Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Immunother Cancer ; 11(11)2023 11 29.
Article in English | MEDLINE | ID: mdl-38030302

ABSTRACT

BACKGROUND: The survival of patients with cervical cancer who are treated with cisplatin in conjunction with the topoisomerase I inhibitor topotecan is enhanced when compared with patients treated with only one of these chemotherapeutics. Moreover, cisplatin-based and T cell-based immunotherapy have been shown to synergize, resulting in stronger antitumor responses. Here, we interrogated whether topotecan could further enhance the synergy of cisplatin with T cell-based cancer immunotherapy. METHODS: Mice bearing human papilloma virus 16 (HPV16) E6/E7-expressing TC-1 tumors were vaccinated with HPV16 E7 long peptides and additionally received chemotherapy consisting of cisplatin and topotecan. We performed an in-depth study of this combinatorial chemoimmunotherapy on the effector function and expansion/contraction kinetics of vaccine-induced CD8+ T cells in the peripheral blood and tumor microenvironment (TME). In addition, we interrogated the particular role of chemotherapy-induced upregulation of costimulatory ligands by tumor-infiltrated myeloid cells on T cell proliferation and survival. RESULTS: We show that E7 long peptide vaccination combined with cisplatin and topotecan, results in CD8+ T cell-dependent durable rejection of established tumors and 94% long-term survival. Although topotecan initially repressed the expansion of vaccine-induced CD8+ T cells, these cells eventually expanded vigorously, which was followed by delayed contraction. These effects associated with the induction of the proliferation marker Ki-67 and the antiapoptosis molecule Bcl-2 by intratumoral tumor-specific CD8+ T cells, which was regulated by topotecan-mediated upregulation of the costimulatory ligand CD70 on myeloid cells in the TME. CONCLUSIONS: Taken together, our data show that although treatment with cisplatin, topotecan and vaccination initially delays T cell expansion, this combinatorial therapy results eventually in a more robust T cell-mediated tumor eradication due to enhancement of costimulatory molecules in the TME.


Subject(s)
Cancer Vaccines , Uterine Cervical Neoplasms , Female , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , CD8-Positive T-Lymphocytes , Cancer Vaccines/therapeutic use , Topotecan/pharmacology , Topotecan/therapeutic use , DNA Topoisomerases, Type I , Papillomavirus E7 Proteins , Vaccines, Subunit , Uterine Cervical Neoplasms/drug therapy , Cell Proliferation , Tumor Microenvironment , CD27 Ligand
2.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37230538

ABSTRACT

BACKGROUND: Tumor necrosis factor superfamily member 14 (TNFRSF14)/herpes virus entry mediator (HVEM) is the ligand for B and T lymphocyte attenuator (BTLA) and CD160-negative immune co-signaling molecules as well as viral proteins. Its expression is dysregulated with an overexpression in tumors and a connection with tumors of adverse prognosis. METHODS: We developed C57BL/6 mouse models co-expressing human (hu)BTLA and huHVEM as well as antagonistic monoclonal antibodies (mAbs) that completely prevent the interactions of HVEM with its ligands. RESULTS: Here, we show that the anti-HVEM18-10 mAb increases primary human αß-T cells activity alone (CIS-activity) or in the presence of HVEM-expressing lung or colorectal cancer cells in vitro (TRANS-activity). Anti-HVEM18-10 synergizes with antiprogrammed death-ligand 1 (anti-PD-L1) mAb to activate T cells in the presence of PD-L1-positive tumors, but is sufficient to trigger T cell activation in the presence of PD-L1-negative cells. In order to better understand HVEM18-10 effects in vivo and especially disentangle its CIS and TRANS effects, we developed a knockin (KI) mouse model expressing human BTLA (huBTLA+/+) and a KI mouse model expressing both huBTLA+/+/huHVEM+/+ (double KI (DKI)). In vivo preclinical experiments performed in both mouse models showed that HVEM18-10 treatment was efficient to decrease human HVEM+ tumor growth. In the DKI model, anti-HVEM18-10 treatment induces a decrease of exhausted CD8+ T cells and regulatory T cells and an increase of effector memory CD4+ T cells within the tumor. Interestingly, mice which completely rejected tumors (±20%) did not develop tumors on rechallenge in both settings, therefore showing a marked T cell-memory phenotype effect. CONCLUSIONS: Altogether, our preclinical models validate anti-HVEM18-10 as a promising therapeutic antibody to use in clinics as a monotherapy or in combination with existing immunotherapies (antiprogrammed cell death protein 1/anti-PD-L1/anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4)).


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Receptors, Tumor Necrosis Factor, Member 14 , Animals , Humans , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , CD8-Positive T-Lymphocytes/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Immunologic/metabolism , Receptors, Tumor Necrosis Factor, Member 14/immunology , Receptors, Tumor Necrosis Factor, Member 14/metabolism
3.
J Immunother Cancer ; 11(4)2023 04.
Article in English | MEDLINE | ID: mdl-37019470

ABSTRACT

BACKGROUND: The incorporation of co-stimulatory signaling domains into second-generation chimeric antigen receptors (CARs) significantly enhances the proliferation and persistence of CAR-T cells in vivo, leading to successful clinical outcomes. METHODS: To achieve such functional enhancement in transgenic T-cell receptor-engineered T-cell (TCR-T) therapy, we designed a second-generation TCR-T cell in which CD3ζ genes modified to contain the intracellular domain (ICD) of the 4-1BB receptor were selectively inserted into the CD247 locus. RESULTS: This modification enabled the simultaneous recruitment of key adaptor molecules for signals 1 and 2 on TCR engagement. However, the addition of full-length 4-1BB ICD unexpectedly impaired the expression and signaling of TCRs, leading to suboptimal antitumor activity of the resulting TCR-T cells in vivo. We found that the basic-rich motif (BRM) in the 4-1BB ICD was responsible for the undesirable outcomes, and that fusion of minimal tumor necrosis factor receptor-associated factor (TRAF)-binding motifs at the C-terminus of CD3ζ (zBBΔBRM) was sufficient to recruit TRAF2, the key adaptor molecule in 4-1BB signaling, while retaining the expression and proximal signaling of the transgenic TCR. Consequently, TCR-T cells expressing zBBΔBRM exhibited improved persistence and expansion in vitro and in vivo, resulting in superior antitumor activity in a mouse xenograft model. CONCLUSIONS: Our findings offer a promising strategy for improving the intracellular signaling of TCR-T cells and their application in treating solid tumors.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Animals , Humans , Mice , Disease Models, Animal , Neoplasms/drug therapy , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Xenograft Model Antitumor Assays , Binding Sites
4.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36927527

ABSTRACT

BACKGROUND: The phase I first-in-human study ENGAGE-1 evaluated the humanized IgG1 OX40 agonistic monoclonal antibody GSK3174998 alone (Part 1 (P1)) or in combination with pembrolizumab (Part 2 (P2)) in patients with advanced solid tumors. METHODS: GSK3174998 (0.003-10 mg/kg) ± pembrolizumab (200 mg) was administered intravenously every 3 weeks using a continuous reassessment method for dose escalation. Primary objectives were safety and tolerability; secondary objectives included pharmacokinetics, immunogenicity, pharmacodynamics, and clinical activity. RESULTS: 138 patients were enrolled (45 (P1) and 96 (P2, including 3 crossovers)). Treatment-related adverse events occurred in 51% (P1) and 64% (P2) of patients, fatigue being the most common (11% and 24%, respectively). No dose-toxicity relationship was observed, and maximum-tolerated dose was not reached. Dose-limiting toxicities (P2) included Grade 3 (G3) pleural effusion and G1 myocarditis with G3 increased troponin. GSK3174998 ≥0.3 mg/kg demonstrated pharmacokinetic linearity and >80% receptor occupancy on circulating T cells; 0.3 mg/kg was selected for further evaluation. Limited clinical activity was observed for GSK3174998 (P1: disease control rate (DCR) ≥24 weeks 9%) and was not greater than that expected for pembrolizumab alone (P2: overall response rate 8%, DCR ≥24 weeks 28%). Multiplexed immunofluorescence data from paired biopsies suggested that increased infiltration of natural killer (NK)/natural killer T (NKT) cells and decreased regulatory T cells (Tregs) in the tumor microenvironment may contribute to clinical responses: CD16+CD56-CD134+ NK /NKT cells and CD3+CD4+FOXP3+CD134+ Tregs exhibited the largest magnitude of change on treatment, whereas CD3+CD8+granzyme B+PD-1+CD134+ cytotoxic T cells were the least variable. Tumor gene expression profiling revealed an upregulation of inflammatory responses, T-cell proliferation, and NK cell function on treatment with some inflammatory cytokines upregulated in peripheral blood. However, target engagement, evidenced by pharmacologic activity in peripheral blood and tumor tissue, did not correlate with clinical efficacy. The low number of responses precluded identifying a robust biomarker signature predictive of response. CONCLUSIONS: GSK3174998±pembrolizumab was well tolerated over the dose range tested and demonstrated target engagement. Limited clinical activity does not support further development of GSK3174998±pembrolizumab in advanced cancers. TRIAL REGISTRATION NUMBER: NCT02528357.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/pathology , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Tumor Microenvironment
5.
J Immunother Cancer ; 11(2)2023 02.
Article in English | MEDLINE | ID: mdl-36759012

ABSTRACT

BACKGROUND: Tumor intracellular programmed cell death ligand-1 (PDL1) mediates pathologic signals that regulate clinical treatment responses distinctly from surface-expressed PDL1 targeted by αPDL1 immune checkpoint blockade antibodies. METHODS: We performed a drug screen for tumor cell PDL1 depleting drugs that identified Food and Drug Administration (FDA)-approved chlorambucil and also 9-[2-(phosphonomethoxy)ethyl] guanine. We used in vitro and in vivo assays to evaluate treatment and signaling effects of pharmacological tumor PDL1 depletion focused on chlorambucil as FDA approved, alone or plus αPDL1. RESULTS: PDL1-expressing mouse and human ovarian cancer lines and mouse melanoma were more sensitive to chlorambucil-mediated proliferation inhibition in vitro versus corresponding genetically PDL1-depleted lines. Orthotopic peritoneal PDL1-expressing ID8agg ovarian cancer and subcutaneous B16 melanoma tumors were more chlorambucil-sensitive in vivo versus corresponding genetically PDL1-depleted tumors. Chlorambucil enhanced αPDL1 efficacy in tumors otherwise αPDL1-refractory, and improved antitumor immunity and treatment efficacy in a natural killer cell-dependent manner alone and plus αPDL1. Chlorambucil-mediated PDL1 depletion was relatively tumor-cell selective in vivo, and treatment efficacy was preserved in PDL1KO hosts, demonstrating tumor PDL1-specific treatment effects. Chlorambucil induced PDL1-dependent immunogenic tumor cell death which could help explain immune contributions. Chlorambucil-mediated PDL1 reduction mechanisms were tumor cell-type-specific and involved transcriptional or post-translational mechanisms, including promoting PDL1 ubiquitination through the GSK3ß/ß-TRCP pathway. Chlorambucil-mediated tumor cell PDL1 depletion also phenocopied genetic PDL1 depletion in reducing tumor cell mTORC1 activation and tumor initiating cell content, and in augmenting autophagy, suggesting additional treatment potential. CONCLUSIONS: Pharmacological tumor PDL1 depletion with chlorambucil targets tumor-intrinsic PDL1 signaling that mediates treatment resistance, especially in αPDL1-resistant tumors, generates PDL1-dependent tumor immunogenicity and inhibits tumor growth in immune-dependent and independent manners. It could improve treatment efficacy of selected agents in otherwise treatment-refractory, including αPDL1-refractory cancers, and is rapidly clinically translatable.


Subject(s)
Melanoma, Experimental , Ovarian Neoplasms , Animals , Female , Humans , Mice , Chlorambucil/pharmacology , Chlorambucil/therapeutic use , Killer Cells, Natural , Ovarian Neoplasms/drug therapy , United States , B7-H1 Antigen/immunology
6.
J Immunother Cancer ; 10(12)2022 12.
Article in English | MEDLINE | ID: mdl-36549780

ABSTRACT

BACKGROUND: Leukemia-associated macrophages (LAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype, function, and plasticity of these cells. The present study provides an extensive characterization of macrophages in patients with acute myeloid leukemia (AML). METHODS: The phenotype and expression of coregulatory markers were assessed on bone marrow (BM)-derived LAM populations, using multiparametric flow cytometry. BM and blood aspirates were obtained from patients with newly diagnosed acute myeloid leukemia (pAML, n=59), patients in long-term remission (lrAML, n=8), patients with relapsed acute myeloid leukemia (rAML, n=7) and monocyte-derived macrophages of the blood from healthy donors (HD, n=17). LAM subpopulations were correlated with clinical parameters. Using a blocking anti-T-cell immunoreceptor with Ig and ITIM domains (TIGIT) antibody or mouse IgG2α isotype control, we investigated polarization, secretion of cytokines, and phagocytosis on LAMs and healthy monocyte-derived macrophages in vitro. RESULTS: In pAML and rAML, M1 LAMs were reduced and the predominant macrophage population consisted of immunosuppressive M2 LAMs defined by expression of CD163, CD204, CD206, and CD86. M2 LAMs in active AML highly expressed inhibitory receptors such as TIGIT, T-cell immunoglobulin and mucin-domain containing-3 protein (TIM-3), and lymphocyte-activation gene 3 (LAG-3). High expression of CD163 was associated with a poor overall survival (OS). In addition, increased frequencies of TIGIT+ M2 LAMs were associated with an intermediate or adverse risk according to the European Leukemia Network criteria and the FLT3 ITD mutation. In vitro blockade of TIGIT shifted the polarization of primary LAMs or peripheral blood-derived M2 macrophages toward the M1 phenotype and increased secretion of M1-associated cytokines and chemokines. Moreover, the blockade of TIGIT augmented the anti-CD47-mediated phagocytosis of AML cell lines and primary AML cells. CONCLUSION: Our findings suggest that immunosuppressive TIGIT+ M2 LAMs can be redirected into an efficient effector population that may be of direct clinical relevance in the near future.


Subject(s)
Leukemia, Myeloid, Acute , Macrophages , Animals , Mice , Phagocytosis , Receptors, Immunologic/metabolism , Phenotype , Cytokines/metabolism , Tumor Microenvironment
7.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36450377

ABSTRACT

BACKGROUND: Immune effector cell-associated neurotoxicity syndrome (ICANS) is a clinical and neuropsychiatric syndrome that can occur days to weeks following administration chimeric antigen receptor (CAR) T-cell therapy. Manifestations of ICANS range from encephalopathy and aphasia to cerebral edema and death. Because the onset and time course of ICANS is currently unpredictable, prolonged hospitalization for close monitoring following CAR T-cell infusion is a frequent standard of care. METHODS: This study was conducted at Brigham and Women's Hospital from April 2015 to February 2020. A cohort of 199 hospitalized patients treated with CAR T-cell therapy was used to develop a combined hidden Markov model and lasso-penalized logistic regression model to forecast the course of ICANS. Model development was done using leave-one-patient-out cross validation. RESULTS: Among the 199 patients included in the analysis 133 were male (66.8%), and the mean (SD) age was 59.5 (11.8) years. 97 patients (48.7%) developed ICANS, of which 59 (29.6%) experienced severe grades 3-4 ICANS. Median time of ICANS onset was day 9. Selected clinical predictors included maximum daily temperature, C reactive protein, IL-6, and procalcitonin. The model correctly predicted which patients developed ICANS and severe ICANS, respectively, with area under the curve of 96.7% and 93.2% when predicting 5 days ahead, and area under the curve of 93.2% and 80.6% when predicting the entire future risk trajectory looking forward from day 5. Forecasting performance was also evaluated over time horizons ranging from 1 to 7 days, using metrics of forecast bias, mean absolute deviation, and weighted average percentage error. CONCLUSION: The forecasting model accurately predicts risk of ICANS following CAR T-cell infusion and the time course ICANS follows once it has begun.Cite Now.


Subject(s)
Neurotoxicity Syndromes , Receptors, Chimeric Antigen , Humans , Female , Male , Middle Aged , Immunotherapy, Adoptive/adverse effects , Logistic Models , Neurotoxicity Syndromes/etiology , Cell- and Tissue-Based Therapy
8.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36100310

ABSTRACT

BACKGROUND: Anti-B-cell maturation antigen (BCMA) chimeric antigen receptor T-cell (CAR T) therapy showed remarkable efficacy in patients with relapsed or refractory multiple myeloma (RRMM). This phase 1 dose-escalation and expansion study developed C-CAR088, a novel second-generation humanized anti-BCMA CAR T-cell therapy, and assessed the safety and efficacy of three dosages of C-CAR088 in patients with RRMM. METHODS: Patients received lymphodepletion with three doses of cyclophosphamide (300 mg/m2) and three doses of fludarabine (30 mg/m2) on days -5, -4, and -3, followed by an infusion of C-CAR088 on day 0. Doses of 1.0×106, 3.0×106, and 6.0×106 CAR T cells/kg (±20%) were tested in the dose-escalation cohorts and expansion cohorts. The primary endpoint was treatment safety, including the rate of treatment-emergent adverse events after cell infusion. Secondary endpoints were the overall response rate and progression-free survival. The exploratory endpoints were the quantification of C-CAR088 CAR T cells, selection of cytokines and chemokines in blood, and measurement of tumor BCMA expression. RESULTS: As of July 2, 2021, 31 patients had been infused with C-CAR088. Any grade cytokine release syndrome (CRS) occurred in 29 patients (93.5%), and grade 3 CRS occurred in 3 patients (9.7%). One patient from the high-dose group (4.5-6.0×106 CAR T cells/kg) developed grade 1 neurotoxicity. No dose-limiting toxicities were observed in any dose group, and all adverse events were reversible after proper management. The overall response, stringent complete response, complete response (CR), and very good partial response rates were 96.4%, 46.4%, 10.7%, and 32.1%, respectively. The CR rate in the medium-dose (3.0×106 CAR T cells/kg) and high-dose (4.5-6.0×106 CAR T cells/kg) groups was 54.5% and 71.4%, respectively. In the CR group, 15 (93.7%) patients achieved minimal residual disease (MRD) negativity (test sensitivity >1/10-5). All seven patients with double-hit or triple-hit multiple myeloma achieved MRD-negative CR. CONCLUSIONS: The present study demonstrated that C-CAR088 had a good safety profile and high antitumor activity in patients with RRMM, constituting a promising treatment option for RRMM. TRIAL REGISTRATION NUMBER: NCT03815383, NCT03751293, NCT04295018, and NCT04322292.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Cyclophosphamide , Humans , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes
9.
J Immunother Cancer ; 10(7)2022 07.
Article in English | MEDLINE | ID: mdl-35793866

ABSTRACT

BACKGROUND: Cell therapy has shown promise in the treatment of certain solid tumors, but its efficacy may be limited by inhibition of therapeutic T cells by the programmed cell death protein-1 (PD-1) receptor. Clinical trials are testing cell therapy in combination with PDCD1 disruption or PD-1-axis blockade. However, preclinical data to support these approaches and to guide the treatment design are lacking. METHODS: Mechanisms of tumor regression and interaction between cell therapy and PD-1 blockade were investigated in congenic murine tumor models based on targeting established, solid tumors with T-cell receptor T cells directed against tumor-restricted, non-self antigens (ie, tumor neoantigens). RESULTS: In solid tumor models of cell therapy, PD-1 blockade mediated a reproducible but non-synergistic increase in tumor regression following adoptive T-cell transfer. Tumor regression was associated with increased tumor infiltration by endogenous T cells but not by transferred T cells. The effect was independent of PD-1 receptor expression by transferred T cells and was dependent on the endogenous T-cell repertoire and on tumor antigenicity. PD-1 blockade primarily induced cell state changes in endogenous tumor-antigen-specific T cells rather than transferred T cells. CONCLUSIONS: Together, these findings support the concept that PD-1 blockade acts primarily through endogenous rather than transferred T cells to mediate a non-synergistic antitumor effect in solid tumor cell therapy. These findings have important implications for strategies to leverage PD-1 receptor disruption or blockade to enhance the efficacy of cell therapy.


Subject(s)
Cell- and Tissue-Based Therapy , Neoplasms , Programmed Cell Death 1 Receptor , Animals , Antigens, Neoplasm , Humans , Mice , Neoplasms/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/metabolism
10.
J Immunother Cancer ; 10(5)2022 05.
Article in English | MEDLINE | ID: mdl-35618289

ABSTRACT

BACKGROUND: Accumulation of regulatory T cells (Treg) has been described to often correlate with poor prognosis in many solid tumors. How Treg presence impinges on limited functionality and clonal composition of tumor-associated CD8 +T cells has important implications for their therapeutic targeting in the tumor microenvironment. In the present study, we investigated how accumulation of Tregs contributes to T cell dysfunction and clonal constriction of tumor-infiltrating CD8 +T cells. METHODS: Resected melanoma and lung adenocarcinoma tissues from tumor-bearing mice or patients were analyzed. The proportions and phenotype as well as clonal diversity of tumor-associated CD8 +T cells were evaluated by flow cytometry and single-cell T-cell receptor (TCR) sequencing, respectively, at early or advanced tumor stages or under Treg depletion conditions. Furthermore, antigen-specific T cells were evaluated on adoptive transfer into tumor-bearing mice in the presence or absence of anti-CTLA-4 antibody or CTLA-4 Ig. Lastly, tumor-bearing mice were treated with anti-KLRG1 antibody and/or bromodomain inhibitor JQ1 with interleukin (IL)-2 immune complexes to determine therapeutic efficacy. RESULTS: We demonstrate that the emergence of exhaustion-like phenotype and impaired effector functionality in tumor-associated CD8 +T cells is positively correlated with Treg accumulation in the tumor bed and this dysfunctional phenotype becomes reversed on Treg reduction in murine melanoma and lung cancer models. Heightened tumor-associated Treg-expressed CTLA-4 is key to emergence and sustenance of this phenotype. Furthermore, TCR sequencing revealed a clonal shrinkage of tumor-infiltrating CD8 +T cells as tumor progressed, which was associated with reduced survival profile concomitant to increasing Treg proportions. Limited IL-2 availability was a key mechanism contributing to this peripheral repertoire reshaping as Treg depletion improved IL-2 levels, rescued CD8 +T cell viability, and improved their clonal diversity. Finally, targeted reduction of tumor but not peripheral Tregs through JQ1 and/or anti-KLRG1 antibody significantly improved antitumor response in melanoma-bearing mice when supplemented with IL-2 immune complexes. CONCLUSION: Collectively, our study reveals a bimodal program enacted by Tregs to support T cell dysfunction in the tumor bed and highlights a promising therapeutic regimen for localized reprogramming of the tumor microenvironment to curb Treg impairment of antitumor CD8 +T cell response in favor of improved antitumor immunity.


Subject(s)
Adenocarcinoma , Melanoma , Animals , Antigen-Antibody Complex , CD8-Positive T-Lymphocytes , CTLA-4 Antigen , Humans , Interleukin-2 , Mice , Tumor Microenvironment
11.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: mdl-35379739

ABSTRACT

Recent advances in understanding the roles of immune checkpoints in allowing tumors to circumvent the immune system have led to successful therapeutic strategies that have fundamentally changed oncology practice. Thus far, immunotherapies against only two checkpoint targets have been approved, CTLA-4 and PD-L1/PD-1. Antibody blockade of these targets enhances the function of antitumor T cells at least in part by relieving inhibition of the T cell costimulatory receptor CD28. These successes have stimulated considerable interest in identifying other pathways that may bte targeted alone or together with existing immunotherapies. One such immune checkpoint axis is comprised of members of the PVR/nectin family that includes the inhibitory receptor T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory domains (TIGIT). Interestingly, TIGIT acts to regulate the activity of a second costimulatory receptor CD226 that works in parallel to CD28. There are currently over two dozen TIGIT-directed blocking antibodies in various phases of clinical development, testament to the promise of modulating this pathway to enhance antitumor immune responses. In this review, we discuss the role of TIGIT as a checkpoint inhibitor, its interplay with the activating counter-receptor CD226, and its status as the next advance in cancer immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Antigens, Differentiation, T-Lymphocyte , Humans , Immunotherapy , Neoplasms/drug therapy , Neoplasms/metabolism , Receptors, Immunologic , Receptors, Virus , T-Lymphocytes
12.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35277461

ABSTRACT

BACKGROUND: We previously reported a trial using a DNA vaccine encoding prostatic acid phosphatase (MVI-816, pTVG-HP), given over 12 weeks concurrently or sequentially with pembrolizumab, in patients with mCRPC. We report the final analysis of this trial following two additional treatment arms in which patients with mCRPC continued concurrent treatment until progression. MATERIALS AND METHODS: Patients with mCRPC were treated with MVI-816 and pembrolizumab every 3 weeks (arm 3, n=20) or MVI-816 every 2 weeks and pembrolizumab every 4 weeks (arm 4, n=20). The primary objectives were safety, 6-month progression-free survival (PFS), median time to radiographic progression, and objective response rates. Secondary objectives included immunological evaluations. RESULTS: In 25 patients with measurable disease, there were no complete response and one confirmed partial response in a patient who subsequently found to have an MSIhi tumor. 4/40 patients (10%) had a prostate-specific antigen decline >50%. The estimated overall radiographic PFS rate at 6 months was 47.2% (44.4% arm 3, 61.5% arm 4). Accounting for all off-study events, overall median time on treatment was 5.6 months (95% CI: 5.4 to 10.8 months), 5.6 months for arm 3 and 8.1 months for arm 4 (p=0.64). Thirty-two per cent of patients remained on trial beyond 6 months without progression. Median overall survival was 22.9 (95% CI: 16.2 to 25.6) months. One grade 4 event (hyperglycemia) was observed. Immune-related adverse events (irAEs) >grade 1 were observed in 42% of patients overall. Interferon-γ and/or granzyme B immune response to prostatic acid phosphatase was detected in 2/20 patients in arm 3 and 6/20 patients in arm 4. Plasma cytokines associated with immune activation and CD8+ T-cell recruitment were augmented at weeks 6 and 12. The development of irAE was significantly associated with a prolonged time on treatment (HR=0.42, p=0.003). Baseline DNA homologous recombination repair mutations were not associated with longer time to progression. CONCLUSIONS: Findings here demonstrate that combining programmed cell death 1 blockade with MVI-816 is safe, can augment tumor-specific T cells, and can result in a favorable 6-month disease control rate. Correlative studies suggest T-cell activation by vaccination is critical to the mechanism of action of this combination. Future randomized clinical trials are needed to validate these findings. TRIAL REGISTRATION NUMBER: NCT02499835.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Vaccines, DNA , Antibodies, Monoclonal, Humanized/therapeutic use , Humans , Male , Progression-Free Survival , Prostatic Neoplasms, Castration-Resistant/pathology , Vaccines, DNA/therapeutic use
13.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35236742

ABSTRACT

BACKGROUND: On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. METHODS: We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. RESULTS: CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. CONCLUSION: sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.


Subject(s)
Immunotherapy , Neoplasms , Animals , Biomarkers/metabolism , CD8-Positive T-Lymphocytes , Humans , Mice , Neoplasms/drug therapy , Receptors, Tumor Necrosis Factor
14.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35318258

ABSTRACT

BACKGROUND: Epidemiological surveys have revealed that low serum vitamin D level was correlated with increased risk of tumors. Dysfunctional T cells in patients with tumor are characterized as exhausted with high levels of immune checkpoint receptors (ICRs). However, whether the reduced level of vitamin D in patients with cancer correlates with cytotoxic T-cell exhaustion is unknown. METHODS: Periphery blood samples from 172 patients with non-small cell lung cancer (NSCLC) were prospectively collected. Patients with NSCLC received one course of intravenous docetaxel (75 mg/m2) followed by treatment with or without rocaltrol at a dose of 0.5-2.0 µg/day for total of 3 weeks. We performed phenotypical and functional analysis of T-cell through flow cytometry. Vitamin D receptor (VDR) knockout and overexpression CD8+ and Vδ2+ T cells were constructed using Cas9-gRNA targeted and overexpressing approaches to identify 1α,25(OH)2D3/VDR-mediated transcription regulation for ICRs or antitumor activity in T cells. RESULTS: We show that serum level of vitamin D is negatively correlated with expression of programmed cell death-1 (PD-1), T-cell immunoreceptor with Ig and ITIM domains (TIGIT), and T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), but positively correlated with CD28 expression on CD8+ and Vγ9Vδ2+ T cells in patients with NSCLC. 1α,25(OH)2D3, the active form of vitamin D, promotes the nuclear translocation of VDR, which binds to the promoter region of Pdcd1, Tim3, and Tigit genes and inhibits their expression. Besides, 1α,25(OH)2D3 pretreatment also promotes the methylation of CpG island in the promoter region of the Pdcd1 gene and increases H3K27 acetylation at the promoter region of the Cd28 gene, which leads to surface PD-1 downregulation and CD28 upregulation, respectively. We further reveal that VDR-mediated Ca2+ influx enhanced expression of Th1 cytokines via T-cell receptor activation. Functionally, 1α,25(OH)2D3 pretreated CD8+ T cells or Vγ9Vδ2+ T cells showed increased Th1 cytokine production and enhanced antitumor immunity. Finally, oral 1α,25(OH)2D3 could also decrease expression of PD-1, Tim-3, TIGIT and increase expression of CD28, resulting in cytokine production (associated with antitumor immunity) by cytotoxic T cells of patients with NSCLC. CONCLUSIONS: Our findings uncover the pleiotropic effects of 1α,25(OH)2D3 in rescuing the exhausted phenotype of human cytotoxic T cells in patients with tumor and in promoting their antitumor immunity. TRIAL REGISTRATION NUMBER: ChiCTR2100051135.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , CD28 Antigens , CD8-Positive T-Lymphocytes , Cytokines , Hepatitis A Virus Cellular Receptor 2/genetics , Humans , Programmed Cell Death 1 Receptor , Vitamin D/pharmacology
15.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35264436

ABSTRACT

BACKGROUND: In the USA, more than 50% of patients with ovarian cancer die within 5 years of diagnosis, highlighting the need for therapeutic innovations. Mesothelin (MSLN) is a candidate immunotherapy target; it is overexpressed by ovarian tumors and contributes to malignant/invasive phenotypes, making tumor antigen loss disadvantageous. We previously showed that MSLN-specific T cell receptor (TCR)-engineered T cells preferentially accumulate within established tumors, delay tumor growth, and significantly prolong survival in the ID8VEGF mouse model that replicates many aspects of human disease. However, T cell persistence and antitumor activity were not sustained. We therefore focused on Fas/FasL signaling that can induce activation-induced cell death, an apoptotic mechanism that regulates T cell expansion. Upregulation of FasL by tumor cells and tumor vasculature has been detected in the tumor microenvironment (TME) of human and murine ovarian cancers, can induce apoptosis in infiltrating, Fas (CD95) receptor-expressing lymphocytes, and can protect ovarian cancers from tumor-infiltrating lymphocytes. METHODS: To overcome potential FasL-mediated immune evasion and enhance T cell responses, we generated an immunomodulatory fusion protein (IFP) containing the Fas extracellular binding domain fused to a 4-1BB co-stimulatory domain, rather than the natural death domain. Murine T cells were engineered to express an MSLN-specific TCR (TCR1045), alone or with the IFP, transferred into ID8VEGF tumor-bearing mice and evaluated for persistence, proliferation, cytokine production and efficacy. Human T cells were similarly engineered to express an MSLN-specific TCR (TCR530) alone or with a truncated Fas receptor or a Fas-4-1BB IFP and evaluated for cytokine production and tumor lysis. RESULTS: Relative to murine T cells expressing only TCR1045, T cells expressing both TCR1045 and a Fas-4-1BB IFP preferentially persisted in the TME of tumor-bearing mice, with improved T cell proliferation and survival. Moreover, TCR1045/IFP+ T cells significantly prolonged survival in tumor-bearing mice, compared with TCR1045-only T cells. Human T cells expressing TCR530 and a Fas-4-1BB IFP exhibit enhanced functional activity and viability compared with cells with only TCR530. CONCLUSIONS: As many ovarian tumors overexpress FasL, an IFP that converts the Fas-mediated death signal into pro-survival and proliferative signals may be used to enhance engineered adoptive T cell therapy for patients.


Subject(s)
Ovarian Neoplasms , Vascular Endothelial Growth Factor A , Animals , Carcinoma, Ovarian Epithelial , Cell- and Tissue-Based Therapy , Fas Ligand Protein , Female , Humans , Mice , Ovarian Neoplasms/pathology , Receptors, Antigen, T-Cell/genetics , Tumor Microenvironment
16.
J Immunother Cancer ; 10(3)2022 03.
Article in English | MEDLINE | ID: mdl-35288463

ABSTRACT

BACKGROUND: Novel therapies are needed to treat recurrent and advanced cervical cancer (CC), as their prognosis remains very poor. Although therapies targeting the programmed cell death protein 1 (PD-1) pathway have been approved for CC, a large subset of patients exhibit innate resistance. Using checkpoint inhibitors in combination could enhance their efficacy. METHODS: Blood samples, tumor specimens, and peritumorous (PT) tissues were obtained from patients with CC. The inhibitory receptor expression and phenotypical analysis of CD8+ T cells in CC specimens were analyzed by flow cytometry. The ligands of CD96 expressed by tumor cells were measured by immunohistochemistry and immunofluorescence. Sensitivity to pembrolizumab was evaluated by an ex vivo treatment assay based on the single-cell culture of CC specimens. The efficacies of PD-1 and/or CD96 blockades were explored using an ex vivo treatment assay and an human papillomavirus-positive TC-1 xenograft mouse model in vivo. RESULTS: We found that CD96 expression was elevated on CD8+ tumor-infiltrating lymphocytes (TILs) from patients with CC who were insensitive to the PD-1 blockade. These CD96-expressing CD8+ TILs often coexpressed PD-1. The ratio of the CD96+CD8+/CD96-CD8+ T-cell gene signature from the scRNA-seq data was significantly associated with the poor survival of patients with cervical squamous cell carcinoma and endocervical adenocarcinoma. The costimulatory receptor CD226, which competes with CD96, was downregulated in tumors compared with blood and PT tissue. CD96 and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) were upregulated on intratumoral CD8+ T cells. The CD226/CD96/TIGIT signaling ligands were widely expressed in CC tumor tissues. Phenotypical profiling showed that PD-1+CD96+CD8+ TILs exhibited a terminally exhausted effector phenotype with high levels of T-cell immunoglobulin mucin receptor 3 (TIM-3) and granzyme B (GZMB) and extremely low levels of proinflammatory cytokines and cytotoxic molecules. PD-1+CD96 cells exhibited a precursor exhausted phenotype with TCF-1 positivity. CD96 was further upregulated by CD8+ TILs on PD-1 blockade. Treatment with the CD96 blockade significantly enhanced the PD-1 blockade to blunt tumor growth and improve the function of CD8+ TILs in both mouse and CC specimen models. CONCLUSIONS: Our findings showed that CD96 and PD-1 cooperatively and negatively regulate the function of CD8+ TILs, and CD96 blockade has promise for use in combination with PD-1 blockade for the treatment of CC.


Subject(s)
Programmed Cell Death 1 Receptor , Uterine Cervical Neoplasms , Animals , Antigens, CD/metabolism , CD8-Positive T-Lymphocytes/metabolism , Female , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Uterine Cervical Neoplasms/drug therapy
17.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-35074902

ABSTRACT

BACKGROUND: Based on its viral-associated or UV-associated carcinogenesis, Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer. Thus, clinically evident MCC occurs either in immuno-compromised patients or based on tumor-intrinsic immune escape mechanisms. This notion may explain that although advanced MCC can be effectively restrained by treatment with PD-1/PD-L1 immune checkpoint inhibitors (ICIs), a considerable percentage of patients does not benefit from ICI therapy. Biomarkers predicting ICI treatment response are currently not available. METHODS: The present multicenter retrospective study investigated clinical and molecular characteristics in 114 patients with unresectable MCC at baseline before treatment with ICI for their association with therapy response (best overall response, BOR). In a subset of 21 patients, pretreatment tumor tissue was analyzed for activation, differentiation and spatial distribution of tumor infiltrating lymphocytes (TIL). RESULTS: Of the 114 patients, n=74 (65%) achieved disease control (BOR=complete response/partial response/stable disease) on ICI. A Bayesian cumulative ordinal regression model revealed absence of immunosuppression and a limited number of tumor-involved organ systems was highly associated with a favorable therapy response. Unimpaired overall performance status, high age, normal serum lactate dehydrogenase and normal serum C reactive protein were moderately associated with disease control. While neither tumor Merkel cell polyomavirus nor tumor PD-L1 status showed a correlation with therapy response, treatment with anti-PD-1 antibodies was associated with a higher probability of disease control than treatment with anti-PD-L1 antibodies. Multiplexed immunohistochemistry demonstrated the predominance of CD8+ effector and central memory T cells (TCM) in close proximity to tumor cells in patients with a favorable therapy response. CONCLUSIONS: Our findings indicate the absence of immunosuppression, a limited number of tumor-affected organs, and a predominance of CD8+ TCM among TIL, as baseline parameters associated with a favorable response to PD-1/PD-L1 ICI therapy of advanced MCC. These factors should be considered when making treatment decisions in MCC patients.


Subject(s)
Carcinoma, Merkel Cell/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Merkel Cell/immunology , Carcinoma, Merkel Cell/mortality , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Male , Memory T Cells/immunology , Middle Aged , Retrospective Studies , Skin Neoplasms/immunology , Skin Neoplasms/mortality
18.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-35027427

ABSTRACT

BACKGROUND: Adoptive T-cell transfer has become an attractive therapeutic approach for hematological malignancies but shows poor activity against large and heterogeneous solid tumors. Interleukin-12 (IL-12) exhibits potent antitumor efficacy against solid tumors, but its clinical application has been stalled because of toxicity. Here, we aimed to develop a safe approach to IL-12 T-cell therapy for eliminating large solid tumors. METHODS: We generated a cell membrane-anchored IL-12 (aIL12), a tumor-targeted IL-12 (ttIL12), and a cell membrane-anchored and ttIL-12 (attIL12) and a cell membrane-anchored and tumor-targeted ttIL-12 (attIL12) armed T cells, chimeric antigen receptor-T cells, and T cell receptor-T (TCR-T) cells with each. We compared the safety and efficacy of these armed T cells in treating osteosarcoma patient-derived xenograft tumors and mouse melanoma tumors after intravenous infusions of the armed T cells. RESULTS: attIL12-T cell infusion showed remarkable antitumor efficacy in human and mouse large solid tumor models. Mechanistically, attIL12-T cells targeted tumor cells expressing cell-surface vimentin, enriching effector T cell and interferon γ production in tumors, which in turn stimulates dendritic cell maturation for activating secondary T-cell responses and tumor antigen spreading. Both attIL12- and aIL12-T-cell transfer eliminated peripheral cytokine release and the associated toxic effects. CONCLUSIONS: This novel approach sheds light on the safe application of IL-12-based T-cell therapy for large and heterogeneous solid tumors.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Immunotherapy/methods , Interleukin-12/immunology , Neoplasms/immunology , Receptors, Antigen, T-Cell/metabolism , Animals , Disease Models, Animal , Humans , Mice
19.
J Immunother Cancer ; 10(1)2022 01.
Article in English | MEDLINE | ID: mdl-34987021

ABSTRACT

BACKGROUND: T cell immunoglobulin and mucin domain containing-3 (TIM-3) blocking antibodies are currently being evaluated in clinical trials for solid and hematological malignancies. Despite its identification on T cells, TIM-3 is predominantly expressed by myeloid cells, including XCR1+ type I conventional dendritic cells (cDC1s). We have recently shown that TIM-3 blockade promotes expression of CXCR3 chemokine ligands by tumor cDCs, but how this drives a CD8+ T cell-dependent response to therapy is unclear. METHODS: T cell infiltration, effector function, and spatial localization in relation to XCR1+ cDC1s were evaluated in a murine orthotopic mammary carcinoma model during response to TIM-3 blockade and paclitaxel chemotherapy. Mixed bone marrow chimeras and diphtheria toxin depletion were used to determine the role of specific genes in cDC1s during therapeutic responses. RESULTS: TIM-3 blockade increased interferon-γ expression by CD8+ T cells without altering immune infiltration. cDC1 expression of CXCL9, but not CXCL10, was required for response to TIM-3 blockade. CXCL9 was also necessary for the increased proximity observed between CD8+ T cells and XCR1+ cDC1s during therapy. Tumor responses were dependent on cDC1 expression of interleukin-12, but not MHCI. CONCLUSIONS: TIM-3 blockade increases exposure of intratumoral CD8+ T cells to cDC1-derived cytokines, with implications for the design of therapeutic strategies using antibodies against TIM-3.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Immunotherapy/methods , Interleukin-12/metabolism , Receptors, Chemokine/metabolism , Animals , Humans , Mice , Signal Transduction
20.
J Immunother Cancer ; 9(12)2021 12.
Article in English | MEDLINE | ID: mdl-34903555

ABSTRACT

BACKGROUND: Programmed death (ligand) 1 (PD-(L)1) blockade and OX40/4-1BB costimulation have been separately evaluated in the clinic to elicit potent antitumor T cell responses. The precise mechanisms underlying single agent activity are incompletely understood. It also remains unclear if combining individual therapies leads to synergism, elicits novel immune mechanisms, or invokes additive effects. METHODS: We performed high-dimensional flow cytometry and single-cell RNA sequencing-based immunoprofiling of murine tumor-infiltrating lymphocytes (TILs) isolated from hosts bearing B16 or MC38 syngeneic tumors. This baseline infiltrate was compared to TILs after treatment with either anti-PD-(L)1, anti-OX40, or anti-4-1BB as single agents or as double and triple combinatorial therapies. Fingolimod treatment and CXCR3 blockade were used to evaluate the contribution of intratumoral versus peripheral CD8+ T cells to therapeutic efficacy. RESULTS: We identified CD8+ T cell subtypes with distinct functional and migratory signatures highly predictive of tumor rejection upon treatment with single agent versus combination therapies. Rather than reinvigorating terminally exhausted CD8+ T cells, OX40/4-1BB agonism expanded a stem-like PD-1loKLRG-1+Ki-67+CD8+ T cell subpopulation, which PD-(L)1 blockade alone did not. However, PD-(L)1 blockade synergized with OX40/4-1BB costimulation by dramatically enhancing stem-like TIL presence via a CXCR3-dependent mechanism. CONCLUSIONS: Our findings provide new mechanistic insights into the interplay between components of combinatorial immunotherapy, where agonism of select costimulatory pathways seeds a pool of stem-like CD8+ T cells more responsive to immune checkpoint blockade (ICB).


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/therapy , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Melanoma, Experimental/therapy , Neoplastic Stem Cells/immunology , Receptors, CXCR3/metabolism , Animals , Cell Movement , Colorectal Neoplasms/immunology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/pathology , Receptors, CXCR3/genetics , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...