Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Front Neurosci ; 18: 1411058, 2024.
Article in English | MEDLINE | ID: mdl-39224575

ABSTRACT

Objective: The aim of this is to explore changes in cross-modal reorganization within the auditory-visual cortex after cochlear implantation, examining their influence on auditory and speech functions along with their underlying mechanisms. Methods: Twenty prelingually deaf children who received cochlear implantation and rehabilitation training at our hospital between February 2022 and February 2023 comprised the prelingual deaf group. Simultaneously, 20 healthy children served as the control group. The prelingual deaf group underwent brain cortical activity assessment and evaluation of auditory-speech recovery pre-surgery, at postoperative weeks 1 and 2, and at months 1, 3, 6, 9, and 12. The control group underwent parallel assessments and evaluations. We analyzed the correlation between cortical activity in the auditory-visual cortex of patients and their auditory-speech functional recovery. Results: The group with prelingual deafness displayed elevated levels of auditory and visual cortical electromagnetic intensity compared to the control group, both prior to and 9 months after surgery. However, by the 12-month mark post-surgery, there was no discernible distinction between the two groups. Following surgery, the prelingually deaf group exhibited a progressive improvement in both Categories of Auditory Performance (CAP) and Speech Intelligibility Rate (SIR), initially lagging behind the control group. Notably, a negative correlation emerged between auditory and visual cortical electromagnetic intensity values and CAP/SIR scores at the 12-month post-surgery assessment. Conclusion: Cochlear implantation in prelingually deaf children results in elevated activity within the auditory and visual cortices, demonstrated by heightened electromagnetic intensity readings. Cross-modal reorganization is observed temporarily at 3 months post-surgery, which resolves to baseline levels by 12 months post-surgery. This phenomenon of reversal correlates with the restoration of auditory and speech functions in these children.

2.
Brain Commun ; 6(5): fcae259, 2024.
Article in English | MEDLINE | ID: mdl-39229492

ABSTRACT

Freezing of gait, characterized by involuntary interruptions of walking, is a debilitating motor symptom of Parkinson's disease that restricts people's autonomy. Previous brain imaging studies investigating the mechanisms underlying freezing were restricted to scan people in supine positions and yielded conflicting theories regarding the role of the supplementary motor area and other cortical regions. We used functional near-infrared spectroscopy to investigate cortical haemodynamics related to freezing in freely moving people. We measured functional near-infrared spectroscopy activity over multiple motor-related cortical areas in 23 persons with Parkinson's disease who experienced daily freezing ('freezers') and 22 age-matched controls during freezing-provoking tasks including turning and doorway passing, voluntary stops and actual freezing. Crucially, we corrected the measured signals for confounds of walking. We first compared cortical activity between freezers and controls during freezing-provoking tasks without freezing (i.e. turning and doorway passing) and during stops. Secondly, within the freezers, we compared cortical activity between freezing, stopping and freezing-provoking tasks without freezing. First, we show that turning and doorway passing (without freezing) resemble cortical activity during stopping in both groups involving activation of the supplementary motor area and prefrontal cortex, areas known for their role in inhibiting actions. During these freezing-provoking tasks, the freezers displayed higher activity in the premotor areas than controls. Secondly, we show that, during actual freezing events, activity in the prefrontal cortex was lower than during voluntary stopping. The cortical relation between the freezing-provoking tasks (turning and doorway passing) and stopping may explain their susceptibility to trigger freezing by activating a stopping mechanism. Besides, the stopping-related activity of the supplementary motor area and prefrontal cortex seems to be out of balance in freezers. In this paper, we postulate that freezing results from a paroxysmal imbalance between the supplementary motor area and prefrontal cortex, thereby extending upon the current role of the supplementary motor area in freezing pathophysiology.

3.
J Neuroeng Rehabil ; 21(1): 160, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277755

ABSTRACT

BACKGROUND: Children with developmental coordination disorder (DCD) have impaired online motor control. Researchers posit that this impairment could be due to a deficit in utilizing the internal model control process. However, there is little neurological evidence to support this view because few neuroimaging studies have focused specifically on tasks involving online motor control. Therefore, the aim of this study was to investigate the differences in cortical hemodynamic activity during an online movement adjustment task between children with and without DCD. METHODS: Twenty children with DCD (mean age: 9.88 ± 1.67 years; gender: 14M/6F) and twenty age-and-gender matched children with typical development (TD) (mean age: 9.87 ± 1.59 years; gender: 14M/6F) were recruited via convenience sampling. Participants performed a double-step reaching task under two conditions (with and without online adjustment of reaching). Cortical hemodynamic activity during task in ten regions of interest, including bilateral primary somatosensory cortex, primary motor cortex, premotor cortex, superior parietal cortex, and inferior parietal cortex was recorded using functional near-infrared spectroscopy. In the analyses, change in oxyhemoglobin (ΔHbO) concentration was used to characterize hemodynamic response. Two-way analyses of variance were conducted for each region of interest to compare hemodynamic responses between groups and conditions. Additionally, Pearson's r correlations between hemodynamic response and task performance were performed. RESULTS: Outcome showed that children with DCD required significantly more time to correct their reaching movements compared to the control group (t = 3.948, P < 0.001). Furthermore, children with DCD have a significantly lower ΔHbO change in the left superior parietal cortex during movement correction, compared to children with TD (F = 4.482, P = 0.041). Additionally, a significant negative correlation (r = - 0.598, P < 0.001) was observed between the difference in movement time of reaching and the difference in ΔHbO between conditions in the left superior parietal cortex. CONCLUSIONS: The findings of this study suggest that deficiencies in processing real-time sensory feedback, considering the function of the superior parietal cortex, might be related to the impaired online motor control observed in children with DCD. Interventions could target this issue to enhance their performance in online motor control.


Subject(s)
Motor Skills Disorders , Spectroscopy, Near-Infrared , Humans , Male , Female , Spectroscopy, Near-Infrared/methods , Child , Motor Skills Disorders/physiopathology , Motor Skills Disorders/diagnostic imaging , Cross-Sectional Studies , Psychomotor Performance/physiology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Hemodynamics/physiology
4.
J Clin Med ; 13(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39336994

ABSTRACT

Background: Major Depressive Disorder (MDD) is a significant challenge in modern medicine due to its unclear underlying causes. Brain network dysfunction is believed to play a key role in its pathophysiology. Resting-state functional MRI (rs-fMRI), a neuroimaging technique, enables the in vivo assessment of functional connectivity (FC) between brain regions, offering insights into these network dysfunctions. The aim of this study was to evaluate abnormalities in FC within major brain networks in patients with drug-resistant MDD. Methods: The study group consisted of 26 patients with drug-resistant MDD and an age-matched control group (CG) of 26 healthy subjects. The rs-fMRI studies were performed on a 3T MR scanner (Philips, Ingenia) using a 32-channel head and neck coil. Imaging data were statistically analyzed, focusing on the intra- and inter-network FC of the following networks: default mode (DMN), sensorimotor (SMN), visual (VN), salience (SN), cerebellar (CN), dorsal attention (DAN), language (LN), and frontoparietal (FPN). Results: In patients with MDD, the intra-network analysis showed significantly decreased FC between nodes within VN compared to CG. In contrast, the inter-network analysis showed significantly increased FC between nodes from VN and SN or VN and DAN compared to CG. Decreased FC was found between SN and CN or SN and FPN as well as VN and DAN nodes compared to CG. Conclusions: Patients with MDD showed significant abnormalities in resting-state cortical activity, mainly regarding inter-network functional connectivity. These results contribute to the knowledge on the pathomechanism of MDD and may also be useful for developing new treatments.

5.
Exp Neurol ; 380: 114917, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127120

ABSTRACT

The Coronavirus disease 2019 (COVID-19), an illness caused by a SARS-CoV-2 viral infection, has been associated with neurological and neuropsychiatric disorders, revealing its impact beyond the respiratory system. Most related research involved individuals with post-acute or persistent symptoms of COVID-19, also referred to as long COVID or Post-Acute Sequelae of COVID-19 (PASC). In this longitudinal unique report, we aimed to describe the acute supraspinal and corticospinal changes and functional alterations induced by a COVID-19 infection using neuroimaging, neurophysiological and clinical assessment of a participant during acute infection, as compared to three other visits where the participant had no COVID-19. The results favor a multisystem impairment, impacting cortical activity, functional connectivity, and corticospinal excitability, as well as motor and cardiovascular function. The report suggests pathophysiological alteration and impairment already present at the acute stage, that if resolved tend to lead to a full clinical recovery. Such results could be also insightful into PASC symptomatology.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/complications , COVID-19/physiopathology , Longitudinal Studies , Male , SARS-CoV-2 , Female , Acute Disease , Middle Aged , Adult , Magnetic Resonance Imaging
6.
Physiol Meas ; 45(9)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39197476

ABSTRACT

Objective. Time-frequency (T-F) analysis of electroencephalographic (EEG) is a common technique to characterise spectral changes in neural activity. This study explores the limitations of utilizing conventional spectral techniques in examining cyclic event-related cortical activities due to challenges, including high inter-trial variability.Approach. Introducing the cycle-frequency (C-F) analysis, we aim to enhance the evaluation of cycle-locked respiratory events. For synthetic EEG that mimicked cycle-locked pre-motor activity, C-F had more accurate frequency and time localization compared to conventional T-F analysis, even for a significantly reduced number of trials and a variability of breathing rhythm.Main results. Preliminary validations using real EEG data during both unloaded breathing and loaded breathing (that evokes pre-motor activity) suggest potential benefits of using the C-F method, particularly in normalizing time units to cyclic activity phases and refining baseline placement and duration.Significance. The proposed approach could provide new insights for the study of rhythmic neural activities, complementing T-F analysis.


Subject(s)
Cerebral Cortex , Electroencephalography , Respiration , Electroencephalography/methods , Humans , Cerebral Cortex/physiology , Signal Processing, Computer-Assisted , Time Factors , Male
7.
Front Neurosci ; 18: 1415134, 2024.
Article in English | MEDLINE | ID: mdl-39188808

ABSTRACT

Introduction: Stroke leads to motor deficits, requiring rehabilitation therapy that targets mechanisms underlying movement generation. Cortical activity during the planning and execution of motor tasks can be studied using EEG, particularly via the Event Related Desynchronization (ERD). ERD is altered by stroke in a manner that varies with extent of motor deficits. Despite this consensus in the literature, defining precisely the temporality of these alterations during movement preparation and performance may be helpful to better understand motor system pathophysiology and might also inform development of novel therapies that benefit from temporal resolution. Methods: Patients with chronic hemiparetic post-stroke (n = 27; age 59 ± 14 years) and age-matched healthy right-handed control subjects (n = 23; 59 ± 12 years) were included. They performed a shoulder rotation task following the onset of a stimulus. Cortical activity was recorded using a 256-electrode EEG cap. ERD was calculated in the beta frequency band (15-30 Hz) in ipsilesional sensorimotor cortex, contralateral to movement. The ERD was compared over time between stroke and control subjects using permutation tests. The correlation between upper extremity motor deficits (assessed by the Fugl-Meyer scale) and ERD over time was studied in stroke patients using Spearman and permutation tests. Results: Patients with stroke showed on average less beta ERD amplitude than control subjects in the time window of -350 to 50 ms relative to movement onset (t(46) = 2.8, p = 0.007, Cohen's d = 0.31, 95% CI [0.22: 1.40]). Beta-ERD values correlated negatively with the Fugl-Meyer score during the time window -200 to 400 ms relative to movement onset (Spearman's r = -0.54, p = 0.003, 95% CI [-0.77 to -0.18]). Discussion: Our results provide new insights into the precise temporal changes of ERD after hemiparetic stroke and the associations they have with motor deficits. After stroke, the average amplitude of cortical activity is reduced as compared to age-matched controls, and the extent of this decrease is correlated with the severity of motor deficits; both were true during motor programming and during motor performance. Understanding how stroke affects the temporal dynamics of cortical preparation and execution of movement paves the way for more precise restorative therapies. Studying the temporal dynamics of the EEG also strengthens the promising interest of ERD as a biomarker of post-stroke motor function.

8.
Neuroscience ; 555: 178-183, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39074577

ABSTRACT

We recently showed that vestibular stimulation can produce a long-lasting alleviation of motor features in Parkinson's disease. Here we investigated whether components of the motor related cortical response that are commonly compromised in Parkinson's - the Bereitschaftspotential and mu-rhythm event-related desynchronization - are modulated by concurrent, low frequency galvanic vestibular stimulation (GVS) during repetitive limb movement amongst 17 individuals with idiopathic Parkinson's disease. Relative to sham, GVS was favourably associated with higher amplitudes during the late and movement phases of the Bereitschaftspotential and with a more pronounced decrease in spectral power within the mu-rhythm range during finger-tapping. These data increase understanding of how GVS interacts with the preparation and execution of voluntary movement and give added impetus to explore its therapeutic effects on Parkinsonian motor features.


Subject(s)
Electroencephalography , Movement , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Male , Female , Aged , Middle Aged , Movement/physiology , Electroencephalography/methods , Electric Stimulation/methods , Vestibule, Labyrinth/physiology , Vestibule, Labyrinth/physiopathology , Motor Cortex/physiopathology , Motor Cortex/physiology
9.
Neurophotonics ; 11(2): 025004, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38812966

ABSTRACT

Significance: People with Parkinson's disease (PD) experience changes in fine motor skills, which is viewed as one of the hallmark signs of this disease. Due to its non-invasive nature and portability, functional near-infrared spectroscopy (fNIRS) is a promising tool for assessing changes related to fine motor skills. Aim: We aim to compare activation patterns in the primary motor cortex using fNIRS, comparing volunteers with PD and sex- and age-matched control participants during a fine motor task and walking. Moreover, inter and intrahemispheric functional connectivity (FC) was investigated during the resting state. Approach: We used fNIRS to measure the hemodynamic changes in the primary motor cortex elicited by a finger-tapping task in 20 PD patients and 20 controls matched for age, sex, education, and body mass index. In addition, a two-minute walking task was carried out. Resting-state FC was also assessed. Results: Patients with PD showed delayed hypoactivation in the motor cortex during the fine motor task with the dominant hand and delayed hyperactivation with the non-dominant hand. The findings also revealed significant correlations among various measures of hemodynamic activity in the motor cortex using fNIRS and different cognitive and clinical variables. There were no significant differences between patients with PD and controls during the walking task. However, there were significant differences in interhemispheric connectivity between PD patients and control participants, with a statistically significant decrease in PD patients compared with control participants. Conclusions: Decreased interhemispheric FC and delayed activity in the primary motor cortex elicited by a fine motor task may one day serve as one of the many potential neuroimaging biomarkers for diagnosing PD.

10.
Front Aging Neurosci ; 16: 1389488, 2024.
Article in English | MEDLINE | ID: mdl-38765771

ABSTRACT

Introduction: Walking in complex environments increases the cognitive demand of locomotor control; however, our understanding of the neural mechanisms contributing to walking on uneven terrain is limited. We used a novel method for altering terrain unevenness on a treadmill to investigate the association between terrain unevenness and cortical activity in the prefrontal cortex, a region known to be involved in various cognitive functions. Methods: Prefrontal cortical activity was measured with functional near infrared spectroscopy while participants walked on a novel custom-made terrain treadmill surface across four different terrains: flat, low, medium, and high levels of unevenness. The assessments were conducted in younger adults, older adults with better mobility function and older adults with worse mobility function. Mobility function was assessed using the Short Physical Performance Battery. The primary hypothesis was that increasing the unevenness of the terrain would result in greater prefrontal cortical activation in all groups. Secondary hypotheses were that heightened prefrontal cortical activation would be observed in the older groups relative to the younger group, and that prefrontal cortical activation would plateau at higher levels of terrain unevenness for the older adults with worse mobility function, as predicted by the Compensation Related Utilization of Neural Circuits Hypothesis. Results: The results revealed a significant main effect of terrain, indicating a significant increase in prefrontal cortical activation with increasing terrain unevenness during walking in all groups. A significant main effect of group revealed that prefrontal cortical activation was higher in older adults with better mobility function compared to younger adults and older adults with worse mobility function in all pooled terrains, but there was no significant difference in prefrontal cortical activation between older adults with worse mobility function and younger adults. Contrary to our hypothesis, the older group with better mobility function displayed a sustained increase in activation but the other groups did not, suggestive of neural compensation. Additional findings were that task-related increases in prefrontal cortical activation during walking were lateralized to the right hemisphere in older adults with better mobility function but were bilateral in older adults with worse mobility function and younger adults. Discussion: These findings support that compared to walking on a flat surface, walking on uneven terrain surfaces increases demand on cognitive control resources as measured by prefrontal cortical activation.

11.
Neuromodulation ; 27(6): 1008-1019, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38752944

ABSTRACT

INTRODUCTION: Spinal neurostimulation is a therapy for otherwise intractable chronic pain. Spinal neurostimulation includes stimulation of the spinal cord (SCS), dorsal root ganglion (DRGS), and dorsal root entry zone (DREZS). New paresthesia-free neurostimulation paradigms may rely on different mechanisms of action from those of conventional tonic neurostimulation. The aim of this systematic review is to assess the existing knowledge on the effect of spinal neurostimulation on somatosensory processing in patients with chronic pain. We therefore reviewed the existing literature on the effect of various spinal neurostimulation paradigms on the supraspinal somatosensory evoked response (SER). MATERIALS AND METHODS: Multiple scientific data bases were searched for studies that assessed the effect of spinal neurostimulation on the supraspinal SER, evoked by painful or nonpainful peripheral stimuli in patients with chronic pain. We found 205 studies, of which 24 were included. Demographic data, study design, and study outcome were extracted. RESULTS: Of the 24 included studies, 23 used electroencephalography to assess the SER; one study used magnetoencephalography. Fifteen studies evaluated tonic SCS; six studies (also) evaluated paresthesia-free paradigms; three studies evaluated the effect of tonic DRGS or DREZS. Sixteen studies used nonpainful stimuli to elicit the SER, 14 observed a decreased SER amplitude. Ten studies used painful stimuli to elicit the SER, yielding mixed results. DISCUSSION: The included studies suggest that both paresthesia-based and paresthesia-free spinal neurostimulation paradigms can decrease (part of) the SER elicited by a nonpainful peripheral stimulus. The observed SER amplitude reduction likely is the effect of various spinal and supraspinal mechanisms of spinal neurostimulation that also contribute to pain relief. CONCLUSIONS: Spinal neurostimulation modulates the processing of a peripherally applied nonpainful stimulus. For painful stimuli, the results are not conclusive. It is not yet clear whether paresthesia-free neurostimulation affects the SER differently from paresthesia-based neurostimulation.


Subject(s)
Evoked Potentials, Somatosensory , Spinal Cord Stimulation , Humans , Evoked Potentials, Somatosensory/physiology , Spinal Cord Stimulation/methods , Spinal Cord/physiology , Chronic Pain/therapy , Chronic Pain/physiopathology
12.
Behav Sci (Basel) ; 14(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38667087

ABSTRACT

The motivation-direction model has served as the primary framework for understanding frontal cortical activity. However, research on the link between approach/avoidance motivation and left/right frontal cortical activity has produced inconsistent findings. Recent studies suggest that regulatory systems may offer a more accurate explanation than the motivational direction model. Despite being regulatory systems, the relationship between regulatory focus and frontal cortical activity has received limited attention. Only one experimental study has explored this connection through correlational analysis, yet it lacks causal evidence. The present study aimed to address this gap by manipulating regulatory focus and measuring frontal cortical activity in 36 college students. Our results revealed that induced promotion focus led to increased left frontal cortical activity, whereas induced prevention focus led to increased right frontal cortical activity. These findings enhance our physiological understanding of regulatory focus and offer a deeper explanation of how regulatory focus influences alterations in psychology and behavior.

13.
J Biophotonics ; 17(7): e202400012, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38659122

ABSTRACT

Focal damage due to stroke causes widespread abnormal changes in brain function and hemispheric asymmetry. In this study, functional near-infrared spectroscopy (fNIRS) was used to collect resting-state hemoglobin data from 85 patients with subacute stroke and 26 healthy controls, to comparatively analyze the characteristics of lateralization after stroke in terms of cortical activity, functional networks, and hemodynamic lags. Higher intensity of motor cortical activity, lower hemispheric autonomy, and more abnormal hemodynamic leads or lags were found in the affected hemisphere. Lateralization metrics of the three aspects were all associated with the Fugl-Meyer score. The results of this study prove that three lateralization metrics may provide clinical reference for stroke rehabilitation. Meanwhile, the present study piloted the use of resting-state fNIRS for analyzing hemodynamic lag, demonstrating the potential of fNIRS to assess hemodynamic abnormalities in addition to the study of cortical neurological function after stroke.


Subject(s)
Hemodynamics , Rest , Spectroscopy, Near-Infrared , Stroke , Humans , Male , Female , Middle Aged , Stroke/physiopathology , Stroke/diagnostic imaging , Aged , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Cerebral Cortex/blood supply , Adult , Case-Control Studies
14.
Neuroimage ; 290: 120569, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38461959

ABSTRACT

Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68 % of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25 % for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51 % relative to fMRI. The positive predictive value for within subject analyses was lower (41.5 %), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.


Subject(s)
Magnetic Resonance Imaging , Spectroscopy, Near-Infrared , Adult , Humans , Magnetic Resonance Imaging/methods , Spectroscopy, Near-Infrared/methods , Hemodynamics/physiology , Skull
15.
Front Hum Neurosci ; 18: 1337504, 2024.
Article in English | MEDLINE | ID: mdl-38410257

ABSTRACT

Introduction: Rhythmic visual cues (RVCs) may influence gait initiation by modulating cognition resources. However, it is unknown how RVCs modulate cognitive resources allocation during gait movements. This study focused on investigating the effects of RVCs on cortical hemodynamic response features during stepping to evaluate the changes of cognitive resources. Methods: We recorded cerebral hemoglobin concentration changes of 14 channels in 17 healthy subjects using functional near-infrared spectroscopy (fNIRS) during stepping tasks under exposure to RVCs and non-rhythmic visual cues (NRVCs). We reported mean oxygenated hemoglobin (HbO) concentration changes, ß-values, and functional connectivity (FC) between channels. Results: The results showed that, the RVC conditions revealed lower HbO responses compared to the NRVC conditions during the preparation and early stepping. Correspondingly, the ß-values reflected that RVCs elicited lower hemodynamic responses than NRVCs, and there was a decreasing trend in stimulus-evoked cortical activation as the task progressed. However, the FC between channels were stronger under RVCs than under NRVCs during the stepping progress, and there were more significant differences in FC during the early stepping. Discussion: In conclusion, there were lower cognitive demand and stronger FC under RVC conditions than NRVC conditions, which indicated higher efficiency of cognitive resources allocation during stepping tasks. This study may provide a new insight for further understanding the mechanism on how RVCs alleviate freezing of gait.

16.
J Athl Train ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38419428

ABSTRACT

CONTEXT: Researchers have shown that patients with chronic ankle instability (CAI) have deficits in memory and attention allocation. This functional deficit affects the lower extremity performance. Motor-cognitive dual-task training may improve lower limb dysfunction caused by central nervous system injury. Whether dual-task training is more favorable than single-task training for neuromuscular control in patients with single-task training still needs to be further proven. OBJECTIVE: To determine whether balance-cognitive dual-task training can influence cortical activity and has more effective treatment effects than balance single-task training. DESIGN: Randomized controlled clinical trial (Clinical Trials: XXX). SETTING: Rehabilitation training room. PATIENTS OR OTHER PARTICIPANTS: After recruitment, twenty-four patients with CAI (age=22.33±2.43 years, height=175.62±7.7 cm, mass=70.63±14.59 kg) were block randomized into two groups. INTERVENTION(S): Protocols were performed three times per week for six weeks. The single-task group underwent one-leg static balance training with and without vision and hopping balance training. The dual-task group underwent balance and cognitive training (backward counting task). MAIN OUTCOME MEASURE(S): The follow variables were assessed before and after the interventions: cortical activity, proprioception, muscle onset time, and dynamic balance. We performed MANOVAs to compare changes of main effects and interactions across groups and time. A post-hoc Bonferroni test was performed for pairwise comparisons when there were significant interactions with the MANOVAs. RESULTS: Twenty-four participants successfully completed the six-week interventions. Proprioception, peroneus longus muscle onset time, and dynamic postural control improved significantly after the interventions in both groups (P<0.05). Dual-task training was superior to single-task training in improving JPS plantarflexion, shortening peroneus longus muscle onset time, and altering cortical activity(P<0.05). CONCLUSIONS: A six-week balance training program or balance combined with cognitive training could improve the functional deficits associated with CAI. Meanwhile, the dual-task training could improve cortical activity and lower extremity function.

17.
Neurosci Lett ; 825: 137685, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38367797

ABSTRACT

First-person shooting (FPS) games are among the most famous video games worldwide. However, cortical activities in environments related to real FPS games have not been studied. This study aimed to determine differences in cortical activity between low- and high-skilled FPS game players using 160-channel electroencephalography. Nine high-skilled FPS game players (official ranks: above the top 10%) and eight low-skilled FPS game players (official ranks: lower than the top 20%) were recruited for the experiment. The task was set for five different conditions using the AimLab program, which was used for the FPS game players' training. Additionally, we recorded the brain activity in the resting condition before and after the task, in which the participants closed their eyes and relaxed. The reaction time and accuracy (the number of hit-and-miss targets) were calculated to evaluate the task performance. The results showed that high-skilled FPS game players have fast reaction times and high accuracy during tasks. High-skilled FPS game players had higher cortical activity in the frontal cortex than low-skilled FPS game players during each task. In low-skilled players, cortical activity level and performance level were associated. These results suggest that high cortical activity levels were critical to achieving high performance in FPS games.


Subject(s)
Video Games , Humans , Frontal Lobe , Rest , Spectrum Analysis , Electroencephalography
18.
Percept Mot Skills ; 131(1): 74-105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37977135

ABSTRACT

Auditory-motor and visual-motor networks are often coupled in daily activities, such as when listening to music and dancing; but these networks are known to be highly malleable as a function of sensory input. Thus, congenital deafness may modify neural activities within the connections between the motor, auditory, and visual cortices. Here, we investigated whether the cortical responses of children with cochlear implants (CI) to a simple and repetitive motor task would differ from that of children with typical hearing (TH) and we sought to understand whether this response related to their language development. Participants were 75 school-aged children, including 50 with CI (with varying language abilities) and 25 controls with TH. We used functional near-infrared spectroscopy (fNIRS) to record cortical responses over the whole brain, as children squeezed the back triggers of a joystick that vibrated or not with the squeeze. Motor cortex activity was reflected by an increase in oxygenated hemoglobin concentration (HbO) and a decrease in deoxygenated hemoglobin concentration (HbR) in all children, irrespective of their hearing status. Unexpectedly, the visual cortex (supposedly an irrelevant region) was deactivated in this task, particularly for children with CI who had good language skills when compared to those with CI who had language delays. Presence or absence of vibrotactile feedback made no difference in cortical activation. These findings support the potential of fNIRS to examine cognitive functions related to language in children with CI.


Subject(s)
Cochlear Implantation , Cochlear Implants , Deafness , Child , Humans , Spectroscopy, Near-Infrared/methods , Cochlear Implantation/methods , Deafness/surgery , Hemoglobins
19.
Neural Regen Res ; 19(5): 1098-1104, 2024 May.
Article in English | MEDLINE | ID: mdl-37862214

ABSTRACT

After stroke, even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity, leading to reduced functional independence. Bilateral arm training has been proposed as a promising intervention to address these deficits. However, the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear, limiting the development of more targeted interventions. To address this gap, our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination. Twenty-four high-functioning patients with ischemic stroke (7 women, 17 men; mean age 64.75 ± 10.84 years) participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test, which measures unimanual and bimanual finger and hand dexterity. We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks, with bimanual tasks inducing higher cortical activation than the assembly subtask. Importantly, patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks. Notably, the observed neural response patterns varied depending on the specific subtask. In the unaffected hand task, the differences were primarily observed in the ipsilesional hemisphere. In contrast, the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task, respectively. While significant correlations were found between cortical activation and unimanual tasks, no significant correlations were observed with bimanual tasks. This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke, highlighting task-dependent neural responses. The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation. Therefore, incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes. The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.

20.
Brain Sci ; 13(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38137123

ABSTRACT

This study investigated the effect of concern about falling on neural efficiency during stepping in older people. Community-dwellers aged >65 years were categorised as having low (n = 71) and high (n = 28) concerns about falling based on the Iconographical Falls Efficacy Scale (IconFES 10-item, scores <19 and ≥19, respectively). Participants performed a choice stepping reaction time test (CSRT), an inhibitory CSRT (iCSRT), and a Stroop stepping test (SST)) on a computerised step mat. Cortical activity was recorded using functional near-infrared spectroscopy. There were no significant differences in stepping response times or cortical activity in the dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and premotor cortex (PMC) between those with and without concern about falling. However, stepping response times and cortical activity in the PFC, SMA, and PMC were significantly higher in the SST compared with the CSRT in the whole sample. PMC activity was also higher in the SST compared to the iCSRT. These findings demonstrate that cortical activity is higher in cognitively demanding stepping tasks that require selective attention and inhibition in healthy older people. The lack of association between concern about falling and neural efficiency during stepping in this older sample may reflect their only moderate scores on the IconFES.

SELECTION OF CITATIONS
SEARCH DETAIL