Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25743700

ABSTRACT

Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.


Subject(s)
Mass Spectrometry/methods , Sun Protection Factor , Sunscreening Agents/analysis , Sunscreening Agents/chemistry , Humans , Principal Component Analysis
2.
Materials (Basel) ; 6(3): 1000-1010, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-28809353

ABSTRACT

A new "omic" platform-Cosmetomics-that proves to be extremely simple and effective in terms of sample preparation and readiness for data acquisition/interpretation is presented. This novel approach employing Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) for cosmetic analysis has proven to readily identify and quantify compounds of interest. It also allows full control of all the production phases, as well as of the final product, by integration of both analytical and statistical data. This work has focused on products of daily use, namely nail polish, lipsticks and eyeliners of multiple brands sold in the worldwide market.

SELECTION OF CITATIONS
SEARCH DETAIL