Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Psychiatry Res Neuroimaging ; 344: 111869, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39146823

ABSTRACT

Exploring changes in the intrinsic activity of the brain in people with bipolar disorder (BD) is necessary. However, the findings have not yet led to consistent conclusions. In this regard, this paper aims to extract more obvious differential brain areas and neuroimaging markers, for the purpose of providing assistance for early clinical diagnosis and subsequent treatment. We conducted a meta-analysis of whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) studies using seed-based d-mapping software that examined differences in amplitude of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) between patients with BD and healthy controls (HCs). Seed-based d-Mapping (formerly Signed Differential Mapping) with Permutation of Subject Images, or SDM-PSI, is a statistical technique for meta-analyzing studies of differences in brain activity or structure. A total of 16 articles involving 1112 individuals were included in this study for meta-analysis. This paper confidently analyzes the correlation between the clinical scales HAMD, HAMA, and YMRS, and the area of difference. We found significant changes that increased activation in the anterior connective and left lens nucleus, the nucleus of the shell, and BA 48 in BD patients compared with HC (P < 0.05, uncorrected), as well as a significant correlation between HAMD and the left superior frontal gyrus (after FWE correction P < 0.05). Therefore, basal ganglia and frontal cortex may have important significance in the pathogenesis and pathological basis of BD, making it an important issue to be attached importance to.


Subject(s)
Bipolar Disorder , Brain , Magnetic Resonance Imaging , Humans , Bipolar Disorder/diagnosis , Bipolar Disorder/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping/methods , Magnetic Resonance Imaging/methods
2.
Psychol Res Behav Manag ; 17: 2331-2345, 2024.
Article in English | MEDLINE | ID: mdl-38882233

ABSTRACT

Over the past two decades, functional magnetic resonance imaging (fMRI) has become the primary tool for exploring neural correlates of emotion. To enhance the reliability of results in understanding the complex nature of emotional experiences, researchers combine findings from multiple fMRI studies using coordinate-based meta-analysis (CBMA). As one of the most widely employed CBMA methods worldwide, activation likelihood estimation (ALE) is of great importance in affective neuroscience and neuropsychology. This comprehensive review provides an introductory guide for implementing the ALE method in emotion research, outlining the experimental steps involved. By presenting a case study about the emotion of disgust, with regard to both its core and social processing, we offer insightful commentary as to how ALE can enable researchers to produce consistent results and, consequently, fruitfully investigate the neural mechanisms underpinning emotions, facilitating further progress in this field.

3.
J Affect Disord ; 361: 712-719, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38942203

ABSTRACT

BACKGROUND: Post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) are psychiatric disorders that can present with overlapping symptoms and shared risk factors. However, the extent to which these disorders share common underlying neuropathological mechanisms remains unclear. To investigate the similarities and differences in task-evoked brain activation patterns between patients with PTSD and MDD. METHODS: A coordinate-based meta-analysis was conducted across 35 PTSD studies (564 patients and 543 healthy controls) and 125 MDD studies (4049 patients and 4170 healthy controls) using anisotropic effect-size signed differential mapping software. RESULTS: Both PTSD and MDD patients exhibited increased neural activation in the bilateral inferior frontal gyrus. However, PTSD patients showed increased neural activation in the right insula, left supplementary motor area extending to median cingulate gyrus and superior frontal gyrus (SFG), and left fusiform gyrus, and decreased neural activation in the right posterior cingulate gyrus, right middle temporal gyrus, right paracentral lobule, and right inferior parietal gyrus relative to MDD patients. CONCLUSION: Our meta-analysis suggests that PTSD and MDD share some similar patterns of brain activation, but also have distinct neural signatures. These findings contribute to our understanding of the potential neuropathology underlying these disorders and may inform the development of more targeted and effective treatment and intervention strategies. Moreover, these results may provide useful neuroimaging targets for the differential diagnosis of MDD and PTSD.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Humans , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Brain Mapping , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Adult
4.
Zhongguo Zhen Jiu ; 44(1): 25-33, 2024 01 12.
Article in Chinese, English | MEDLINE | ID: mdl-38191155

ABSTRACT

In recent years, the number of functional magnetic resonance imaging (fMRI) research in acupuncture grows increasingly. However, due to the differences in acupoint selection, acupuncture technique and sample size, the problems get more prominent in terms of the diverse results and the lack of common rules of acupuncture among researches. By taking the fMRI research for post-stroke motor dysfunction (PSMD) treated with acupuncture as the example, this paper introduces the fMRI Meta-analysis technology for integrating the relevant research results and extracting the common rules, namely image-based Meta-analysis (IBMA) and coordinate-based Meta-analysis (CBMA). Considering the higher feasibility of CBMA, three available CBMA methods are explained specially, including activation likelihood estimation (ALE), kernel density analysis (KDA), and seed-based d mapping (SDM). Focusing on the precautions and operation procedure of CBMA, the review is conducted systematically on the type of fMRI research, task design, analytical method, and the thinking integrity of fMRI Meta-analysis, and the review findings are collated in charts. It aims to assist readers to understand the abstract and complex theories and practical information of this technology efficiently, conveniently and systematically, and hopes to provide the references for the future learning and the application.


Subject(s)
Acupuncture Therapy , Acupuncture Points , Learning , Magnetic Resonance Imaging , Sample Size
5.
Ageing Res Rev ; 95: 102207, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281709

ABSTRACT

Parkinson's Disease's (PD) neuropsychological profile is often characterized by altered performance in executive functions (EF) tasks, with a remarkable impact on patients' quality of life. To date, the available neuroimaging literature lacks conclusive evidence about neural patterns underlying EF deficits in PD. Here, we aimed to synthesize the results of PET/fMRI studies examining the differences in brain activation between PD patients and controls during EF tasks, focusing on the three main EF sub-components: cognitive flexibility, working memory, and response inhibition. We conducted a coordinate-based meta-analysis to assess the converging alterations in brain activity in PD patients compared to controls. We assessed the association between aberrant patterns of activity and the EF sub-domains. We found a significant association between hypoactivation patterns in PD converging at the level of the right inferior frontal gyrus in response inhibition tasks, whereas hypoactivation in the left inferior frontal gyrus was found in association with the cognitive flexibility domain. Our results confirm the existence of neural alterations in PD patients in relation to specific EF sub-domains.


Subject(s)
Executive Function , Parkinson Disease , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Parkinson Disease/psychology , Humans , Executive Function/physiology , Brain/diagnostic imaging , Brain/physiopathology , Functional Neuroimaging , Magnetic Resonance Imaging , Positron-Emission Tomography
6.
Neurosci Biobehav Rev ; 156: 105468, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37979735

ABSTRACT

Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.


Subject(s)
Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiology , Neuroimaging , Prefrontal Cortex , Cognition/physiology , Magnetic Resonance Imaging/methods
7.
Neuropsychol Rev ; 34(1): 277-298, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36857010

ABSTRACT

Time is an omnipresent aspect of almost everything we experience internally or in the external world. The experience of time occurs through such an extensive set of contextual factors that, after decades of research, a unified understanding of its neural substrates is still elusive. In this study, following the recent best-practice guidelines, we conducted a coordinate-based meta-analysis of 95 carefully-selected neuroimaging papers of duration processing. We categorized the included papers into 14 classes of temporal features according to six categorical dimensions. Then, using the activation likelihood estimation (ALE) technique we investigated the convergent activation patterns of each class with a cluster-level family-wise error correction at p < 0.05. The regions most consistently activated across the various timing contexts were the pre-SMA and bilateral insula, consistent with an embodied theory of timing in which abstract representations of duration are rooted in sensorimotor and interoceptive experience, respectively. Moreover, class-specific patterns of activation could be roughly divided according to whether participants were timing auditory sequential stimuli, which additionally activated the dorsal striatum and SMA-proper, or visual single interval stimuli, which additionally activated the right middle frontal and inferior parietal cortices. We conclude that temporal cognition is so entangled with our everyday experience that timing stereotypically common combinations of stimulus characteristics reactivates the sensorimotor systems with which they were first experienced.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Brain/physiology , Neuroimaging , Gray Matter
8.
Neurosci Biobehav Rev ; 152: 105284, 2023 09.
Article in English | MEDLINE | ID: mdl-37315658

ABSTRACT

Whether remitted major depressive disorder (rMDD) and MDD present common or distinct neuropathological mechanisms remains unclear. We performed a meta-analysis of task-related whole-brain functional magnetic resonance imaging (fMRI) using anisotropic effect-size signed differential mapping software to compare brain activation between rMDD/MDD patients and healthy controls (HCs). We included 18 rMDD studies (458 patients and 476 HCs) and 120 MDD studies (3746 patients and 3863 HCs). The results showed that MDD and rMDD patients shared increased neural activation in the right temporal pole and right superior temporal gyrus. Several brain regions, including the right middle temporal gyrus, left inferior parietal, prefrontal cortex, left superior frontal gyrus and striatum, differed significantly between MDD and rMDD. Meta-regression analyses revealed that the percentage of females with MDD was positively associated with brain activity in the right lenticular nucleus/putamen. Our results provide valuable insights into the underlying neuropathology of brain dysfunction in MDD, developing more targeted and efficacious treatment and intervention strategies, and more importantly, providing potential neuroimaging targets for the early screening of MDD.


Subject(s)
Depressive Disorder, Major , Female , Humans , Depressive Disorder, Major/diagnostic imaging , Brain , Brain Mapping , Prefrontal Cortex , Temporal Lobe , Magnetic Resonance Imaging/methods
9.
bioRxiv ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37214978

ABSTRACT

Brain mechanisms of error processing have often been investigated using response interference tasks and focusing on the posterior medial frontal cortex, which is also implicated in resolving response conflict in general. Thereby, the role other brain regions may play has remained undervalued. Here, activation likelihood estimation meta-analyses were used to synthesize the neuroimaging literature on brain activity related to committing errors versus responding successfully in interference tasks and to test for commonalities and differences. The salience network and the temporoparietal junction were commonly recruited irrespective of whether responses were correct or incorrect, pointing towards a general involvement in coping with situations that call for increased cognitive control. The dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus showed error-specific convergence, which underscores their consistent involvement when performance goals are not met. In contrast, successful responding revealed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruiting these regions in error trials may reflect failures in activating the task-appropriate stimulus-response contingencies necessary for successful response execution.

10.
Hum Brain Mapp ; 44(11): 4372-4389, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37246722

ABSTRACT

Distinguishing imagination and thoughts from information we perceived from the environment, a process called reality-monitoring, is important in everyday situations. Although reality monitoring seems to overlap with the concept of self-monitoring, which allows one to distinguish self-generated actions or thoughts from those generated by others, the two concepts remain largely separate cognitive domains and their common brain substrates have received little attention. We investigated the brain regions involved in these two cognitive processes and explored the common brain regions they share. To do this, we conducted two separate coordinate-based meta-analyses of functional magnetic resonance imaging studies assessing the brain regions involved in reality- and self-monitoring. Few brain regions survived threshold-free cluster enhancement family-wise multiple comparison correction (p < .05), likely owing to the small number of studies identified. Using uncorrected statistical thresholds recommended by Signed Differential Mapping with Permutation of Subject Images, the meta-analysis of reality-monitoring studies (k = 9 studies including 172 healthy subjects) revealed clusters in the lobule VI of the cerebellum, the right anterior medial prefrontal cortex and anterior thalamic projections. The meta-analysis of self-monitoring studies (k = 12 studies including 192 healthy subjects) highlighted the involvement of a set of brain regions including the lobule VI of the left cerebellum and fronto-temporo-parietal regions. We showed with a conjunction analysis that the lobule VI of the cerebellum was consistently engaged in both reality- and self-monitoring. The current findings offer new insights into the common brain regions underlying reality-monitoring and self-monitoring, and suggest that the neural signature of the self that may occur during self-production should persist in memories.


Subject(s)
Brain , Functional Neuroimaging , Humans , Brain/diagnostic imaging , Cerebellum , Prefrontal Cortex , Parietal Lobe , Magnetic Resonance Imaging/methods , Brain Mapping , Neuroimaging
11.
Neuroinformatics ; 21(2): 365-374, 2023 04.
Article in English | MEDLINE | ID: mdl-36976430

ABSTRACT

Activation likelihood estimation (ALE) is among the most used algorithms to perform neuroimaging meta-analysis. Since its first implementation, several thresholding procedures had been proposed, all referred to the frequentist framework, returning a rejection criterion for the null hypothesis according to the critical p-value selected. However, this is not informative in terms of probabilities of the validity of the hypotheses. Here, we describe an innovative thresholding procedure based on the concept of minimum Bayes factor (mBF). The use of the Bayesian framework allows to consider different levels of probability, each of these being equally significant. In order to simplify the translation between the common ALE practice and the proposed approach, we analised six task-fMRI/VBM datasets and determined the mBF values equivalent to the currently recommended frequentist thresholds based on Family Wise Error (FWE). Sensitivity and robustness toward spurious findings were also analyzed. Results showed that the cutoff log10(mBF) = 5 is equivalent to the FWE threshold, often referred as voxel-level threshold, while the cutoff log10(mBF) = 2 is equivalent to the cluster-level FWE (c-FWE) threshold. However, only in the latter case voxels spatially far from the blobs of effect in the c-FWE ALE map survived. Therefore, when using the Bayesian thresholding the cutoff log10(mBF) = 5 should be preferred. However, being in the Bayesian framework, lower values are all equally significant, while suggesting weaker level of force for that hypothesis. Hence, results obtained through less conservative thresholds can be legitimately discussed without losing statistical rigor. The proposed technique adds therefore a powerful tool to the human-brain-mapping field.


Subject(s)
Brain Mapping , Brain , Humans , Brain/diagnostic imaging , Brain/physiology , Likelihood Functions , Bayes Theorem , Brain Mapping/methods , Neuroimaging
12.
Res Q Exerc Sport ; 94(3): 597-608, 2023 09.
Article in English | MEDLINE | ID: mdl-35438607

ABSTRACT

Purpose: The purpose of this systematic review and meta-analysis study was to investigate distinct brain structural characteristics in athletes as compared with those in non-athletes by quantifying regional gray matter (GM) volume changes using voxel-based morphometry analysis based on a whole-brain approach. Methods: The systematic literature search was conducted from November 1, 2020 to October 18, 2021 via the two search engines including the PubMed and Web of Science. We included 13 studies that reported GM volume data in 229 athletes as compared 219 non-athletes based on the whole-brain analysis with specific three-dimensional coordinates in a standard stereotactic space. Thus, we performed a coordinate-based meta-analysis using the seed-based d mapping via permutation of subject images methods. Result: The coordinate-based meta-analysis reported that the athletes significantly reveal greater regional GM volume across right cerebellar lobules IV-V and Brodmann area 37 regions than those in the non-athletes with minimal levels of heterogeneity and publication bias between the included studies. The subgroup analyses show that greater GM volume for athletes in closed-skill sports appeared across the right cerebellar hemispheric lobules VIII and the right cingulum than those for non-athletes. Conclusion: These cumulative findings from multiple brain imaging studies suggest potential brain plasticity evidence in the athletes who experienced extensive motor training.


Subject(s)
Gray Matter , Magnetic Resonance Imaging , Humans , Brain , Athletes
13.
Neurosci Biobehav Rev ; 144: 104971, 2023 01.
Article in English | MEDLINE | ID: mdl-36436737

ABSTRACT

Neuroscientists have sought to identify the underlying neural systems supporting social processing that allow interaction and communication, forming social relationships, and navigating the social world. Through the use of NIMH's Research Domain Criteria (RDoC) framework, we evaluated consensus among studies that examined brain activity during social tasks to elucidate regions comprising the "social brain". We examined convergence across tasks corresponding to the four RDoC social constructs, including Affiliation and Attachment, Social Communication, Perception and Understanding of Self, and Perception and Understanding of Others. We performed a series of coordinate-based meta-analyses using the activation likelihood estimate (ALE) method. Meta-analysis was performed on whole-brain coordinates reported from 864 fMRI contrasts using the NiMARE Python package, revealing convergence in medial prefrontal cortex, anterior cingulate cortex, posterior cingulate cortex, temporoparietal junction, bilateral insula, amygdala, fusiform gyrus, precuneus, and thalamus. Additionally, four separate RDoC-based meta-analyses revealed differential convergence associated with the four social constructs. These outcomes highlight the neural support underlying these social constructs and inform future research on alterations among neurotypical and atypical populations.


Subject(s)
Brain Mapping , Brain , Humans , Likelihood Functions , Brain/diagnostic imaging , Brain/physiology , Temporal Lobe , Magnetic Resonance Imaging
14.
Front Neurol ; 14: 1289934, 2023.
Article in English | MEDLINE | ID: mdl-38162449

ABSTRACT

Background: Parkinson's disease (PD) is a neurodegenerative disease with high incidence rate. Resting state functional magnetic resonance imaging (rs-fMRI), as a widely used method for studying neurodegenerative diseases, has not yet been combined with two important indicators, amplitude low-frequency fluctuation (ALFF) and cerebral blood flow (CBF), for standardized analysis of PD. Methods: In this study, we used seed-based d-mapping and permutation of subject images (SDM-PSI) software to investigate the changes in ALFF and CBF of PD patients. After obtaining the regions of PD with changes in ALFF or CBF, we conducted a multimodal analysis to identify brain regions where ALFF and CBF changed together or could not synchronize. Results: The final study included 31 eligible trials with 37 data sets. The main analysis results showed that the ALFF of the left striatum and left anterior thalamic projection decreased in PD patients, while the CBF of the right superior frontal gyrus decreased. However, the results of multimodal analysis suggested that there were no statistically significant brain regions. In addition, the decrease of ALFF in the left striatum and the decrease of CBF in the right superior frontal gyrus was correlated with the decrease in clinical cognitive scores. Conclusion: PD patients had a series of spontaneous brain activity abnormalities, mainly involving brain regions related to the striatum-thalamic-cortex circuit, and related to the clinical manifestations of PD. Among them, the left striatum and right superior frontal gyrus are more closely related to cognition. Systematic review registration: https://www.crd.york.ac.uk/ PROSPERO (CRD42023390914).

15.
Neurosci Biobehav Rev ; 143: 104929, 2022 12.
Article in English | MEDLINE | ID: mdl-36330893

ABSTRACT

Major depressive disorder (MDD) patients demonstrate abnormal neural activation even after complete remission. Many task-related functional magnetic resonance imaging (fMRI) studies have focused on changes in brain function in individuals with remitted MDD (rMDD). We conducted a meta-analysis of these studies to explore differences in brain activation between patients with rMDD and healthy controls (HCs). Our meta-analysis included 13 studies, encompassing 18 experiments, 304 rMDD patients and 321 HCs. Patients with rMDD showed increased neural activation in the left inferior parietal gyrus and right fusiform gyrus and decreased neural activation in the left superior frontal gyrus, right middle temporal gyrus and right Heschl gyrus. Meta-regression analysis revealed that patient age and the number of depressive episodes were negatively associated with brain activity in the left superior frontal gyrus. Our findings suggest abnormal brain function, especially in areas involved in cognitive function, emotion regulation and perception, in rMDD patients; alterations of these regions may be the primary or secondary neurophysiological mechanisms underlying MDD and provide potential neuroimaging targets for early screening.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Brain Mapping , Brain , Magnetic Resonance Imaging/methods , Cognition/physiology
16.
Brain Sci ; 12(10)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36291301

ABSTRACT

The present work is a replication article based on the paper "Are there shared neural correlates between dyslexia and ADHD? A meta-analysis of voxel-based morphometry studies" by McGrath and Stoodley (2019). In the original research, the authors used activation likelihood estimation (ALE), a technique to perform coordinate-based meta-analysis (CBMA), to investigate the existence of brain regions undergoing gray matter alteration in association with both attention-deficit/hyper-activity disorder (ADHD) and dyslexia. Here, the same voxel-based morphometry dataset was analyzed, while using the permutation-subject images version of signed differential mapping (PSI-SDM) in place of ALE. Overall, the replication converged with the original paper in showing a limited overlap between the two conditions. In particular, no significant effect was found for dyslexia, therefore precluding any form of comparison between the two disorders. The possible influences of biological sex, age, and medication status were also ruled out. Our findings are in line with literature about gray matter alteration associated with ADHD and dyslexia, often showing conflicting results. Therefore, although neuropsychological and clinical evidence suggest some convergence between ADHD and dyslexia, more future research is sorely needed to reach a consensus on the neuroimaging domain in terms of patterns of gray matter alteration.

17.
Brain Struct Funct ; 227(8): 2839-2855, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36269398

ABSTRACT

An element of great interest in functional connectivity is 'homotopic connectivity' (HC), namely the connectivity between two mirrored areas of the two hemispheres, mainly mediated by the fibers of the corpus callosum. Despite a long tradition of studying sexual dimorphism in the human brain, to our knowledge only one study has addressed the influence of sex on HC.We investigated the issue of homotopic co-activations in women and men using a coordinate-based meta-analytic method and data from the BrainMap database. A first unexpected observation was that the database was affected by a sex bias: women-only groups are investigated less often than men-only ones, and they are more often studied in certain domains such as emotion compared to men, and less in cognition. Implementing a series of sampling procedures to equalize the size and proportion of the datasets, our results indicated that females exhibit stronger interhemispheric co-activation than males, suggesting that the female brain is less lateralized and more integrated than that of males. In addition, males appear to show less intense but more extensive co-activation than females. Some local differences also appeared. In particular, it appears that primary motor and perceptual areas are more co-activated in males, in contrast to the opposite trend in the rest of the brain. This argues for a multidimensional view of sex brain differences and suggests that the issue should be approached with more complex models than previously thought.


Subject(s)
Magnetic Resonance Imaging , Sex Characteristics , Female , Humans , Male , Magnetic Resonance Imaging/methods , Brain/physiology , Brain Mapping , Corpus Callosum/diagnostic imaging
18.
Neuroimage Clin ; 36: 103241, 2022.
Article in English | MEDLINE | ID: mdl-36279752

ABSTRACT

Past voxel-based morphometry (VBM) studies demonstrate reduced grey matter volume (GMV) in schizophrenia (SZ) patients' brains in various cortical and subcortical regions. Probably due to SZ symptoms' heterogeneity, these results are often inconsistent and difficult to integrate. We hypothesized that focusing on auditory verbal hallucinations (AVH) - one of the most common SZ symptoms - would allow reducing heterogeneity and discovering further compelling evidence of SZ neural correlates. We carried out two voxel-based meta-analyses of past studies that investigated the structural correlates of AVH in SZ. The review of whole-brain VBM studies published until June 2022 in PubMed and PsychInfo databases yielded (a) 13 studies on correlations between GMV and AVH severity in SZ patients (n = 472; 86 foci), and (b) 11 studies involving comparisons between hallucinating SZ patients (n = 504) and healthy controls (n = 524; 74 foci). Data were analyzed using the Activation Likelihood Estimation method. AVH severity was associated with decreased GMV in patients' left superior temporal gyrus (STG) and left posterior insula. Compared with healthy controls, hallucinating SZ patients showed reduced GMV on the left anterior insula and left inferior frontal gyrus (IFG). Our findings revealed important structural dysfunctions in a left lateralized cluster of brain regions, including the insula and temporo-frontal regions, that significantly contribute to the severity and persistence of AVH. Structural atrophy found in circuits involved in generating and perceiving speech, as well as in auditory signal processing, might reasonably be considered a biological marker of AVH in SZ.


Subject(s)
Schizophrenia , Humans , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Hallucinations/diagnostic imaging , Hallucinations/etiology , Temporal Lobe , Brain , Hearing , Magnetic Resonance Imaging
19.
Brain Sci ; 12(9)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36138928

ABSTRACT

Previous voxel-based morphometry (VBM) studies investigating tinnitus have reported structural differences in a variety of spatially distinct gray matter regions. However, the results have been highly inconsistent and sometimes contradictory. In the current study, we conducted a combined image- and coordinate-based meta-analysis of VBM studies investigating tinnitus to identify robust gray matter differences associated with tinnitus, as well as examine the possible effects of hearing loss on the outcome of the meta-analysis. The PubMed and Web of Science databases were searched for studies published up to August 2021. Additional manual searches were conducted for studies published up to December 2021. A whole-brain meta-analysis was performed using Seed-Based d Mapping with Permutation of Subject Images (SDM-PSI). Fifteen studies comprising 423 individuals with tinnitus and either normal hearing or hearing loss (mean age 50.94 years; 173 females) and 508 individuals without tinnitus and either normal hearing or hearing loss (mean age 51.59 years; 234 females) met the inclusion criteria. We found a small but significant reduction in gray matter in the left inferior temporal gyrus for groups of normal hearing individuals with tinnitus compared to groups of hearing-matched individuals without tinnitus. In sharp contrast, in groups with hearing loss, tinnitus was associated with increased gray matter levels in the bilateral lingual gyrus and the bilateral precuneus. Those results were dependent upon matching the hearing levels between the groups with or without tinnitus. The current investigation suggests that hearing loss is the driving force of changes in cortical gray matter across individuals with and without tinnitus. Future studies should carefully account for confounders, including hearing loss, hyperacusis, anxiety, and depression, to identify gray matter changes specifically related to tinnitus. Ultimately, the aggregation of standardized individual datasets with both anatomical and useful phenotypical information will permit a better understanding of tinnitus-related gray matter differences, the effects of potential comorbidities, and their interactions with tinnitus.

20.
Med Image Anal ; 81: 102540, 2022 10.
Article in English | MEDLINE | ID: mdl-35914394

ABSTRACT

Neuroimaging studies are often limited by the number of subjects and cognitive processes that can be feasibly interrogated. However, a rapidly growing number of neuroscientific studies have collectively accumulated an extensive wealth of results. Digesting this growing literature and obtaining novel insights remains to be a major challenge, since existing meta-analytic tools are constrained to keyword queries. In this paper, we present Text2Brain, an easy to use tool for synthesizing brain activation maps from open-ended text queries. Text2Brain was built on a transformer-based neural network language model and a coordinate-based meta-analysis of neuroimaging studies. Text2Brain combines a transformer-based text encoder and a 3D image generator, and was trained on variable-length text snippets and their corresponding activation maps sampled from 13,000 published studies. In our experiments, we demonstrate that Text2Brain can synthesize meaningful neural activation patterns from various free-form textual descriptions. Text2Brain is available at https://braininterpreter.com as a web-based tool for efficiently searching through the vast neuroimaging literature and generating new hypotheses.


Subject(s)
Brain , Language , Brain/diagnostic imaging , Brain/physiology , Humans , Neuroimaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL