Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.557
Filter
1.
J Colloid Interface Sci ; 677(Pt A): 1037-1044, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39134078

ABSTRACT

Two-dimensional covalent organic frameworks (COFs) are ideal electrode materials for electrochemical energy storage devices due to their unique structures and properties, and the accessibility and utilization efficiency of the redox-active sites within COFs are critical determinants of their pseudocapacitive performance. Via introducing meticulously designed phenolic hydroxyl (Ar-OH) groups with hydrogen-bond forming ability onto the imine COF skeletons, DHBD-Sb-COF exhibited improved hydrophilicity and crystallinity than the parent BD-Sb-COF, the redox-active sites (SbPh3 moieties) in COF electrodes could thus be highly accessed by aqueous electrolyte with a high active-site utilization of 93%. DHBD-Sb-COF//AC provided an excellent supercapacitive performance with an energy density of 78 Wh Kg-1 at the power density of 2553 W Kg-1 and super cycling stability, exceeding most of the previously reported pristine COF electrode-based supercapacitors. The "two-in-one" strategy of introducing hydroxyl groups onto imine COF skeletons to enhance both hydrophilicity and crystallinity provides a new avenue to improve the electrochemical performance of COF-based electrodes for high-performance supercapacitors.

2.
Food Chem ; 462: 141007, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39216376

ABSTRACT

In this study, covalent organic frameworks (COFs) were grown in situ on magnetic nitrogen-doped graphene foam (MNGF), and the resulting composite of COFs-modified MNGF (MNC) was wrapped by molecularly imprinted polymers (MNC@MIPs) for specifically capturing SAs. A magnetic solid phase extraction (MSPE) method for SAs was established using MNC@MIPs with good magnetic responsiveness. The adsorption performance of MNC@MIPs was superior to that of non-molecularly imprinted polymers (MNC@NIPs), with shorter adsorption/desorption time and higher imprinting factors. A high-efficiency SAs analytical method was developed by fusing HPLC and MNC@MIPs-based MSPE. This approach provides excellent precision, a low detection limit, and wide linearity. By analyzing fish samples, the feasibility of the approach was confirmed, with SAs recoveries and relative standard deviations in spiked samples in the ranges of 77.2-112.7 % and 2.0-7.2 %, respectively. This study demonstrated the potential use of MNC@MIPs-based MSPE for efficient extraction and quantitation of trace hazards in food.


Subject(s)
Fishes , Food Contamination , Metal-Organic Frameworks , Molecularly Imprinted Polymers , Solid Phase Extraction , Sulfonamides , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Animals , Molecularly Imprinted Polymers/chemistry , Adsorption , Food Contamination/analysis , Metal-Organic Frameworks/chemistry , Sulfonamides/isolation & purification , Sulfonamides/chemistry , Sulfonamides/analysis , Molecular Imprinting , Polymers/chemistry
3.
Food Chem ; 462: 141063, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39226640

ABSTRACT

In this research, the TT-COF(Fe)@NH2-CNTs was innovatively prepared through a post-modification synthetic process functionalized TT-COF@NH2-CNTs with active site (Fe), where TT-COF@NH2-CNTs was prepared via a one-pot strategy using 5,10,15,20-tetrakis (para-aminophenyl) porphyrin (TTAP), 2,3,6,7-tetra (4-formylphenyl) tetrathiafulvalene (TTF) and aminated carbon nanotubes (NH2-CNTs) as raw materials. The complex TT-COF(Fe)@NH2-CNTs material possessed porous structures, outstanding conductivity and rich catalytic sites. Thus, it can be adopted to construct electrochemical sensor with glassy carbon electrode (GCE). The TT-COF(Fe)@NH2-CNTs/GCE can selectively detect luteolin (Lu) with a wide linear plot ranging from 0.005 to 3 µM and a low limit of detection (LOD) of 1.45 nM (S/N = 3). The Lu residues in carrot samples were determined using TT-COF(Fe)@NH2-CNTs sensor and UV-visible (UV-Vis) approach. This TT-COF(Fe)@NH2-CNTs/GCE sensor paves the way for the quantification of Lu through a cost-efficient and sensitive electrochemical approach, which can make a significant step in the sensing field based on crystalline COFs.


Subject(s)
Electrochemical Techniques , Luteolin , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Luteolin/chemistry , Luteolin/analysis , Electrochemical Techniques/instrumentation , Limit of Detection , Metal-Organic Frameworks/chemistry , Food Contamination/analysis , Catalytic Domain
4.
Angew Chem Int Ed Engl ; : e202416461, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384540

ABSTRACT

Covalent organic frameworks (COFs) have garnered growing attracted interest in the field of biomedicine; however, their application in sonodynamic therapy remains underexplored due to limited understanding of their intrinsic activity and structure-property relationships. Here, we present a pore wall chemistry modulation strategy for empowering sonodynamic activity to two-dimensional (2D) COF heterojunctions through in situ growth of COFs on bismuth oxycarbonate nanosheets (B NSs). Compared to the negligible sonodynamic effects observed in the pristine B NSs, the 2D heterojunction with vinyl-decorated COF pore walls demonstrates a 3.6-fold enhancement in sonocatalytic singlet oxygen generation. This performance also significantly outperforms that of isoreticular COFs functionalized with methoxy or non-substituted groups. Mechanistic studies reveal that the vinyl groups in the BC heterojunction facilitate the separation and transfer of charge carriers while also enhancing the adsorption of oxygen molecules. Furthermore, peroxymonosulfate (PMS) loading into the porous COFs boosts the therapeutic efficacy of antitumor nanotherapy via sonocatalytic dual oxidative species generation. These findings underscore the critical role of pore wall chemistry in modulating the sonocatalytic properties of COFs, and advance the development of COF-based sonosensitizers for pro-oxidative applications.

5.
ChemSusChem ; : e202401497, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39380542

ABSTRACT

The catalytic functionalization of CO2 into high-value compounds comprises a promising approach to mitigate its atmospheric content and sustainable generation of fine chemicals. Herein, we report application of a crystalline, nano-porous 2D COF (ET-BP-COF) for utilization of CO2. The ET-BP-COF features a unique 2D kagome (kgm) topology composed of hexagonal and triangular 1D channels decorated with bipyridine sites, which were exploited for covalent anchoring of eco-friendly Cu(I) by post-synthetic method. The Cu(I) engrafted COF was applied as a recyclable catalyst for coupling CO2 with alkynes to generate two high-value compounds, α-alkylidene cyclic carbonates (α-ACCs) and 2-oxazolidinones. Notably, Cu(I)@ET-BP-COF demonstrated excellent catalytic performance for transforming propargylic amine and CO2 to 2-oxazolidinone, an essential building block for antibiotics. Besides, an efficient transformation of propargylic alcohols to generate α-ACCs, valuable commodity chemicals, has been achieved by utilizing carbon dioxide. Further, detailed theoretical simulations disclosed the insight mechanistic path of Cu(I) catalyzed coupling of CO2 with alkynes to produce 2-oxazolidinones and α-ACCs. Significantly, Cu(I)@COF was reusable for multiple cycles without losing framework rigidity and catalytic performance. This study showcases the potential application of ET-BP-COF for stable anchoring of eco-friendly metals as catalytic sites for effective utilization of CO2 to produce two high-value products.

6.
Angew Chem Int Ed Engl ; : e202416980, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375948

ABSTRACT

Synthesis and assembly of two-dimensional (2D) polymeric materials present a tricky trade-off between the high reaction rate and precise morphology control. Here we report a nanoconfined synthesis of imine-based 2D covalent organic frameworks (COFs) at the interface of oil-in-water (O/W) emulsion droplets stabilized by cationic surfactants. Highly uniform nanocapsules (NCs) could be prepared without adding extra catalysts at room temperature in just 4.5 h at a yield of 86%. The NCs have tunable average diameters and shell thicknesses, depending on the monomer and surfactant types/concentrations. Their BET-specific surface areas are up to 139.0 m2/g, mainly contributed by narrowly-distributed mesopores at ~5.0 nm and micropores at 1.4 nm. The surfactant plays the role of a catalyst during the reaction and interestingly, it also regulates the formation of mesopores and their sizes. Both theoretical and experimental studies confirm that the reaction has been accelerated by two orders of magnitude at the microdroplet interface, compared to that without emulsification. The resulting NCs could be well dispersed in water, and they have been demonstrated to be highly efficient nanocatalysts in application of water-based hydrogen evolution. Such microdroplet interface-confined synthesis may facilitate the future development of 2D polymeric materials for more advanced applications.

7.
Small ; : e2406803, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375961

ABSTRACT

The poor ability of covalent organic frameworks (COFs) based adsorbents at low relative humidity (RH) conditions limits their applications for air-water harvesting in arid environments. In the present work, the sulfonated COFs (DAAQ-TFP-SO3H@LiCl) composites are prepared through the functionalization of sulfonic acid and LiCl composite to improve its hydrophilicity. TheDAAQ-TFP-SO3H@LiCl composites exhibit a good adsorption performance, outperforming many other COF adsorbents developed so far. It can absorb 0.22 ± 0.005 g g-1 and 1.01 ± 0.027 g g-1 of water at room temperature under 20% RH and 90% RH, respectively while demonstrating good cyclic stability. Compared with the isotherm of the DAAQ-TFP, the introduction of the sulfonic acid group shifts the inflection point of the water isotherm toward low humidity, indicating that the sulfonic acid group effectively expends the working humidity range of the adsorbent and enables the effective water adsorption in an arid environment. Furthermore, the DAAQ-TFP-SO3H@LiCl composites display rapid kinetics during both the adsorption and desorption processes, reaching saturation within 60 min in the equilibrium adsorption test and completing desorption within 12 min at 50 °C. This innovative approach provides a new method for designing adsorbent materials with low energy input requirements and high daily water consumption capabilities.

8.
Angew Chem Int Ed Engl ; : e202416864, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377209

ABSTRACT

Covalent organic frameworks (COFs) exhibit considerable potential in gas separations owing to their remarkable stability and tunable pore structures. Nevertheless, their application as gas separation membranes is hindered by limited size-sieving capabilities and poor processability. In this study, we propose a novel molecular weaving strategy that combines hydroxyl polymers and 2D TpPa-SO3H COF nanosheets, achieving high gas separation efficiency. Driven by the strong electrostatic interactions, the hydroxyl chains thread through the COF pores, effectively weaving and assembling the composites to achieve exceptional flexibility and high mechanical strength. The penetrated chains also reduce the effective pore size of COFs, and combined with the "secondary confinement effect" stemming from abundant CO2 sorption sites in the channels, the PVA@TpPa-SO3H membrane demonstrates a remarkable H2 permeance of 1267.3 GPU and an H2/CO2 selectivity of 43, surpassing the 2008 Robson upper bound limit. This facile strategy holds promise for the manufacture of large-area COF-based membranes for small-sized gas separations.

9.
Angew Chem Int Ed Engl ; : e202415454, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377350

ABSTRACT

Two-dimensional imine covalent organic frameworks (2D imine-COFs) are crystalline porous materials with broad application prospects. Despite the efforts into their design and synthesis, the mechanisms of their formation are still not fully understood. Herein, a one-pot two-step mechanochemical cocrystal precursor synthetic strategy is developed for efficient construction of 2D imine-COFs. The mechanistic investigation demonstrated that the cocrystal precursors of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT) and p-toluenesulphonic acid (PTSA) sufficiently regulate the crystalline structure of COF. Evidenced by characterizations and theoretical studies, a helical hydrogen-bond network was constructed by the N-H···O supramolecular synthons between amine and sulfate in TAPT-PTSA, demonstrating the role of cocrystals in promoting the organized stacking of interlayer π-π interactions, layer arrangement, and interlayer spacing, thus facilitating the orderly assembly of COFs. Moreover, the protonation degree of TAPT amines, which tuned nucleophilic directionality, enabled the sequential progression of intra- and interlayer imine condensation reactions, inhibiting the formation of amorphous polymers. The transformation from cocrystal precursors to COFs was achieved through comprehensive control of hydrogen bond and covalent bond sites. This work significantly advances the concept of hydrogen-bond-regulated COF assembly and its mechanochemical method in the design and synthesis of 2D imine-COFs, further elucidating the mechanistic aspects of their mechanochemical synthesis.

10.
Angew Chem Int Ed Engl ; : e202416550, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352753

ABSTRACT

Developing new enzyme-immobilization systems to stabilize their dynamic structures and meanwhile enhance their catalytic activity is of great significance but very challenging. Herein, we design and fabricate a class of robust mesoporous covalent organic frameworks (COFs) via Michael addition-elimination reaction. It is found that highly crystalline COFs can be produced in 10 min, which is attributed to the promoting effect of the intramolecular hydrogen bond activation. The COFs rich in hydroxyl groups can be facilely post-modified by epibromohydrin to covalently immobilize enzymes with both high loading and activity. Furthermore, we create a solar-driven photothermal-promoted strategy by introducing photoactive azo groups to COF carriers, which can boost the enzyme catalytic performance (lipase) with much higher conversion of various racemic substrates and chiral resolution upon solar light irradiation. The heterogeneous biocatalysts also demonstrate exceptional reusability and stability. This work provides a green and energy-efficient approach to facilitate the scale application of enzyme-immobilized biocatalysts.

11.
Article in English | MEDLINE | ID: mdl-39356972

ABSTRACT

Electrocatalytic CO2 reduction reaction (CO2RR) emerges as a promising avenue to mitigate carbon emissions, enabling the capture and conversion of CO2 into high-value products such as syngas with CO/H2. One of the crucial aspects lies in the tailored development of durable and efficient electrocatalysts for the CO2RR. Covalent organic frameworks (COFs) possess unique characteristics that render them attractive candidates for catalytic applications. However, the relationship between structure and performance still requires further exploration; especially, most COFs with such properties are limited to COFs containing specific groups such as phthalocyanine or porphyrin groups. Here, we custom-synthesize two azine-linked nitrogen-rich COFs constructed from triazine building blocks, which are doped with ultrafine and highly dispersed Ag nanoparticles (Ag@TFPT-HZ and Ag@TPT-HZ). Thus-obtained COFs can serve as electrocatalysts for the CO2RR, and a comprehensive investigation has been conducted to uncover the intricate structure-performance relationship within these materials. Notably, Ag@TFPT-HZ exhibits superior CO selectivity in the electrocatalytic CO2RR, achieving a FECO of 81% and a partial current density of 7.65 mA·cm-2 at the potential of -1.0 V (vs reversible hydrogen electrode (RHE)). In addition, Ag@TPT-HZ as an electrocatalyst can continuously produce syngas with a CO/H2 molar ratio of 1:1, an ideal condition for methanol synthesis. The observed distinct performance between these two COFs is attributed to the presence of O atoms in TFPT-HZ. These O atoms facilitate a higher loading capacity of Ag nanoparticles (11 wt %) and generate a greater number of active sites, thereby enhancing electrochemical activity and promoting faster reaction kinetics. Therefore, two tailor-made two-dimensional (2D) nitrogen-rich COFs with various active sites as electrocatalysts can exhibit different outstanding electrocatalytic performances for CO2RR and possess high cycling stability (>50 h). This work offers valuable insights into the design and synthesis of electrocatalysts, particularly in elucidating the intricate relationship between their structure and performance.

12.
Angew Chem Int Ed Engl ; : e202417115, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363753

ABSTRACT

Solar-driven H2O2 production via the oxygen reduction reaction (ORR) and water oxidation reaction (WOR) dual channels is green and sustainable, but severely restricted by the sluggish reaction kinetics. Constructing intriguing photocatalysts with effective active centers is a shortcut to breaking the kinetic bottleneck with great significance. Herein, we synthesize two novel neutral phenanthridine-based covalent organic frameworks (PD-COF1 and PD-COF2) for photosynthesizing H2O2. Compared to the no phenanthridine counterpart (AN-COF), the H2O2 photosynthetic activities of PD-COF1 and PD-COF2 are markedly boosted. In air and pure water without sacrificial agents, under Xe lamp and natural sunlight, the H2O2 photogeneration rate of PD-COF2 is 6103 and 3646 µmol g-1 h-1, respectively. Further experimental and theoretical inspections demonstrate that introducing phenanthridine units into COFs smoothly modulates the charge carrier dynamics and thermodynamically favors the generation of crucial OOH* and OH* intermediates in the ORR and WOR paths, respectively. Additionally, this is the first time the neutral phenanthridine moiety serves as the photooxidation unit for 2e- WOR towards H2O2 photoproduction. The current work sheds light on exploring novel catalytic centers for high-performance H2O2 evolution.

13.
Nanomaterials (Basel) ; 14(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39269120

ABSTRACT

With the utilization of nitrophenols in manufacturing various materials and the expansion of industry, nitrophenols have emerged as water pollutants that pose significant risks to both humans and the environment. Therefore, it is imperative to convert nitrophenols into aminophenols, which are less toxic. This conversion process is achieved through the use of noble metal nanoparticles, such as gold, silver, copper, and palladium. The primary challenge with noble metal nanoparticles lies in their accumulation and deactivation, leading to a decrease in catalyst activity. Covalent organic frameworks (COFs) are materials characterized by a crystalline structure, good stability, and high porosity with active sites. These properties make them ideal substrates for noble metal nanoparticles, enhancing catalytic activity. This overview explores various articles that focus on the synthesis of catalysts containing noble metal nanoparticles attached to COFs as substrates to reduce nitrophenols to aminophenols.

14.
ChemSusChem ; : e202401353, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39275904

ABSTRACT

The photosensitive unit and conjugation play a significant role in photocatalytic performance of covalent organic frameworks (COFs). In this work, a series of COFs that introduced the phenyl phenanthridine as photosensitive unit with different planarity of linkages were synthesized and the common regulation between them for photocatalysis hydrogen evolution reaction (HER) was also studied. The results indicate that DHTB-PPD, with 2/3 planarity linkages (ß-ketoenamine/imine is 2/3) and the phenyl phenanthridine as building blocks, shows the narrowest bandgap and the strongest charge separation efficiency. Therefore, it shows the highest H2 production rate of 12.13 mmol g-1 h-1. The optimal photocatalytic efficiency of DTHB-PPD can be attributed to the combined effect of the photosensitive unit and the long-range ordering of the COF skeleton. According to The Density Functional Theory (DFT), the O site on ß-ketoamine is the most possible H2 generation site, but the photocatalytic efficiency of TP-PPD, with the highest skeletal conjugation and the highest proportion of ß-ketoamine is not the most efficient photocatalyst, indicating that the long-range ordering of COFs is important on photocatalytic performance. Thus, these findings provide valuable guidance for the structural design of COFs photocatalysts.

15.
Sci Total Environ ; 953: 176031, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39236820

ABSTRACT

Assessment and control of emerging organic pollutants in food have become critical for global food safety and health. The European Union has set standards for certain emerging organic pollutants, such as phthalic acid esters (PAEs) in food. Because of being endocrine disruptors, PAEs are toxic and carcinogenic to humans. Release of PAEs from packaging materials poses a potential risk to human health and causes environmental pollution. In this study, a highly sensitive analytical method for the detection of PAE contents in tea beverages was established using hydroxyl-functionalized covalent organic frameworks (COFs) as solid-phase microextraction (SPME) coating. Results indicate that functionalization with hydroxyl groups enhances the adsorption of PAEs. The proposed method exhibits a wide linear range (1-20,000 ng L-1), low limits of detection (> 0.048 ng L-1), and satisfactory recovery (72.8 %-127.3 %). To investigate the PAE contamination in beverages, contamination levels of six typical PAEs and their health impacts were surveyed across various brands/types/packaging materials of tea beverages sold in China. Results of the hazard quotient and hazard index approaches suggest no or extremely low health concerns regarding PAE levels. We observe that hydroxyl groups functionalized on COFs enhance the adsorption of PAEs. Moreover, an important outcome of this study is development of an efficient and sensitive direct detection method for PAEs in complex tea matrices, providing a reliable approach for the assessment of PAEs in other complex matrices.


Subject(s)
Food Contamination , Phthalic Acids , Solid Phase Microextraction , Tea , Phthalic Acids/analysis , Tea/chemistry , Food Contamination/analysis , Solid Phase Microextraction/methods , China , Humans , Environmental Monitoring/methods
16.
ACS Appl Mater Interfaces ; 16(39): 52455-52465, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39288029

ABSTRACT

Toward visible light photocatalysis, covalent organic frameworks (COFs) have recently garnered growing attention. The effect of different orientations of imine of imine-linked COFs on photocatalysis should be elucidated. Here, two COFs are developed with 2,5-diphenylthieno[3,2-b]thiophene (DPTT) and 1,3,6,8-tetraphenylpyrene (Py) linked by imine, affording DPTT-Py-COF and Py-DPTT-COF, respectively. Distinctly, DPTT-Py-COF and Py-DPTT-COF have high crystallinity and porosity, paving the way to highly efficient photocatalysis. Theoretical calculations demonstrate that both DPTT-Py-COF and Py-DPTT-COF are of similar bandgaps but of varied energy positions due to the different orientations of imine. Besides, characterizations disclose that DPTT-Py-COF delivers more enhanced charge separation and transfer than Py-DPTT-COF. Probed by the oxidation of amine to imine, DPTT-Py-COF exhibits a blue light photocatalytic performance superior to that of Py-DPTT-COF. DPTT-Py-COF, a highly recyclable photocatalyst, enables the oxidation of various amines to imines with oxygen. This work highlights that tuning the microenvironment of COFs unravels tenable performances in photocatalysis.

17.
ACS Appl Mater Interfaces ; 16(39): 52309-52325, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39293059

ABSTRACT

Phosphoric acid (PA) leakage and volume expansion are critical factors limiting long-term stable operation of PA-doped polybenzimidazole (PBI) for high-temperature proton exchange membrane fuel cells. Enhancing the interaction between the polymer matrix and PA provides an effective way to minimize PA loss and inhibit excessive membrane swelling. The covalent organic frameworks (COFs) are helpful in improving the performance of PA-PBI membranes due to the robust frameworks, adjustable structures, and good compatibility with polymers. Here, in this work, we synthesized porous COFs named TTA-DFP containing triazine rings and pyridine groups at room temperature for as short as 2 h without oxygen isolation. TTA-DFP was then blended with commercial poly[2,2'-(p-oxidiphenylene)-5,5'-benzimidazole] (OPBI) to prepare composite membranes. The abundant alkaline N sites in TTA-DFP exhibit strong interactions with PA and OPBI, which not only provide more proton transport pathways to promote proton conduction but also immobilize PA in acidophilic micropores to reduce PA leakage. The composite membranes exhibit a much lower volume swelling ratio than that of the OPBI membrane. The PA retention of the composite membrane after 120 h of treatment at 80 °C and 40% relative humidity can reach as high as 84.6%. Particularly, the proton conductivity of the composite membrane doped with 15 wt% TTA-DFP achieves 0.112 S cm-1 at 180 °C without humidification with a swelling ratio of 24.1%. In addition, it has an optimal peak power density of 824.4 mW cm-2 at 180 °C, which is 1.7 times that of the OPBI membrane. The stability of the composite membrane is much better than that of OPBI at a current density of 0.3 A cm-2 at 140 °C for 120 h.

18.
ACS Appl Mater Interfaces ; 16(39): 52550-52558, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39300808

ABSTRACT

Regulating the selective generation of reactive oxygen species (ROS) is a significant challenge in the field of photocatalytic oxidation, with successful approaches still being limited. Herein, we present a strategy to selectively generate singlet oxygen (1O2) and superoxide radicals (O2•-) by tuning the dimensionality of porphyrin-based covalent organic frameworks (COFs). The transformation of COFs from three-dimensional (3D) solids to two-dimensional (2D) sheets was achieved through the reversible protonation of the imine bond. Upon irradiation, both bulk and thin-layer COF-367 can transfer energy to O2 to generate 1O2. However, thin-layer COF-367 exhibited a superior performance compared to its bulk counterpart in activating O2 to form the O2•- radicals via electron transfer. After excluding the influences of the band structure, O2 adsorption energy, and frontier orbital composition attributed to the dimensionality of the COFs, it is reasonably speculated that the variance in ROS generation arises from the differential exposure ratios of the active surfaces, leading to distinct reaction pathways between the carrier and O2. This study is the first to explore the modulation mechanism of COF dimensionality on the activation of the O2 pathway, underscoring the importance of considering COF dimensionality in photocatalytic reactions.

19.
ACS Appl Mater Interfaces ; 16(37): 49594-49601, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39230599

ABSTRACT

Covalent organic framework (COF) film with electrofluorochromic (EFC) and electrochromic (EC) properties has been synthesized by using triphenylamine-based monomers. The film exhibited a high maximum fluorescence contrast of 151 when subjected to a drive voltage of 0.75 V vs the Ag/AgCl electrode, causing the fluorescence to be quenched, which resulted in the EFC process's "fluorescence off" state. The switching times for the fluorescence on and off states were 0.51 and 7.79 s, respectively. Over the same voltage range, the COF film also displayed EC properties, achieving a contrast of 50.23% and a coloration efficiency of 297.4 cm2 C-1 at 532 nm, with switching times of 18.6 s for coloration and 0.7 s for bleaching. Notably, the quenched fluorescence of the COF film could be restored by adding dopamine as a reductant. This phenomenon enabled the implementation of a NAND logic gate using the applied potential as a physical input and dopamine addition as a chemical input. This study demonstrates the successful development of COF films with bifunctional EFC and EC properties, showcasing their potential for use in constructing advanced optoelectronic devices.

20.
ACS Appl Mater Interfaces ; 16(37): 49993-50003, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39239968

ABSTRACT

It is, in fact, inevitable for steel to be covered with a layer of iron oxides and/or peroxides on its surface. However, knowledge of its existence and functionality for tribological behaviors is usually ignored. Herein, covalent-organic framework nanomaterials (CONs) composed of three well-screened acceptors and a donor through the imide linkage were fabricated to explore their lubrication performances. The results indicate that the energy-level matching between CONs and iron oxides or peroxides leads to the formation of a Z-scheme heterojunction structure at the rubbing interface. Also, the friction produces an internal electric field in the heterojunction, which drives the negative atomic/ionic species from the sliding interface to immigrate into the pore of CONs and resettle inside to engender the pinning effects, producing a fixed lubrication layer. Synchronously, it also attracts the free CONs in the base oil to form an easy-shear lubrication layer assembling onto the fixed one, producing a lubrication film with two layered configurations. Finally, the unique lubrication film, despite its thickness of a dozen nanometers, still exhibits impressive friction reduction and antiwear. This finding will inspire the technology to utilize the intrinsic surface nature of steel materials to exploit lubricant additives or modulate tribological behaviors.

SELECTION OF CITATIONS
SEARCH DETAIL