Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Type of study
Language
Publication year range
1.
J Agric Food Chem ; 67(43): 11948-11954, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31577435

ABSTRACT

Corn gluten hydrolysate (CGH) was prepared by food-grade bacterial proteases, alcalase and neutral protease. Digestion of CGH with carboxypeptidase A and leucine aminopeptidase extensively changed the elution patterns of peptides as observed from reversed phase high performance liquid chromatography-mass spectrometry (LC-MS), whereas digestion with pepsin and trypsin hardly affected the elution patterns. Twenty-five major peptides in CGH were identified. After digestion with exopeptidases, only prolyl dipeptides and pyroglutamyl di- and tripeptides remained, whereas the other 17 peptides completely disappeared. On the other hand, all 25 peptides remained after digestion with pepsin and trypsin. These facts suggest that a majority of short-chain peptides in food protein hydrolysates are degraded by exopeptidases during digestion and absorption processes. Thus, susceptibility to exopeptidases should be considered for prediction of bioactive peptide upon ingestion, which has not been considered in most of previous studies on food-derived bioactive peptides.


Subject(s)
Bacterial Proteins/chemistry , Glutens/chemistry , Peptide Hydrolases/chemistry , Peptides/chemistry , Zea mays/chemistry , Bacillus/enzymology , Biocatalysis , Exopeptidases/chemistry , Mass Spectrometry , Protein Hydrolysates/chemistry
2.
Nutr Res ; 34(5): 458-65, 2014 May.
Article in English | MEDLINE | ID: mdl-24916560

ABSTRACT

The aim of this study was to test the hypothesis that a combination of corn gluten hydrolysate (CGH) and capsaicin may have an additive or synergistic effect on body weight reduction. For 13 weeks, male Sprague-Dawley rats were provided a diet to induce obesity. Afterward, the rats were randomly divided into 5 dietary groups: the normal control (n = 5), the high-fat control (n = 8), the high-fat diet (HFD) containing 35% CGH (n = 7), the HFD containing 0.02% capsaicin (HF-P) (n = 8), and the HFD containing both CGH and capsaicin (HF-CP) (n = 7) for an additional 4 weeks. Administration of CGH plus capsaicin, along with a HFD, led to significant decreases in body weight, fat mass, lipids in the liver, and plasma leptin as well as increases in plasma adiponectin. The pattern of gene expression was different in each target organ. In the liver, up-regulation of peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1α, and acyl-coenzyme A oxidase was found in the HF-CP group. In contrast, down-regulation of peroxisome proliferator-activated receptor γ was found in both the HFD containing 35% CGH and HF-CP groups. In skeletal muscle, up-regulation of insulin receptor and uncoupling protein 3 was found in the HF-P group only, whereas up-regulation of the glucose transporter 4 gene was observed in both the HF-CP and HF-P groups. In adipose tissue, up-regulation of peroxisome proliferator-activated receptor γ and hormone-sensitive lipase was only found in the HF-CP group. In summary, this study suggests that CGH and capsaicin perform complementary actions on food intake, lipid metabolism, and insulin sensitivity by a coordinated control of energy metabolism in the liver, adipose tissue, and skeletal muscle, thus exerting an additive effect on body weight reduction.


Subject(s)
Capsaicin/therapeutic use , Glutens/therapeutic use , Lipid Metabolism/drug effects , Obesity/drug therapy , Protein Hydrolysates/therapeutic use , Weight Loss/drug effects , Zea mays/chemistry , Adipokines/blood , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Capsaicin/pharmacology , Capsicum/chemistry , Carnitine O-Palmitoyltransferase/metabolism , Diet, High-Fat , Gene Expression/drug effects , Glucose Transporter Type 4/metabolism , Glutens/pharmacology , Lipid Metabolism/genetics , Liver/drug effects , Liver/metabolism , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Obesity/etiology , Obesity/genetics , Obesity/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Protein Hydrolysates/pharmacology , Rats, Sprague-Dawley , Receptor, Insulin/metabolism , Sterol Esterase/metabolism , Uncoupling Agents/metabolism , Up-Regulation
3.
Nutr Res Pract ; 3(3): 200-7, 2009.
Article in English | MEDLINE | ID: mdl-20090885

ABSTRACT

This study examined the effects of corn gluten (CG) and its hydrolysate consumptions on weight reduction in rats fed a high-fat diet. Eight-month-old male Sprague-Dawley rats (n=40) were fed a high-fat diet (40% calorie as fat) for 4 weeks. They were then randomly divided into four groups and fed the isocaloric diets with different protein sources for 8 weeks. The protein sources were casein (control group), intact CG (CG group), CG hydrolysate A (CGHA group, 30% of protein as peptides and 70% as free amino acids) and CG hydrolysate P (CGHP group, 93% of protein as peptides and 7% as free amino acids). Body weight gain, adipose tissue weights, nitrogen balance, absorptions of energy, protein and fat, lipid profiles in plasma, liver and feces and hepatic activities of carnitine palmitoyl transferase (CPT), fatty acid synthase (FAS), malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G6PDH) were assessed. The CGHA diet had the highest amount of BCAAs, especially leucine, and most of them existed as free amino acid forms. The CGHA group showed significant weight reduction and negative nitrogen balance. Protein absorption and apparent protein digestibility in the CGHA group were significantly lower than those in other groups. Adipose tissue weights were the lowest in the CGHA group. Activity of CPT tended to be higher in the CGHA group than in other groups and those of FAS, ME and G6PDH were significantly lower in the CGHA group than in other groups. In conclusion, the CGHA diet which had relatively high amounts of free amino acids and BCAAs, especially leucine, had a weight reduction effect by lowering adipose tissue weight and the activities of FAS, ME and G6PDH in experimental animals, but it seemed to be a negative result induced by lowering protein absorption, increasing urinary nitrogen excretion and protein catabolism.

4.
Article in English | WPRIM (Western Pacific) | ID: wpr-81753

ABSTRACT

This study examined the effects of corn gluten (CG) and its hydrolysate consumptions on weight reduction in rats fed a high-fat diet. Eight-month-old male Sprague-Dawley rats (n=40) were fed a high-fat diet (40% calorie as fat) for 4 weeks. They were then randomly divided into four groups and fed the isocaloric diets with different protein sources for 8 weeks. The protein sources were casein (control group), intact CG (CG group), CG hydrolysate A (CGHA group, 30% of protein as peptides and 70% as free amino acids) and CG hydrolysate P (CGHP group, 93% of protein as peptides and 7% as free amino acids). Body weight gain, adipose tissue weights, nitrogen balance, absorptions of energy, protein and fat, lipid profiles in plasma, liver and feces and hepatic activities of carnitine palmitoyl transferase (CPT), fatty acid synthase (FAS), malic enzyme (ME) and glucose-6-phosphate dehydrogenase (G6PDH) were assessed. The CGHA diet had the highest amount of BCAAs, especially leucine, and most of them existed as free amino acid forms. The CGHA group showed significant weight reduction and negative nitrogen balance. Protein absorption and apparent protein digestibility in the CGHA group were significantly lower than those in other groups. Adipose tissue weights were the lowest in the CGHA group. Activity of CPT tended to be higher in the CGHA group than in other groups and those of FAS, ME and G6PDH were significantly lower in the CGHA group than in other groups. In conclusion, the CGHA diet which had relatively high amounts of free amino acids and BCAAs, especially leucine, had a weight reduction effect by lowering adipose tissue weight and the activities of FAS, ME and G6PDH in experimental animals, but it seemed to be a negative result induced by lowering protein absorption, increasing urinary nitrogen excretion and protein catabolism.


Subject(s)
Animals , Humans , Male , Rats , Absorption , Adipose Tissue , Amino Acids , Body Weight , Carnitine , Caseins , Diet , Diet, High-Fat , Fatty Acid Synthases , Feces , Glucosephosphate Dehydrogenase , Glutens , Leucine , Liver , Nitrogen , Peptides , Plasma , Rats, Sprague-Dawley , Staphylococcal Protein A , Transferases , Weight Loss , Weights and Measures , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL
...