Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 373
Filter
1.
Virol Sin ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025463

ABSTRACT

Myocarditis is an inflammatory disease of the cardiac muscle and one of the primary causes of dilated cardiomyopathy. Group B coxsackievirus (CVB) is one of the leading causative pathogens of viral myocarditis, which primarily affects children and young adults. Due to the lack of vaccines, the development of antiviral medicines is crucial to controlling CVB infection and the progression of myocarditis. In this study, we investigated the antiviral effect of baicalein, a flavonoid extracted from Scutellaria baicaleinsis. Our results demonstrated that baicalein treatment significantly reduced cytopathic effect and increased cell viability in CVB3-infected cells. In addition, significant reductions in viral protein 3D, viral RNA, and viral particles were observed in CVB3-infected cells treated with baicalein. We found that baicalein exerted its inhibitory effect in the early stages of CVB3 infection. Baicalein also suppressed viral replication in the myocardium and effectively alleviated myocarditis induced by CVB3 infection. Our study revealed that baicalein exerts its antiviral effect by inhibiting the activity of caspase-1 and viral protease 2A. Taken together, our findings demonstrate that baicalein has antiviral activity against CVB3 infection and may serve as a potential therapeutic option for the myocarditis caused by enterovirus infection.

2.
Virology ; 597: 110156, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981316

ABSTRACT

This study aims to elucidate the role of TIP30 (30 KDa HIV-1 TAT-Interacting Protein) in the progression of coxsackievirus B3 (CVB3)-induced viral myocarditis. TIP30 knockout and wildtype mice were intraperitoneally infected with CVB3 and evaluated at day 7 post-infection. HeLa cells were transfected with TIP30 lentiviral particles and subsequently infected with CVB3 to evaluate viral replication, cellular pathogenesis, and mechanistic target of rapamycin complex 1 (mTORC1) signaling. Deletion of the TIP30 gene heightened heart virus titers and mortality rates in mice with CVB3-induced myocarditis, exacerbating cardiac damage and fibrosis, and elevating pro-inflammatory factors level. In vitro experiments demonstrated the modulation of mTORC1 signaling by TIP30 during CVB3 infection in HeLa cells. TIP30 overexpression mitigated CVB3-induced cellular pathogenesis and VP1 expression, with rapamycin, an mTOR1 inhibitor, reversing these effects. These findings suggest TIP30 plays a critical protective role against CVB3-induced myocarditis by regulating mTORC1 signaling.


Subject(s)
Coxsackievirus Infections , Enterovirus B, Human , Mechanistic Target of Rapamycin Complex 1 , Mice, Knockout , Myocarditis , Signal Transduction , Myocarditis/virology , Myocarditis/metabolism , Animals , Enterovirus B, Human/physiology , Humans , Coxsackievirus Infections/virology , Coxsackievirus Infections/metabolism , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , HeLa Cells , Transcription Factors/metabolism , Transcription Factors/genetics , Virus Replication , Disease Models, Animal , Male
3.
Front Cardiovasc Med ; 11: 1364289, 2024.
Article in English | MEDLINE | ID: mdl-38836060

ABSTRACT

Background: Neonatal (enteroviral) myocarditis (NM/NEM) is rare but unpredictable and devastating, with high mortality and morbidity. We report a case of neonatal coxsackievirus B (CVB) fulminant myocarditis successfully treated with veno-arterial extracorporeal membrane oxygenation (V-A ECMO). Case presentation: A previously healthy 7-day-old boy presented with fever for 4 days. Progressive cardiac dysfunction (weak heart sounds, hepatomegaly, pulmonary edema, ascites, and oliguria), decreased left ventricular ejection fraction (LVEF) and fractional shortening (FS), transient ventricular fibrillation, dramatically elevated creatine kinase-MB (405.8 U/L), cardiac troponin I (25.85 ng/ml), and N-terminal pro-brain natriuretic peptide (NT-proBNP > 35,000 ng/L), and positive blood CVB ribonucleic acid indicated neonatal CVB fulminating myocarditis. It was refractory to mechanical ventilation, fluid resuscitation, inotropes, corticosteroids, intravenous immunoglobulin, and diuretics during the first 4 days of hospitalization (DOH 1-4). The deterioration was suppressed by V-A ECMO in the next 5 days (DOH 5-9), despite the occurrence of bilateral grade III intraventricular hemorrhage on DOH 7. Within the first 4 days after ECMO decannulation (DOH 10-13), he continued to improve with withdrawal of mechanical ventilation, LVEF > 60%, and FS > 30%. In the subsequent 4 days (DOH 14-17), his LVEF and FS decreased to 52% and 25%, and further dropped to 37%-38% and 17% over the next 2 days (DOH 18-19), respectively. There was no other deterioration except for cardiomegaly and paroxysmal tachypnea. Through strengthening fluid restriction and diuresis, and improving cardiopulmonary function, he restabilized. Finally, notwithstanding NT-proBNP elevation (>35,000 ng/L), cardiomegaly, and low LVEF (40%-44%) and FS (18%-21%) levels, he was discharged on DOH 26 with oral medications discontinued within 3 weeks postdischarge. In nearly three years of follow-up, he was uneventful, with interventricular septum hyperechogenic foci and mild mitral/tricuspid regurgitation. Conclusions: Dynamic cardiac function monitoring via real-time echocardiography is useful for the diagnosis and treatment of NM/NEM. As a lifesaving therapy, ECMO may improve the survival rate of patients with NM/NEM. However, the "honeymoon period" after ECMO may cause the illusion of recovery. Regardless of whether the survivors of NM/NEM have undergone ECMO, close long-term follow-up is paramount to the prompt identification and intervention of abnormalities.

4.
J Med Virol ; 96(6): e29707, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932451

ABSTRACT

Coxsackievirus B1 (CVB1), an enterovirus with multiple clinical presentations, has been associated with potential long-term consequences, including hand, foot, and mouth disease (HFMD), in some patients. However, the related animal models, transmission dynamics, and long-term tissue tropism of CVB1 have not been systematically characterized. In this study, we established a model of CVB1 respiratory infection in rhesus macaques and evaluated the clinical symptoms, viral load, and immune levels during the acute phase (0-14 days) and long-term recovery phase (15-30 days). We also investigated the distribution, viral clearance, and pathology during the long-term recovery period using 35 postmortem rhesus macaque tissue samples collected at 30 days postinfection (d.p.i.). The results showed that the infected rhesus macaques were susceptible to CVB1 and exhibited HFMD symptoms, viral clearance, altered cytokine levels, and the presence of neutralizing antibodies. Autopsy revealed positive viral loads in the heart, spleen, pancreas, soft palate, and olfactory bulb tissues. HE staining demonstrated pathological damage to the liver, spleen, lung, soft palate, and tracheal epithelium. At 30 d.p.i., viral antigens were detected in visceral, immune, respiratory, and muscle tissues but not in intestinal or neural tissues. Brain tissue examination revealed viral meningitis-like changes, and CVB1 antigen expression was detected in occipital, pontine, cerebellar, and spinal cord tissues at 30 d.p.i. This study provides the first insights into CVB1 pathogenesis in a nonhuman primate model of HFMD and confirms that CVB1 exhibits tissue tropism following long-term infection.


Subject(s)
Disease Models, Animal , Enterovirus B, Human , Hand, Foot and Mouth Disease , Macaca mulatta , Viral Load , Viral Tropism , Animals , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/pathology , Enterovirus B, Human/physiology , Enterovirus B, Human/pathogenicity , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Animals, Newborn , Cytokines/metabolism
5.
J Asian Nat Prod Res ; : 1-13, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885306

ABSTRACT

Three new prenylated C6-C3 compounds (1-3), together with two known prenylated C6-C3 compounds (4-5) and one known C6-C3 derivative (6), were isolated from the roots of Illicium brevistylum A. C. Smith. The structures of 1-3 were elucidated by spectroscopic methods including 1D and 2D NMR, HRESIMS, CD experiments and ECD calculations. The structure of illibrefunone A (1) was confirmed by single-crystal X-ray diffraction analysis. All compounds were evaluated in terms of their anti-inflammatory potential on nitric oxide (NO) generation in lipopolysaccharide-stimulated murine RAW264.7 macrophages and murine BV2 microglial cells, antiviral activity against Coxsackievirus B3 (CVB3) and influenza virus A/Hanfang/359/95 (H3N2). Compounds 3 and 4 exhibited potent inhibitory effects on the production of NO in RAW 264.7 cells with IC50 values of 20.57 and 12.87 µM respectively, which were greater than those of dexamethasone (positive control). Compounds 1 and 4-6 exhibited weak activity against Coxsackievirus B3, with IC50 values ranging from 25.87 to 33.33 µM.

6.
Cardiovasc Pathol ; 72: 107652, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38750778

ABSTRACT

BACKGROUND AND AIMS: Viral infections are the leading cause of myocarditis. Besides acute cardiac complications, late-stage sequelae such as myocardial fibrosis may develop, importantly impacting the prognosis. Coxsackievirus B3 (CVB)-induced myocarditis in mice is the most commonly used translational model to study viral myocarditis and has provided the majority of our current understanding of the disease pathophysiology. Nevertheless, the late stages of disease, encompassing fibrogenesis and arrhythmogenesis, have been underappreciated in viral myocarditis research to date. The present study investigated the natural history of CVB-induced myocarditis in C57BL/6J mice, expanding the focus beyond the acute phase of disease. In addition, we studied the impact of sex and inoculation dose on the disease course. METHODS AND RESULTS: C57BL/6J mice (12 weeks old; n=154) received a single intraperitoneal injection with CVB to induce viral myocarditis, or vehicle (PBS) as control. Male mice (n=92) were injected with 5 × 105 (regular dose) (RD) or 5 × 106 (high dose) (HD) plaque-forming units of CVB, whereas female mice received the RD only. Animals were sacrificed 1, 2, 4, 8, and 11 weeks after CVB or PBS injection. Virally inoculated mice developed viral disease with a temporary decline in general condition and weight loss, which was less pronounced in female animals (P<.001). In male CVB mice, premature mortality occurred between days 8 and 23 after inoculation (RD: 21%, HD: 20%), whereas all female animals survived. Over the course of disease, cardiac inflammation progressively subsided, with faster resolution in female mice. There were no substantial group differences in the composition of the inflammatory cell infiltrates: predominance of cytotoxic T cells at day 7 and 14, and a switch from arginase1-reactive macrophages to iNOS-reactive macrophages from day 7 to 14 were the main findings. There was concomitant development and maturation of different patterns of myocardial fibrosis, with enhanced fibrogenesis in male mice. Virus was almost completely cleared from the heart by day 14. Serum biomarkers of cardiac damage and cardiac expression of remodeling genes were temporarily elevated during the acute phase of disease. Cardiac CTGF gene upregulation was less prolonged in female CVB animals. In vivo electrophysiology studies at weeks 8 and 11 demonstrated that under baseline conditions (i.e. in the absence of proarrhythmogenic drugs), ventricular arrhythmias could only be induced in CVB animals. The cumulative arrhythmia burden throughout the entire stimulation protocol was not significantly different between CVB and control groups. CONCLUSION: CVB inoculation in C57BL/6J mice represents a model of acute self-limiting viral myocarditis, with progression to different patterns of myocardial fibrosis. Sex, but not inoculation dose, seems to modulate the course of disease.

7.
Viruses ; 16(5)2024 04 25.
Article in English | MEDLINE | ID: mdl-38793559

ABSTRACT

Coxsackievirus B3 (CVB3) is a positive single-strand RNA genome virus which belongs to the enterovirus genus in the picornavirus family, like poliovirus. It is one of the most prevalent pathogens that cause myocarditis and pancreatitis in humans. However, a suitable therapeutic medication and vaccination have yet to be discovered. Caboxamycin, a benzoxazole antibiotic isolated from the culture broth of the marine strain Streptomyces sp., SC0774, showed an antiviral effect in CVB3-infected HeLa cells and a CVB3-induced myocarditis mouse model. Caboxamycin substantially decreased CVB3 VP1 production and cleavage of translation factor eIF4G1 from CVB3 infection. Virus-positive and -negative strand RNA was dramatically reduced by caboxamycin treatment. In addition, the cleavage of the pro-apoptotic molecules BAD, BAX, and caspase3 was significantly inhibited by caboxamycin treatment. In animal experiments, the survival rate of mice was improved following caboxamycin treatment. Moreover, caboxamycin treatment significantly decreased myocardial damage and inflammatory cell infiltration. Our study showed that caboxamycin dramatically suppressed cardiac inflammation and mouse death. This result suggests that caboxamycin may be suitable as a potential antiviral drug for CVB3.


Subject(s)
Antiviral Agents , Coxsackievirus Infections , Disease Models, Animal , Enterovirus B, Human , Myocarditis , Animals , Myocarditis/drug therapy , Myocarditis/virology , Mice , Coxsackievirus Infections/drug therapy , Coxsackievirus Infections/virology , Humans , Enterovirus B, Human/drug effects , HeLa Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Male , Mice, Inbred BALB C , Inflammation/drug therapy , Inflammation/virology , Virus Replication/drug effects
8.
J Zhejiang Univ Sci B ; 25(5): 422-437, 2024 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-38725341

ABSTRACT

Viral myocarditis (VMC) is one of the most common acquired heart diseases in children and teenagers. However, its pathogenesis is still unclear, and effective treatments are lacking. This study aimed to investigate the regulatory pathway by which exosomes alleviate ferroptosis in cardiomyocytes (CMCs) induced by coxsackievirus B3 (CVB3). CVB3 was utilized for inducing the VMC mouse model and cellular model. Cardiac echocardiography, left ventricular ejection fraction (LVEF), and left ventricular fractional shortening (LVFS) were implemented to assess the cardiac function. In CVB3-induced VMC mice, cardiac insufficiency was observed, as well as the altered levels of ferroptosis-related indicators (glutathione peroxidase 4 (GPX4), glutathione (GSH), and malondialdehyde (MDA)). However, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) could restore the changes caused by CVB3 stimulation. Let-7a-5p was enriched in hucMSCs-exo, and the inhibitory effect of hucMSCs-exolet-7a-5p mimic on CVB3-induced ferroptosis was higher than that of hucMSCs-exomimic NC (NC: negative control). Mothers against decapentaplegic homolog 2 (SMAD2) increased in the VMC group, while the expression of zinc-finger protein 36 (ZFP36) decreased. Let-7a-5p was confirmed to interact with SMAD2 messenger RNA (mRNA), and the SMAD2 protein interacted directly with the ZFP36 protein. Silencing SMAD2 and overexpressing ZFP36 inhibited the expression of ferroptosis-related indicators. Meanwhile, the levels of GPX4, solute carrier family 7, member 11 (SLC7A11), and GSH were lower in the SMAD2 overexpression plasmid (oe-SMAD2)+let-7a-5p mimic group than in the oe-NC+let-7a-5p mimic group, while those of MDA, reactive oxygen species (ROS), and Fe2+ increased. In conclusion, these data showed that ferroptosis could be regulated by mediating SMAD2 expression. Exo-let-7a-5p derived from hucMSCs could mediate SMAD2 to promote the expression of ZFP36, which further inhibited the ferroptosis of CMCs to alleviate CVB3-induced VMC.


Subject(s)
Exosomes , Ferroptosis , Mesenchymal Stem Cells , MicroRNAs , Myocytes, Cardiac , Signal Transduction , Animals , Humans , Male , Mice , Coxsackievirus Infections/pathology , Enterovirus B, Human/physiology , Exosomes/metabolism , Ferroptosis/drug effects , Mesenchymal Stem Cells/chemistry , MicroRNAs/pharmacology , Myocarditis/drug therapy , Myocytes, Cardiac/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Smad2 Protein/metabolism , Umbilical Cord/cytology
9.
Microbiol Resour Announc ; 13(6): e0116023, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38780263

ABSTRACT

Whole-genome sequencing of a Coxsackievirus B3 strain isolated from the stool of a febrile patient with aseptic meningoencephalitis, South Korea, in 2002 was performed. This strain exhibits a high nucleotide sequence identity with various strains circulating in China from 2001 to 2019.

10.
Hum Antibodies ; 32(2): 61-65, 2024.
Article in English | MEDLINE | ID: mdl-38669524

ABSTRACT

BACKGROUND: The antibody that crosses transplacentally from mother to fetus is very important origin of protective passive immunity against infection neonatal with enterovirus. Important varieties of coxsackievirus B3 (CVB3) are responsible for infections in newborns. The purpose from this study is to investigate in the prevalence of Coxsackie B virus in a sample of Iraqi women with miscarriage and potential role of miscarriage risk. METHODS: Between November 2022 and June 2023, we included 91 parturient women (gestational age: 4-20 weeks) who were between the ages of 15 and 40. Every participant completed a questionnaire, and blood was drawn to assess maternal antibodies against CVB3. RESULTS: The blood seropositive rates were 46 out 91(50.54%), 2 out 46 were IgM positive (4.34%), (8-12 weeks) 23 from 46 (50%) (p-value 0.0294) gestational age more frequent among aborted women that positive for anti-coxsackie B antibody, The 25-35 age group was significantly overrepresented (51/91, 56%) compared to other age groups. CONCLUSION: This investigation posits Coxsackie B virus (CBV) as a possible etiology for miscarriage in the Iraqi female population. Further studies employing larger cohorts and robust methodologies, beyond the current detection technique, are warranted to corroborate these observations and elucidate the potential mechanisms by which CBV might induce miscarriage.


Subject(s)
Abortion, Spontaneous , Antibodies, Viral , Coxsackievirus Infections , Enterovirus B, Human , Humans , Female , Iraq/epidemiology , Adult , Pregnancy , Enterovirus B, Human/immunology , Abortion, Spontaneous/virology , Abortion, Spontaneous/immunology , Abortion, Spontaneous/epidemiology , Coxsackievirus Infections/immunology , Coxsackievirus Infections/virology , Coxsackievirus Infections/epidemiology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Young Adult , Adolescent , Immunoglobulin M/blood , Immunoglobulin M/immunology , Seroepidemiologic Studies , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/epidemiology , Prevalence
11.
Biol Proced Online ; 26(1): 11, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664647

ABSTRACT

BACKGROUND: The efficacy of oncolytic viruses (OV) in cancer treatment depends on their ability to successfully infect and destroy tumor cells. However, patients' tumors vary, and in the case of individual insensitivity to an OV, therapeutic efficacy is limited. Here, we present a protocol for rapid generation of tumor cell-specific adapted oncolytic coxsackievirus B3 (CVB3) with enhanced oncolytic potential and a satisfactory safety profile. This is achieved by combining directed viral evolution (DVE) with genetic modification of the viral genome and the use of a microRNA-dependent regulatory tool. METHODS: The oncolytic CVB3 variant PD-H was adapted to the refractory colorectal carcinoma cell line Colo320 through serial passaging. XTT assays and virus plaque assays were used to determine virus cytotoxicity and virus replication in vitro. Recombinant PD-H variants were generated through virus mutagenesis. Apoptosis was detected by Western blots, Caspase 3/7 assays, and DAPI staining. The therapeutic efficacy and safety of the adapted recombinant OV PD-SK-375TS were assessed in vivo using a subcutaneous Colo320 xenograft mouse model. RESULTS: PD-H was adapted to the colorectal cancer cell line Colo320 within 10 passages. Sequencing of passage 10 virus P-10 revealed a heterogenous virus population with five nucleotide mutations resulting in amino acid substitutions. The genotypically homogeneous OV PD-SK was generated by inserting the five detected mutations of P-10 into the genome of PD-H. PD-SK showed significantly stronger replication and cytotoxicity than PD-H in Colo320 cells, but not in other colorectal carcinoma cell lines. Increase of apoptosis induction was detected as key mechanisms of Colo320 cell-specific adaptation of PD-SK. For in vivo safety PD-SK was engineered with target sites of the miR-375 (miR-375TS) to exclude virus replication in normal tissues. PD-SK-375TS, unlike the PD-H-375TS not adapted homolog suppressed the growth of subcutaneous Colo320 tumors in nude mice without causing any side effects. CONCLUSION: Taken together, here we present an optimized protocol for the rapid generation of tumor cell-specific adapted oncolytic CVB3 based on the oncolytic CVB3 strain PD-H. The protocol is promising for the generation of personalized OV for tumor therapy and has the potential to be applied to other OV.

12.
Emerg Microbes Infect ; 13(1): 2337665, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38551145

ABSTRACT

Coxsackievirus B4 (CVB4) is associated with a range of acute and chronic diseases such as hand, foot, and mouth disease, myocarditis, meningitis, pancreatitis, and type 1 diabetes, affecting millions of young children annually around the world. However, no vaccine is currently available for preventing CVB4 infection. Here, we report the development of inactivated viral particle vaccines for CVB4. Two types of inactivated CVB4 particles were prepared from CVB4-infected cell cultures as vaccine antigens, including F-particle (also called mature virion) consisting of VP1, VP3, VP2, and VP4 subunit proteins, and E-particle (also called empty capsid) which is made of VP1, VP3, and uncleaved VP0. Both the inactivated CVB4 F-particle and E-particle were able to potently elicit neutralizing antibodies in mice, despite slightly lower neutralizing antibody titres seen with the E-particle vaccine after the third immunization. Importantly, we demonstrated that passive transfer of either anti-F-particle or anti-E-particle sera could completely protect the recipient mice from lethal CVB4 challenge. Our study not only defines the immunogenicity and protective efficacy of inactivated CVB4 F-particle and E-particle but also reveals the central role of neutralizing antibodies in anti-CVB4 protective immunity, thus providing important information that may accelerate the development of inactivated CVB4 vaccines.


Subject(s)
Vaccines , Viral Vaccines , Humans , Child , Animals , Mice , Child, Preschool , Antibodies, Viral , Antibodies, Neutralizing , Immunization , Vaccination
13.
Biochem Pharmacol ; 223: 116173, 2024 May.
Article in English | MEDLINE | ID: mdl-38552849

ABSTRACT

Pyroptosis, a novel programmed cell death mediated by NOD-like receptor protein 3 (NLRP3) inflammasome, is a critical pathogenic process in acute viral myocarditis (AVMC). Mitsugumin 53 (MG53) is predominantly expressed in myocardial tissues and has been reported to exert cardioprotective effects through multiple pathways. Herein, we aimed to investigate the biological function of MG53 in AVMC and its underlying regulatory mechanism in pyroptosis. BALB/c mice and HL-1 cells were infected with Coxsackievirus B3 (CVB3) to establish animal and cellular models of AVMC. As inflammation progressed in the myocardium, we found a progressive decrease in myocardial MG53 expression, accompanied by a significant enhancement of cardiomyocyte pyroptosis. MG53 overexpression significantly alleviated myocardial inflammation, apoptosis, fibrosis, and mitochondrial damage, thereby improving cardiac dysfunction in AVMC mice. Moreover, MG53 overexpression inhibited NLRP3 inflammasome-mediated pyroptosis, reduced pro-inflammatory cytokines (IL-1ß/18) release, and suppressed NF-κB signaling pathway activation both in vivo and in vitro. Conversely, MG53 knockdown reduced cell viability, facilitated cell pyroptosis, and increased pro-inflammatory cytokines release in CVB3-infected HL-1 cells by promoting NF-κB activation. These effects were partially reversed by applying the NF-κB inhibitor BAY 11-7082. In conclusion, our results suggest that MG53 acts as a negative regulator of NLRP3 inflammasome-mediated pyroptosis in CVB3-induced AVMC, partially by inhibiting the NF-κB signaling pathway. MG53 is a promising candidate for clinical applications in AVMC treatment.


Subject(s)
Myocarditis , Animals , Mice , Cytokines/metabolism , Inflammasomes/metabolism , Inflammation , Membrane Proteins , Myocarditis/prevention & control , Myocarditis/metabolism , Myocarditis/pathology , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyroptosis , Signal Transduction
14.
Vaccines (Basel) ; 12(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38543901

ABSTRACT

Group B coxsackieviruses (CVBs) cause a wide range of diseases in humans, but no vaccines are currently available to prevent these infections. Previously, we had demonstrated that a live attenuated CVB3 vaccine virus, Mutant 10 (Mt10), offers protection against multiple CVB serotypes as evaluated in various inbred mouse strains; however, the applicability of these findings to the outbred human population remains uncertain. To address this issue, we used Diversity Outbred (DO) mice, whose genome is derived from eight inbred mouse strains that may capture the level of genetic diversity of the outbred human population. To determine the efficacy of the Mt10 vaccine, we established the CVB3 infection model in the DO mice. We noted that CVB3 infection resulted mainly in pancreatitis, although viral RNA was detected in both the pancreas and heart. Histologically, the pancreatic lesions comprised of necrosis, post-necrotic atrophy, and lymphocyte infiltration. In evaluating the efficacy of the Mt10 vaccine, both male and female DO mice were completely protected in challenge studies with CVB3, and viral RNA was not detected in the heart or pancreas. Likewise, vaccine recipients of both sexes showed significant levels of virus-neutralizing antibodies. Furthermore, by using the CVB3 viral protein 1, virus-reactive antibodies were found to be diverse in the order of IgG2c, followed by IgG2a, IgG2b/IgG3, and IgG1. Together, the data suggest that the Mt10 vaccine virus can offer protection against CVB infections that may have translational significance.

15.
Environ Sci Technol ; 58(12): 5279-5289, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38488515

ABSTRACT

The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.


Subject(s)
Capsid Proteins , Chlorine , Capsid Proteins/genetics , Capsid Proteins/chemistry , Chlorine/pharmacology , Cryoelectron Microscopy , Amino Acid Substitution , Enterovirus B, Human/genetics , Amino Acids
16.
Virol Sin ; 39(2): 290-300, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331038

ABSTRACT

Coxsackievirus B3 (CVB3) is the pathogen causing hand, foot and mouth disease (HFMD), which manifests across a spectrum of clinical severity from mild to severe. However, CVB3-infected mouse models mainly demonstrate viral myocarditis and pancreatitis, failing to replicate human HFMD symptoms. Although several enteroviruses have been evaluated in Syrian hamsters and rhesus monkeys, there is no comprehensive data on CVB3. In this study, we have first tested the susceptibility of Syrian hamsters to CVB3 infection via different routes. The results showed that Syrian hamsters were successfully infected with CVB3 by intraperitoneal injection or nasal drip, leading to nasopharyngeal colonization, acute severe pathological injury, and typical HFMD symptoms. Notably, the nasal drip group exhibited a longer viral excretion cycle and more severe pathological damage. In the subsequent study, rhesus monkeys infected with CVB3 through nasal drips also presented signs of HFMD symptoms, viral excretion, serum antibody conversion, viral nucleic acids and antigens, and the specific organ damages, particularly in the heart. Surprisingly, there were no significant differences in myocardial enzyme levels, and the clinical symptoms resembled those often associated with common, mild infections. In summary, the study successfully developed severe Syrian hamsters and mild rhesus monkey models for CVB3-induced HFMD. These models could serve as a basis for understanding the disease pathogenesis, conducting pre-trial prevention and evaluation, and implementing post-exposure intervention.


Subject(s)
Disease Models, Animal , Enterovirus B, Human , Hand, Foot and Mouth Disease , Macaca mulatta , Mesocricetus , Animals , Hand, Foot and Mouth Disease/virology , Hand, Foot and Mouth Disease/pathology , Enterovirus B, Human/pathogenicity , Antibodies, Viral/blood , Cricetinae , Female , Virus Shedding , Nasopharynx/virology , Male
17.
Microorganisms ; 12(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38399771

ABSTRACT

Coxsackieviruses (CVs) are common causes of infections and can be life-threatening. Unfortunately, rigorous studies guiding the clinician in interpreting CV serum antibody titer testing is lacking. To explore the epidemiology of circulating CVs and the serological test utility in aiding diagnosis of CV infections in our community, we obtained results of CV immunologic diagnostic tests between 2018 and 2022 from a regional healthcare database. For CV type A, rare individuals had positive CF (complement fixation) tests whereas all 16 individuals with IFA testing showed at least one positive serotype. For CV type B CF testing, 52.2% of 222 patients had at least one serotype positive, with B5 being most common and also the most common with higher titers (14.8% with ≥1:32). We found a significant reduction in seropositivity rate during the pandemic in 2020 compared to 2018, which continued through 2022 (OR: 0.2, 95% CI: 0.08-0.49, p-value < 0.001). During the pandemic, the seasonal pattern of positive tests varied from the pre-pandemic pattern. Testing for CVs was increased after the first year of the pandemic. Overall, the variability by month and seasonal change in our data support that CF testing can be used to identify recent CVB infection.

18.
Antiviral Res ; 223: 105824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309307

ABSTRACT

Coxsackievirus B3 (CVB3), one serotype of enteroviruses, can induce fatal myocarditis and hepatitis in neonates, but both treatment and vaccine are unavailable. Few reports tested antivirals to reduce CVB3. Several antivirals were developed against other enterovirus serotypes, but these antivirals failed in clinical trials due to side effects and drug resistance. Repurposing of clinical drugs targeting cellular factors, which enhance viral replication, may be another option. Parasite and cancer studies showed that the cellular protein kinase B (Akt) decreases interferon (IFN), apoptosis, and interleukin (IL)-6-induced STAT3 responses, which suppress CVB3 replication. Furthermore, miltefosine, the Akt inhibitor used in the clinic for parasite infections, enhances IL-6, IFN, and apoptosis responses in treated patients, suggesting that miltefosine could be the potential antiviral for CVB3. This study was therefore designated to test the antiviral effects of miltefosine against CVB3 in vitro and especially, in mice, as few studies test miltefosine in vitro, but not in vivo. In vitro results showed that miltefosine inhibited viral replication with enhanced activation of the cellular transcription factor, STAT3, which is reported to reduce CVB3 both in vitro and in mice. Notably, STAT3 knockdown abolished the anti-CVB3 activity of miltefosine in vitro. Mouse studies demonstrated that miltefosine pretreatment reduced CVB3 lethality of mice with decreased virus loads, organ damage, and apoptosis, but enhanced STAT3 activation. Miltefosine could be prophylaxis for CVB3 by targeting Akt to enhance STAT3 activation in the mechanism, which is independent of IFN responses and hardly reported in pathogen infections.


Subject(s)
Enterovirus Infections , Phosphorylcholine/analogs & derivatives , STAT3 Transcription Factor , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt , Apoptosis , Antigens, Viral , Enterovirus Infections/drug therapy , Interleukin-6 , Antiviral Agents/pharmacology
19.
Diabetologia ; 67(5): 811-821, 2024 May.
Article in English | MEDLINE | ID: mdl-38369573

ABSTRACT

AIMS/HYPOTHESIS: Infection with coxsackie B viruses (CVBs) can cause diseases ranging from mild common cold-type symptoms to severe life-threatening conditions. CVB infections are considered to be prime candidates for environmental triggers of type 1 diabetes. This, together with the significant disease burden of acute CVB infections and their association with chronic diseases other than diabetes, has prompted the development of human CVB vaccines. The current study evaluated the safety and immunogenicity of the first human vaccine designed against CVBs associated with type 1 diabetes in a double-blind randomised placebo-controlled Phase I trial. METHODS: The main eligibility criteria for participants were good general health, age between 18 and 45 years, provision of written informed consent and willingness to comply with all trial procedures. Treatment allocation (PRV-101 or placebo) was based on a computer-generated randomisation schedule and people assessing the outcomes were masked to group assignment. In total, 32 participants (17 men, 15 women) aged 18-44 years were randomised to receive a low (n=12) or high (n=12) dose of a multivalent, formalin-inactivated vaccine including CVB serotypes 1-5 (PRV-101), or placebo (n=8), given by intramuscular injections at weeks 0, 4 and 8 at a single study site in Finland. The participants were followed for another 24 weeks. Safety and tolerability were the primary endpoints. Anti-CVB IgG and virus-neutralising titres were analysed using an ELISA and neutralising plaque reduction assays, respectively. RESULTS: Among the 32 participants (low dose, n=12; high dose, n=12; placebo, n=8) no serious adverse events or adverse events leading to study treatment discontinuation were observed. Treatment-emergent adverse events considered to be related to the study drug occurred in 37.5% of the participants in the placebo group and 62.5% in the PRV-101 group (injection site pain, headache, injection site discomfort and injection site pruritus being most common). PRV-101 induced dose-dependent neutralising antibody responses against all five CVB serotypes included in the vaccine in both the high- and low-dose groups. Protective titres ≥8 against all five serotypes were seen in >90% of participants over the entire follow-up period. CONCLUSIONS/INTERPRETATION: The results indicate that the tested multivalent CVB vaccine is well tolerated and immunogenic, supporting its further clinical development. TRIAL REGISTRATION: ClinicalTrials.gov NCT04690426. FUNDING: This trial was funded by Provention Bio, a Sanofi company.


Subject(s)
Diabetes Mellitus, Type 1 , Adolescent , Adult , Female , Humans , Male , Young Adult , Antibodies, Neutralizing , Antibodies, Viral , Diabetes Mellitus, Type 1/drug therapy , Double-Blind Method , Vaccination , Vaccines, Combined
20.
Int J Biol Macromol ; 262(Pt 1): 129915, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325682

ABSTRACT

There is an increasing desire for bioplastics produced from renewable resources as an alternative to their petrochemical counterparts. These biopolymers have long-unnoticed antiviral properties. This study aimed to produce and characterize bioplastics by Parageobacillus toebii using low-cost substrates and determine their antiviral activity against coxsackievirus B4. Seven low-cost substrates (bagasse, water hyacinth, rice straw, rice water, sesame husks, molasses, and corn syrup) were compared with glucose for bioplastic precursor production. The highest bioplastic produced was from water hyacinth and glucose, followed by molasses, rice straw, rice water, sesame husks, and bagasse. Water hyacinth and glucose media were further optimized to increase the bioplastic precursor yield. The optimization of the media leads to increases in bioplastic precursor yields of 1.8-fold (3.456 g/L) and 1.496-fold (2.768 g/L), respectively. These bioplastics were further characterized by thermogravimetric analysis (TGA), Fourier-transformed infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR), and gas chromatography-mass spectrometry (GC-MS). They are thermostable, and their characterizations confirm the presence of polyhydroxybutyrate. The antiviral assay showed reasonable antiviral effects for bioplastics from water hyacinth (80.33 %) and glucose (55.47 %) media at 250 µg/mL maximum non-toxic concentrations (MNTC). The present investigation demonstrates a low-cost model for producing polyhydroxybutyrate bioplastic precursor for antiviral applications.


Subject(s)
Bacillaceae , Glucose , Polyhydroxybutyrates , Biopolymers/chemistry , Antiviral Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...