology/methods , Software
17.
Sci Rep ; 14(1): 5185, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431702

ABSTRACT

LncRNAs are non-coding RNAs with a length of more than 200 nucleotides. More and more evidence shows that lncRNAs are inextricably linked with diseases. To make up for the shortcomings of traditional methods, researchers began to collect relevant biological data in the database and used bioinformatics prediction tools to predict the associations between lncRNAs and diseases, which greatly improved the efficiency of the study. To improve the prediction accuracy of current methods, we propose a new lncRNA-disease associations prediction method with attention mechanism, called ResGCN-A. Firstly, we integrated lncRNA functional similarity, lncRNA Gaussian interaction profile kernel similarity, disease semantic similarity, and disease Gaussian interaction profile kernel similarity to obtain lncRNA comprehensive similarity and disease comprehensive similarity. Secondly, the residual graph convolutional network was used to extract the local features of lncRNAs and diseases. Thirdly, the new attention mechanism was used to assign the weight of the above features to further obtain the potential features of lncRNAs and diseases. Finally, the training set required by the Extra-Trees classifier was obtained by concatenating potential features, and the potential associations between lncRNAs and diseases were obtained by the trained Extra-Trees classifier. ResGCN-A combines the residual graph convolutional network with the attention mechanism to realize the local and global features fusion of lncRNA and diseases, which is beneficial to obtain more accurate features and improve the prediction accuracy. In the experiment, ResGCN-A was compared with five other methods through 5-fold cross-validation. The results show that the AUC value and AUPR value obtained by ResGCN-A are 0.9916 and 0.9951, which are superior to the other five methods. In addition, case studies and robustness evaluation have shown that ResGCN-A is an effective method for predicting lncRNA-disease associations. The source code for ResGCN-A will be available at https://github.com/Wangxiuxiun/ResGCN-A .


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , Algorithms , Software , Computational Biology/methods , Databases, Factual
18.
PeerJ Comput Sci ; 10: e1858, 2024.
Article in English | MEDLINE | ID: mdl-38435553

ABSTRACT

Managing user bias in large-scale user review data is a significant challenge in optimizing children's book recommendation systems. To tackle this issue, this study introduces a novel hybrid model that combines graph convolutional networks (GCN) based on bipartite graphs and neural matrix factorization (NMF). This model aims to enhance the precision and efficiency of children's book recommendations by accurately capturing user biases. In this model, the complex interactions between users and books are modeled as a bipartite graph, with the users' book ratings serving as the weights of the edges. Through GCN and NMF, we can delve into the structure of the graph and the behavioral patterns of users, more accurately identify and address user biases, and predict their future behaviors. Compared to traditional recommendation systems, our hybrid model excels in handling large-scale user review data. Experimental results confirm that our model has significantly improved in terms of recommendation accuracy and scalability, positively contributing to the advancement of children's book recommendation systems.

19.
Math Biosci Eng ; 21(2): 2542-2567, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38454695

ABSTRACT

Ride-hailing demand prediction is essential in fundamental research areas such as optimizing vehicle scheduling, improving service quality, and reducing urban traffic pressure. Therefore, achieving accurate and timely demand prediction is crucial. To solve the problems of inaccurate prediction results and difficulty in capturing the influence of external spatiotemporal factors in demand prediction of previous methods, this paper proposes a demand prediction model named as the spatiotemporal information enhance graph convolution network. Through correlation analysis, the model extracts the primary correlation information between external spatiotemporal factors and demand and encodes them to form feature units of the area. We utilize gated recurrent units and graph convolutional networks to capture the spatiotemporal dependencies between demand and external factors, respectively, thereby enhancing the model's perceptiveness to external spatiotemporal factors. To verify the model's validity, we conducted comparative and portability experiments on a relevant dataset of Chengdu City. The experimental results show that the model's prediction is better than the baseline model when incorporating external factors, and the errors are very close under different experimental areas. This result highlights the importance of external spatiotemporal factors for model performance enhancement. Also, it demonstrates the robustness of the model in different environments, providing excellent performance and broad application potential for ride-hailing prediction studies.

20.
Neural Netw ; 174: 106225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38471260

ABSTRACT

Heterogeneous graph neural networks play a crucial role in discovering discriminative node embeddings and relations from multi-relational networks. One of the key challenges in heterogeneous graph learning lies in designing learnable meta-paths, which significantly impact the quality of learned embeddings. In this paper, we propose an Attributed Multi-Order Graph Convolutional Network (AMOGCN), which automatically explores meta-paths that involve multi-hop neighbors by aggregating multi-order adjacency matrices. The proposed model first constructs different orders of adjacency matrices from manually designed node connections. Next, AMOGCN fuses these various orders of adjacency matrices to create an intact multi-order adjacency matrix. This process is supervised by the node semantic information, which is extracted from the node homophily evaluated by attributes. Eventually, we employ a one-layer simplifying graph convolutional network with the learned multi-order adjacency matrix, which is equivalent to the cross-hop node information propagation with multi-layer graph neural networks. Substantial experiments reveal that AMOGCN achieves superior semi-supervised classification performance compared with state-of-the-art competitors.


Subject(s)
Learning , Neural Networks, Computer , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...