Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.076
Filter
1.
Netw Neurosci ; 8(2): 576-596, 2024.
Article in English | MEDLINE | ID: mdl-38952810

ABSTRACT

Canonical correlation analysis (CCA) and partial least squares correlation (PLS) detect linear associations between two data matrices by computing latent variables (LVs) having maximal correlation (CCA) or covariance (PLS). This study compared the similarity and generalizability of CCA- and PLS-derived brain-behavior relationships. Data were accessed from the baseline Adolescent Brain Cognitive Development (ABCD) dataset (N > 9,000, 9-11 years). The brain matrix consisted of cortical thickness estimates from the Desikan-Killiany atlas. Two phenotypic scales were examined separately as the behavioral matrix; the Child Behavioral Checklist (CBCL) subscale scores and NIH Toolbox performance scores. Resampling methods were used to assess significance and generalizability of LVs. LV1 for the CBCL brain relationships was found to be significant, yet not consistently stable or reproducible, across CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 for the NIH brain relationships showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). The current study suggests that stability and reproducibility of brain-behavior relationships identified by CCA and PLS are influenced by the statistical characteristics of the phenotypic measure used when applied to a large population-based pediatric sample.


Clinical neuroscience research is going through a translational crisis largely due to the challenges of producing meaningful and generalizable results. Two critical limitations within clinical neuroscience research are the use of univariate statistics and between-study methodological variation. Univariate statistics may not be sensitive enough to detect complex relationships between several variables, and methodological variation poses challenges to the generalizability of the results. We compared two widely used multivariate statistical approaches, canonical correlations analysis (CCA) and partial least squares correlation (PLS), to determine the generalizability and stability of their solutions. We show that the properties of the measures inputted into the analysis likely play a more substantial role in the generalizability and stability of results compared to the specific approach applied (i.e., CCA or PLS).

2.
Schizophr Bull ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970378

ABSTRACT

BACKGROUND: Clinical forecasting models have potential to optimize treatment and improve outcomes in psychosis, but predicting long-term outcomes is challenging and long-term follow-up data are scarce. In this 10-year longitudinal study, we aimed to characterize the temporal evolution of cortical correlates of psychosis and their associations with symptoms. DESIGN: Structural magnetic resonance imaging (MRI) from people with first-episode psychosis and controls (n = 79 and 218) were obtained at enrollment, after 12 months (n = 67 and 197), and 10 years (n = 23 and 77), within the Thematically Organized Psychosis (TOP) study. Normative models for cortical thickness estimated on public MRI datasets (n = 42 983) were applied to TOP data to obtain deviation scores for each region and timepoint. Positive and Negative Syndrome Scale (PANSS) scores were acquired at each timepoint along with registry data. Linear mixed effects models assessed effects of diagnosis, time, and their interactions on cortical deviations plus associations with symptoms. RESULTS: LMEs revealed conditional main effects of diagnosis and time × diagnosis interactions in a distributed cortical network, where negative deviations in patients attenuate over time. In patients, symptoms also attenuate over time. LMEs revealed effects of anterior cingulate on PANSS total, and insular and orbitofrontal regions on PANSS negative scores. CONCLUSIONS: This long-term longitudinal study revealed a distributed pattern of cortical differences which attenuated over time together with a reduction in symptoms. These findings are not in line with a simple neurodegenerative account of schizophrenia, and deviations from normative models offer a promising avenue to develop biomarkers to track clinical trajectories over time.

3.
Front Aging Neurosci ; 16: 1395911, 2024.
Article in English | MEDLINE | ID: mdl-38974904

ABSTRACT

Background: Patients with carotid atherosclerotic stenosis (CAS) often have varying degrees of cognitive decline. However, there is little evidence regarding how brain morphological and functional abnormalities impact the cognitive decline in CAS patients. This study aimed to determine how the brain morphological and functional changes affected the cognitive decline in patients with CAS. Methods: The brain morphological differences were analyzed using surface and voxel-based morphometry, and the seed-based whole-brain functional connectivity (FC) abnormalities were analyzed using resting-state functional magnetic resonance imaging. Further, mediation analyses were performed to determine whether and how morphological and FC changes affect cognition in CAS patients. Results: The CAS-MCI (CAS patients with mild cognitive impairment) group performed worse in working memory, verbal fluency, and executive time. Cortical thickness (CT) of the left postcentral and superiorparietal were significantly reduced in CAS-MCI patients. The gray matter volume (GMV) of the right olfactory, left temporal pole (superior temporal gyrus) (TPOsup.L), left middle temporal gyrus (MTG.L), and left insula (INS.L) were decreased in the CAS-MCI group. Besides, decreased seed-based FC between TPOsup.L and left precuneus, between MTG.L and TPOsup.L, and between INS.L and MTG.L, left middle frontal gyrus, as well as Superior frontal gyrus, were found in CAS-MCI patients. Mediation analyses demonstrated that morphological and functional abnormalities fully mediated the association between the maximum degree of carotid stenosis and cognitive function. Conclusion: Multiple brain regions have decreased GMV and CT in CAS-MCI patients, along with disrupted seed-based FC. These morphological and functional changes play a crucial role in the cognitive impairment in CAS patients.

4.
Soc Cogn Affect Neurosci ; 19(1)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38915189

ABSTRACT

Malfunctioning in executive functioning has been proposed as a risk factor for intimate partner violence (IPV). This is not only due to its effects on behavioral regulation but also because of its association with other variables such as sexism. Executive dysfunctions have been associated with frontal and prefrontal cortical thickness. Therefore, our first aim was to assess differences in cortical thickness in frontal and prefrontal regions, as well as levels of sexism, between two groups of IPV perpetrators (with and without executive dysfunctions) and a control group of non-violent men. Second, we analyzed whether the cortical thickness in the frontal and prefrontal regions would explain sexism scores. Our results indicate that IPV perpetrators classified as dysexecutive exhibited a lower cortical thickness in the right rostral anterior cingulate superior frontal bilaterally, caudal middle frontal bilaterally, right medial orbitofrontal, right paracentral, and precentral bilaterally when compared with controls. Furthermore, they exhibited higher levels of sexism than the rest of the groups. Most importantly, in the brain structures that distinguished between groups, lower thickness was associated with higher sexism scores. This research emphasizes the need to incorporate neuroimaging techniques to develop accurate IPV profiles or subtypes based on neuropsychological functioning.


Subject(s)
Executive Function , Intimate Partner Violence , Magnetic Resonance Imaging , Sexism , Humans , Male , Executive Function/physiology , Adult , Intimate Partner Violence/psychology , Magnetic Resonance Imaging/methods , Neuropsychological Tests , Young Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Female , Middle Aged , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/pathology
5.
Dev Cogn Neurosci ; 68: 101407, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38870602

ABSTRACT

The human brain undergoes structural development from childhood to adolescence, with specific regions in the sensorimotor, social, and affective networks continuing to grow into adulthood. While genetic and environmental factors contribute to individual differences in these brain trajectories, the extent remains understudied. Our longitudinal study, utilizing up to three biennial MRI scans (n=485), aimed to assess the genetic and environmental effects on brain structure (age 7) and development (ages 7-14) in these regions. Heritability estimates varied across brain regions, with all regions showing genetic influence (ranging from 18 % to 59 %) with additional shared environmental factors affecting the primary motor cortex (30 %), somatosensory cortex (35 %), DLPFC (5 %), TPJ (17 %), STS (17 %), precuneus (10 %), hippocampus (22 %), amygdala (5 %), and nucleus accumbens (10 %). Surface area was more genetically driven (38 %) than cortical thickness (14 %). Longitudinal brain changes were primarily driven by genetics (ranging from 1 % to 29 %), though shared environment factors (additionally) influenced the somatosensory cortex (11 %), DLPFC (7 %), cerebellum (28 %), TPJ (16 %), STS (20 %), and hippocampus (17 %). These findings highlight the importance of further investigating brain-behavior associations and the influence of enriched and deprived environments from childhood to adolescence. Ultimately, our study can provide insights for interventions aimed at supporting children's development.

6.
Article in Russian | MEDLINE | ID: mdl-38881015

ABSTRACT

OBJECTIVE: Assessing the diagnostic significance of MR morphometry in determining the localization of focal cortical dysplasias (FCD). MATERIAL AND METHODS: The study included 13 children after surgery for drug-resistant epilepsy caused by FCD type II and stable postoperative remission of seizures (Engel class IA, median follow-up 56 months). We analyzed the results of independent expert assessment of native MR data by three radiologists (HARNESS protocol) and MR morphometry data regarding accuracy of FCD localization. We considered 2 indicators, i.e. local cortical thickening and gray-white matter blurring. RESULTS: FCD detection rate was higher after MR morphometry compared to visual analysis of native MR data using the HARNESS protocol. MR morphometry also makes it possible to more often identify gray-white matter blurring as a sign often missed by radiologists (p<0.05). CONCLUSION: MR morphometry is an additional non-invasive method for assessing the localization of FCD.


Subject(s)
Magnetic Resonance Imaging , Humans , Female , Male , Magnetic Resonance Imaging/methods , Child , Adolescent , Child, Preschool , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/surgery , Malformations of Cortical Development/pathology , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/pathology , Malformations of Cortical Development, Group I/diagnostic imaging , Malformations of Cortical Development, Group I/surgery , Focal Cortical Dysplasia
7.
Alzheimers Dement ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889242

ABSTRACT

INTRODUCTION: Despite prior research on the association between sarcopenia and cognitive impairment in the elderly, a comprehensive model that integrates various brain pathologies is still lacking. METHODS: We used data from 528 non-demented older adults with or without sarcopenia in the Catholic Aging Brain Imaging (CABI) database, containing magnetic resonance imaging scans, positron emission tomography scans, and clinical data. We also measured three key components of sarcopenia: skeletal muscle index (SMI), hand grip strength (HGS), and the five times sit-to-stand test (5STS). RESULTS: All components of sarcopenia were significantly correlated with global cognitive function, but cortical thickness and amyloid-beta (Aß) retention had distinctive relationships with each measure. In the path model, brain atrophy resulting in cognitive impairment was mediated by Aß retention for SMI and periventricular white matter hyperintensity for HGS, but directly affected by the 5STS. DISCUSSION: Treatments targeting each sub-domain of sarcopenia should be considered to prevent cognitive decline. HIGHLIGHTS: We identified distinct impacts of three sarcopenia measures on brain structure and Aß. Muscle mass is mainly associated with Aß and has an influence on the brain atrophy. Muscle strength linked with periventricular WMH and brain atrophy. Muscle function associated with cortical thinning in specific brain regions. Interventions on sarcopenia may be important to ease cognitive decline in the elderly.

8.
Breast Care (Basel) ; 19(3): 149-154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38894954

ABSTRACT

Introduction: The presence of axillary lymph node involvement is an important prognostic factor and has a major impact on treatment decisions in early breast cancer patients. This study aimed to determine the role of cortical thickness in axillary ultrasound (AUS) as an indicator of lymph node metastasis. Methods: 766 patients with primary breast cancer who received AUS during clinical work-up were selected for this retrospective study. Lymph nodes were defined as suspicious if they showed a cortical thickness of >3.0 mm at 11-15 MHz harmonic imaging ultrasound. Lymph node involvement was assessed by core needle biopsy (n = 150), sentinel node dissection or axillary dissection. Extensive axillary spread (EAS) was diagnosed if more than two lymph nodes showed metastatic disease in histology. Results: AUS for detecting all lymph node metastases had a sensitivity of 62.27%, a specificity of 93.15% and a negative predictive value of 81.74%. However, the resulting negative predictive value for transcapsular growth was 93.97%, and for EAS 97.52%. Conclusion: EAS - in contrast to non-palpable involvement of 1 or 2 lymph nodes - contributes relevantly to the individualization of breast cancer treatment. In combination with SNB, AUS using cortical thickness as the main distinctive parameter seems to be an easily available, robust tool of diagnosing extensive axillary metastases. If AUS proves negative, it helps to reduce the number of classic axillary dissections.

9.
CNS Neurosci Ther ; 30(6): e14810, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887969

ABSTRACT

AIMS: To study the changes in cortical thickness and subcortical gray matter structures in children with complete spinal cord injury (CSCI), reveal the possible causes of dysfunction beyond sensory motor dysfunction after CSCI, and provide a possible neural basis for corresponding functional intervention training. METHODS: Thirty-seven pediatric CSCI patients and 34 age-, gender-matched healthy children as healthy controls (HCs) were recruited. The 3D high-resolution T1-weighted structural images of all subjects were obtained using a 3.0 Tesla MRI system. Statistical differences between pediatric CSCI patients and HCs in cortical thickness and volumes of subcortical gray matter structures were evaluated. Then, correlation analyses were performed to analyze the correlation between the imaging indicators and clinical characteristics. RESULTS: Compared with HCs, pediatric CSCI patients showed decreased cortical thickness in the right precentral gyrus, superior temporal gyrus, and posterior segment of the lateral sulcus, while increased cortical thickness in the right lingual gyrus and inferior occipital gyrus. The volume of the right thalamus in pediatric CSCI patients was significantly smaller than that in HCs. No significant correlation was found between the imaging indicators and the injury duration, sensory scores, and motor scores of pediatric CSCI patients. CONCLUSIONS: These findings demonstrated that the brain structural reorganizations of pediatric CSCI occurred not only in sensory motor areas but also in cognitive and visual related brain regions, which may suggest that the visual processing, cognitive abnormalities, and related early intervention therapy also deserve greater attention beyond sensory motor rehabilitation training in pediatric CSCI patients.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Spinal Cord Injuries , Humans , Spinal Cord Injuries/pathology , Spinal Cord Injuries/diagnostic imaging , Female , Male , Child , Adolescent , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Gray Matter/pathology , Gray Matter/diagnostic imaging , Organ Size
10.
J Neurol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896263

ABSTRACT

BACKGROUND: Myotonic dystrophy is a multisystem disorder characterized by widespread organic involvement including central nervous system symptoms. Although myotonic dystrophy disease types 1 (DM1) and 2 (DM2) cover a similar spectrum of symptoms, more pronounced clinical and brain alterations have been described in DM1. Here, we investigated brain volumetric and white matter alterations in both disease types and compared to healthy controls (HC). METHODS: MRI scans were obtained from 29 DM1, 27 DM2, and 56 HC. We assessed macro- and microstructural brain changes by surface-based analysis of cortical thickness of anatomical images and tract-based spatial statistics of fractional anisotropy (FA) obtained by diffusion-weighted imaging, respectively. Global MRI measures were related to clinical and neuropsychological scores to evaluate their clinical relevance. RESULTS: Cortical thickness was reduced in both patient groups compared to HC, showing similar patterns of regional distribution in DM1 and DM2 (occipital, temporal, frontal) but more pronounced cortical thinning for DM1. Similarly, FA values showed a widespread decrease in DM1 and DM2 compared to HC. Interestingly, FA was significantly lower in DM1 compared to DM2 within most parts of the brain. CONCLUSION: Comparisons between DM1 and DM2 indicate a more pronounced cortical thinning of grey matter and a widespread reduction in microstructural integrity of white matter in DM1. Future studies are required to unravel the underlying and separating mechanisms for the disease courses of the two types and their neuropsychological symptoms.

11.
Geroscience ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831181

ABSTRACT

Previous studies on age-related changes in cortical and hippocampal morphology were not designed or able to reveal the complex spatial patterns of changes across the lifespan. To this end, the current study examined these changes in a decade-by-decade manner by comparing consecutive age decades at the vertex-wise level. Additionally, the lifespan trajectories of cortical/hippocampal mean thickness and total surface area were modeled and plotted out to provide an overview of their age-related changes. Using two lifespan datasets (Ntotal = 1378; 18 ≤ age ≤ 100), vertex-wise thickness and surface area measurements were extracted from the cortical and unfolded hippocampal surfaces and analyzed using whole-brain/hippocampus vertex-wise analyses. Lifespan trajectories of cortical/hippocampal mean thickness and total surface area were modeled with generalized additive models for location, scale, and shape. These models revealed fairly linear declines in both cortical measures and inverted U-shaped trajectories for both hippocampal measures. Across the different age decades, the sizes and locations of cortical thinning clusters were highly variable across the age decades. No significant clusters of cortical surface area changes were observed across the age decades. Significant clusters of hippocampal surface area and thickness reduction were not observed until the 70s. Generally, the agreement between datasets on the hippocampal findings was much higher than those of the cortical surface. These findings revealed important nuances in the age-related changes of cortical and hippocampal morphology and cautioned against using lifespan trajectories to infer decade-by-decade changes in the cortical surface and the hippocampus.

12.
Front Neurol ; 15: 1399124, 2024.
Article in English | MEDLINE | ID: mdl-38854965

ABSTRACT

Introduction: Distinguishing tremor-dominant Parkinson's disease (tPD) from essential tremor with rest tremor (rET) can be challenging and often requires dopamine imaging. This study aimed to differentiate between these two diseases through a machine learning (ML) approach based on rest tremor (RT) electrophysiological features and structural MRI data. Methods: We enrolled 72 patients including 40 tPD patients and 32 rET patients, and 45 control subjects (HC). RT electrophysiological features (frequency, amplitude, and phase) were calculated using surface electromyography (sEMG). Several MRI morphometric variables (cortical thickness, surface area, cortical/subcortical volumes, roughness, and mean curvature) were extracted using Freesurfer. ML models based on a tree-based classification algorithm termed XGBoost using MRI and/or electrophysiological data were tested in distinguishing tPD from rET patients. Results: Both structural MRI and sEMG data showed acceptable performance in distinguishing the two patient groups. Models based on electrophysiological data performed slightly better than those based on MRI data only (mean AUC: 0.92 and 0.87, respectively; p = 0.0071). The top-performing model used a combination of sEMG features (amplitude and phase) and MRI data (cortical volumes, surface area, and mean curvature), reaching AUC: 0.97 ± 0.03 and outperforming models using separately either MRI (p = 0.0001) or EMG data (p = 0.0231). In the best model, the most important feature was the RT phase. Conclusion: Machine learning models combining electrophysiological and MRI data showed great potential in distinguishing between tPD and rET patients and may serve as biomarkers to support clinicians in the differential diagnosis of rest tremor syndromes in the absence of expensive and invasive diagnostic procedures such as dopamine imaging.

13.
Am J Hypertens ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38863366

ABSTRACT

BACKGROUND: High blood pressure (BP) in middle-aged and older adults is associated with lower brain volume and cortical thickness assessed with structural MRI. However, little evidence is available in young adults. We investigated the associations of high BP with brain volumes and cortical thickness in healthy young adults. METHODS: This cross-sectional study included 1095 young adults (54% women, 22-37 years) from the Human Connectome Project (HCP) who self-reported not having a history of hypertension or taking antihypertensive medications. Brachial systolic (SBP) and diastolic BP (DBP) were measured with semi-automatic or manual sphygmomanometer during study visits. Structural MRI was used to measure gray matter (GM) and white matter (WM) volume and mean cortical thickness. Associations of BP and hypertension stage with total and regional brain volumes and cortical thickness were analyzed using linear regression and analysis of covariance (ANCOVA) after adjusting for age, sex, education years, body mass index (BMI), smoking, alcohol consumption history, zygosity, and total intracranial volume. RESULTS: SBP and DBP were (mean ± SD) 123.6 ± 14.2 and 76.5 ± 10.6 mmHg, respectively (n = 1095). High DBP was associated with lower total GM (p = 0.012), cortical GM (p = 0.004), subcortical GM (p = 0.012), and total WM volumes (p = 0.031). High SBP and DBP were associated with lower regional cortical volume and cortical thickness. CONCLUSION: These findings suggest that high BP may have deleterious effects on brain health at the early stage of adulthood.

14.
Neurobiol Lang (Camb) ; 5(2): 264-287, 2024.
Article in English | MEDLINE | ID: mdl-38832361

ABSTRACT

Early childhood is a critical period for structural brain development as well as an important window for the identification and remediation of reading difficulties. Recent research supports the implementation of interventions in at-risk populations as early as kindergarten or first grade, yet the neurocognitive mechanisms following such interventions remain understudied. To address this, we investigated cortical structure by means of anatomical MRI before and after a 12-week tablet-based intervention in: (1) at-risk children receiving phonics-based training (n = 29; n = 16 complete pre-post datasets), (2) at-risk children engaging with AC training (n = 24; n = 15 complete pre-post datasets) and (3) typically developing children (n = 25; n = 14 complete pre-post datasets) receiving no intervention. At baseline, we found higher surface area of the right supramarginal gyrus in at-risk children compared to typically developing peers, extending previous evidence that early anatomical differences exist in children who may later develop dyslexia. Our longitudinal analysis revealed significant post-intervention thickening of the left supramarginal gyrus, present exclusively in the intervention group but not the active control or typical control groups. Altogether, this study contributes new knowledge to our understanding of the brain morphology associated with cognitive risk for dyslexia and response to early intervention, which in turn raises new questions on how early anatomy and plasticity may shape the trajectories of long-term literacy development.

15.
Alzheimers Res Ther ; 16(1): 129, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886798

ABSTRACT

BACKGROUND: Autopsy work indicates that the widely-projecting noradrenergic pontine locus coeruleus (LC) is among the earliest regions to accumulate hyperphosphorylated tau, a neuropathological Alzheimer's disease (AD) hallmark. This early tau deposition is accompanied by a reduced density of LC projections and a reduction of norepinephrine's neuroprotective effects, potentially compromising the neuronal integrity of LC's cortical targets. Previous studies suggest that lower magnetic resonance imaging (MRI)-derived LC integrity may signal cortical tissue degeneration in cognitively healthy, older individuals. However, whether these observations are driven by underlying AD pathology remains unknown. To that end, we examined potential effect modifications by cortical beta-amyloid and tau pathology on the association between in vivo LC integrity, as quantified by LC MRI signal intensity, and cortical neurodegeneration, as indexed by cortical thickness. METHODS: A total of 165 older individuals (74.24 ± 9.72 years, ~ 60% female, 10% cognitively impaired) underwent whole-brain and dedicated LC 3T-MRI, Pittsburgh Compound-B (PiB, beta-amyloid) and Flortaucipir (FTP, tau) positron emission tomography. Linear regression analyses with bootstrapped standard errors (n = 2000) assessed associations between bilateral cortical thickness and i) LC MRI signal intensity and, ii) LC MRI signal intensity interacted with cortical FTP or PiB (i.e., EC FTP, IT FTP, neocortical PiB) in the entire sample and a low beta-amyloid subsample. RESULTS: Across the entire sample, we found a direct effect, where lower LC MRI signal intensity was associated with lower mediolateral temporal cortical thickness. Evaluation of potential effect modifications by FTP or PiB revealed that lower LC MRI signal intensity was related to lower cortical thickness, particularly in individuals with elevated (EC, IT) FTP or (neocortical) PiB. The latter result was present starting from subthreshold PiB values. In low PiB individuals, lower LC MRI signal intensity was related to lower EC cortical thickness in the context of elevated EC FTP. CONCLUSIONS: Our findings suggest that LC-related cortical neurodegeneration patterns in older individuals correspond to regions representing early Braak stages and may reflect a combination of LC projection density loss and emergence of cortical AD pathology. This provides a novel understanding that LC-related cortical neurodegeneration may signal downstream consequences of AD-related pathology, rather than being exclusively a result of aging.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Locus Coeruleus , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins , Humans , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/pathology , Female , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Male , Aged , tau Proteins/metabolism , Aged, 80 and over , Cohort Studies , Amyloid beta-Peptides/metabolism , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Carbolines , Thiazoles , Aniline Compounds , Brain Cortical Thickness
16.
J Headache Pain ; 25(1): 97, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858629

ABSTRACT

BACKGROUND: Mindfulness practice has gained interest in the management of Chronic Migraine associated with Medication Overuse Headache (CM-MOH). Mindfulness is characterized by present-moment self-awareness and relies on attention control and emotion regulation, improving headache-related pain management. Mindfulness modulates the Default Mode Network (DMN), Salience Network (SN), and Fronto-Parietal Network (FPN) functional connectivity. However, the neural mechanisms underlying headache-related pain management with mindfulness are still unclear. In this study, we tested neurofunctional changes after mindfulness practice added to pharmacological treatment as usual in CM-MOH patients. METHODS: The present study is a longitudinal phase-III single-blind Randomized Controlled Trial (MIND-CM study; NCT03671681). Patients had a diagnosis of CM-MOH, no history of neurological and severe psychiatric comorbidities, and were attending our specialty headache centre. Patients were divided in Treatment as Usual (TaU) and mindfulness added to TaU (TaU + MIND) groups. Patients underwent a neuroimaging and clinical assessment before the treatment and after one year. Longitudinal comparisons of DMN, SN, and FPN connectivity were performed between groups and correlated with clinical changes. Vertex-wise analysis was performed to assess cortical thickness changes. RESULTS: 177 CM-MOH patients were randomized to either TaU group or TaU + MIND group. Thirty-four patients, divided in 17 TaU and 17 TaU + MIND, completed the neuroimaging follow-up. At the follow-up, both groups showed an improvement in most clinical variables, whereas only TaU + MIND patients showed a significant headache frequency reduction (p = 0.028). After one year, TaU + MIND patients showed greater SN functional connectivity with the left posterior insula (p-FWE = 0.007) and sensorimotor cortex (p-FWE = 0.026). In TaU + MIND patients only, greater SN-insular connectivity was associated with improved depression scores (r = -0.51, p = 0.038). A longitudinal increase in cortical thickness was observed in the insular cluster in these patients (p = 0.015). Increased anterior cingulate cortex thickness was also reported in TaU + MIND group (p-FWE = 0.02). CONCLUSIONS: Increased SN-insular connectivity might modulate chronic pain perception and the management of negative emotions. Enhanced SN-sensorimotor connectivity could reflect improved body-awareness of painful sensations. Expanded cingulate cortex thickness might sustain improved cognitive processing of nociceptive information. Our findings unveil the therapeutic potential of mindfulness and the underlying neural mechanisms in CM-MOH patients. TRIAL REGISTRATION: Name of Registry; MIND-CM study; Registration Number ClinicalTrials.gov identifier: NCT0367168; Registration Date: 14/09/2018.


Subject(s)
Headache Disorders, Secondary , Mindfulness , Humans , Mindfulness/methods , Headache Disorders, Secondary/therapy , Headache Disorders, Secondary/psychology , Female , Male , Adult , Middle Aged , Longitudinal Studies , Single-Blind Method , Magnetic Resonance Imaging , Default Mode Network/diagnostic imaging , Default Mode Network/physiopathology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology
17.
Rev Neurol (Paris) ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38866655

ABSTRACT

BACKGROUND: The association between the pattern of cortical thickness (CT) and executive dysfunction (ED) in mild cognitive impairment (MCI) and subjective cognitive complaints (SCC) is still poorly understood. We aimed to investigate the association between CT and ED in a large French cohort (MEMENTO) of 2323 participants with MCI or SCC. METHODS: All participants with available CT and executive function data (verbal fluency and Trail Making Test [TMT]) were selected (n=1924). Linear regressions were performed to determine relationships between executive performance and the brain parenchymal fraction (BPF) and CT using FreeSurfer. RESULTS: The global executive function score was related to the BPF (sß: 0.091, P<0.001) and CT in the right supramarginal (sß: 0.060, P=0.041) and right isthmus cingulate (sß: 0.062, P=0.011) regions. Literal verbal fluency was related to the BPF (sß: 0.125, P<0.001) and CT in the left parsorbitalis region (sß: 0.045, P=0.045). Semantic verbal fluency was related to the BPF (sß: 0.101, P<0.001) and CT in the right supramarginal region (sß: 0.061, P=0.042). The time difference between the TMT parts B and A was related to the BPF (sß: 0.048, P=0.045) and CT in the right precuneus (sß: 0.073, P=0.019) and right isthmus cingulate region (sß: 0.054, P=0.032). CONCLUSIONS: In a large clinically based cohort of participants presenting with either MCI or SCC (a potential early stage of Alzheimer's disease [AD]), ED was related to the BPF and CT in the left pars orbitalis, right precuneus, right supramarginal, and right isthmus cingulate regions. This pattern of lesions adds knowledge to the conventional anatomy of ED and could contribute to the early diagnosis of AD.

18.
Dev Sci ; : e13537, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874007

ABSTRACT

The brain undergoes extensive development during late childhood and early adolescence. Cortical thinning is a prominent feature of this development, and some researchers have suggested that differences in cortical thickness may be related to internalizing symptoms, which typically increase during the same period. However, research has yielded inconclusive results. We utilized a new method that estimates the combined effect of individual differences in vertex-wise cortical thickness on internalizing symptoms. This approach allows for many small effects to be distributed across the cortex and avoids the necessity of correcting for multiple tests. Using a sample of 8763 children aged 8.9 to 11.1 from the ABCD study, we decomposed the total variation in caregiver-reported internalizing symptoms into differences in cortical thickness, additive genetics, and shared family environmental factors and unique environmental factors. Our results indicated that individual differences in cortical thickness accounted for less than 0.5% of the variation in internalizing symptoms. In contrast, the analysis revealed a substantial effect of additive genetics and family environmental factors on the different components of internalizing symptoms, ranging from 06% to 48% and from 0% to 34%, respectively. Overall, while this study found a minimal association between cortical thickness and internalizing symptoms, additive genetics, and familial environmental factors appear to be of importance for describing differences in internalizing symptoms in late childhood. RESEARCH HIGHLIGHTS: We utilized a new method for modelling the total contribution of vertex-wise individual differences in cortical thickness to internalizing symptoms in late childhood. The total contribution of individual differences in cortical thickness accounted for <0.5% of the variance in internalizing symptoms. Additive genetics and shared family environmental variation accounted for 17% and 34% of the variance in internalizing symptoms, respectively. Our results suggest that cortical thickness is not an important indicator for internalizing symptoms in childhood, whereas genetic and environmental differences have a substantial impact.

19.
Neurobiol Aging ; 141: 102-112, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38850591

ABSTRACT

The hypothalamus regulates homeostasis across the lifespan and is emerging as a regulator of aging. In murine models, aging-related changes in the hypothalamus, including microinflammation and gliosis, promote accelerated neurocognitive decline. We investigated relationships between hypothalamic microstructure and features of neurocognitive aging, including cortical thickness and cognition, in a cohort of community-dwelling older adults (age range 65-97 years, n=124). Hypothalamic microstructure was evaluated with two magnetic resonance imaging diffusion metrics: mean diffusivity (MD) and fractional anisotropy (FA), using a novel image processing pipeline. Hypothalamic MD was cross-sectionally positively associated with age and it was negatively associated with cortical thickness. Hypothalamic FA, independent of cortical thickness, was cross-sectionally positively associated with neurocognitive scores. An exploratory analysis of longitudinal neurocognitive performance suggested that lower hypothalamic FA may predict cognitive decline. No associations between hypothalamic MD, age, and cortical thickness were identified in a younger control cohort (age range 18-63 years, n=99). To our knowledge, this is the first study to demonstrate that hypothalamic microstructure is associated with features of neurocognitive aging in humans.

20.
Psychiatry Res ; 339: 116030, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38909414

ABSTRACT

Disentangling the molecular underpinnings of major depressive disorder (MDD) is necessary for identifying new treatment and prevention targets. The functional impact of depression-related transcriptomic changes on the brain remains relatively unexplored. We recently developed a novel transcriptome-based polygenic risk score (tPRS) composed of genes transcriptionally altered in MDD. Here, we sought to investigate effects of tPRS on brain structure in a developmental cohort (Adolescent Brain Cognitive Development study; n = 5124; 2387 female) at baseline (9-10 years) and 2-year follow-up (11-12 years). We tested associations between tPRS and Freesurfer-derived measures of cortical thickness, cortical surface area, and subcortical volume. Across the whole sample, higher tPRS was significantly associated with thicker left posterior cingulate cortex at both baseline and 2-year follow-up. In females only, tPRS was associated with lower right hippocampal volume at baseline and 2-year follow-up, and lower right pallidal volume at baseline. Furthermore, regional subcortical volume significantly mediated an indirect effect of tPRS on depressive symptoms in females at both timepoints. Conversely, tPRS did not have significant effects on cortical surface area. These findings suggest the existence of a sex-specific neurodevelopmental signature associated with shifts towards a more depression-like brain transcriptome, and highlight novel pathways of developmentally mediated MDD risk.

SELECTION OF CITATIONS
SEARCH DETAIL
...