Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 428
Filter
1.
Gut Microbes ; 16(1): 2363012, 2024.
Article in English | MEDLINE | ID: mdl-38860458

ABSTRACT

The intestinal microbiota is an important environmental factor implicated in CRC development. Intriguingly, modulation of DNA methylation by gut microbiota has been reported in preclinical models, although the relationship between tumor-infiltrating bacteria and CIMP status is currently unexplored. In this study, we investigated tumor-associated bacteria in 203 CRC tumor cases and validated the findings using The Cancer Genome Atlas datasets. We assessed the abundance of Bacteroides fragilis, Escherichia coli, Fusobacterium nucleatum, and Klebsiella pneumoniae through qPCR analysis and observed enrichment of all four bacterial species in CRC samples. Notably, except for E. coli, all exhibited significant enrichment in cases of CIMP. This enrichment was primarily driven by a subset of cases distinguished by high levels of these bacteria, which we labeled as "Superhigh". The bacterial Superhigh status showed a significant association with CIMP (odds ratio 3.1, p-value = 0.013) and with MLH1 methylation (odds ratio 4.2, p-value = 0.0025). In TCGA CRC cases (393 tumor and 45 adj. normal), bacterial taxa information was extracted from non-human whole exome sequencing reads, and the bacterial Superhigh status was similarly associated with CIMP (odds ratio 2.9, p < 0.001) and MLH1 methylation (odds ratio 3.5, p < 0.001). Finally, 16S ribosomal RNA gene sequencing revealed high enrichment of Bergeyella spp. C. concisus, and F. canifelinum in CIMP-Positive tumor cases. Our findings highlight that specific bacterial taxa may influence DNA methylation, particularly in CpG islands, and contribute to the development and progression of CIMP in colorectal cancer.


Subject(s)
Bacteria , Colorectal Neoplasms , CpG Islands , DNA Methylation , Gastrointestinal Microbiome , Humans , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Female , Male , Middle Aged , Bacteroides fragilis/genetics , Bacteroides fragilis/isolation & purification , Aged , Phenotype
2.
Comput Biol Chem ; 112: 108107, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38875896

ABSTRACT

Spontaneous mutations are evolutionary engines as they generate variants for the evolutionary downstream processes that give rise to speciation and adaptation. Single nucleotide mutations (SNM) are the most abundant type of mutations among them. Here, we perform a meta-analysis to quantify the influence of selected global genomic parameters (genome size, genomic GC content, genomic repeat fraction, number of coding genes, gene count, and strand bias in prokaryotes) and local genomic features (local GC content, repeat content, CpG content and the number of SNM at CpG islands) on spontaneous SNM rates across the tree of life (prokaryotes, unicellular eukaryotes, multicellular eukaryotes) using wild-type sequence data in two different taxon classification systems. We find that the spontaneous SNM rates in our data are correlated with many genomic features in prokaryotes and unicellular eukaryotes irrespective of their sample sizes. On the other hand, only the number of coding genes was correlated with the spontaneous SNM rates in multicellular eukaryotes primarily contributed by vertebrates data. Considering local features, we notice that local GC content and CpG content significantly were correlated with the spontaneous SNM rates in the unicellular eukaryotes, while local repeat fraction is an important feature in prokaryotes and certain specific uni- and multi-cellular eukaryotes. Such predictive features of the spontaneous SNM rates often support non-linear models as the best fit compared to the linear model. We also observe that the strand asymmetry in prokaryotes plays an important role in determining the spontaneous SNM rates but the SNM spectrum does not.

3.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791280

ABSTRACT

Synchronous colorectal cancer (sCRC) is characterized by the occurrence of more than one tumor within six months of detecting the first tumor. Evidence suggests that sCRC might be more common in the serrated neoplasia pathway, marked by the CpG island methylator phenotype (CIMP), than in the chromosomal instability pathway (CIN). An increasing number of studies propose that CIMP could serve as a potential epigenetic predictor or prognostic biomarker of sCRC. Therapeutic drugs already used for treating CIMP-positive colorectal cancers (CRCs) are reviewed and drug selections for sCRC patients are discussed.


Subject(s)
Colorectal Neoplasms , CpG Islands , DNA Methylation , Phenotype , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , CpG Islands/genetics , Prognosis , Biomarkers, Tumor/genetics , Epigenesis, Genetic , Antineoplastic Agents/therapeutic use
4.
Biochem Biophys Rep ; 38: 101733, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38799114

ABSTRACT

RUNX2 is a transcription factor crucial for bone formation. Mutant mice with varying levels of Runx2 expression display dosage-dependent skeletal abnormalities, underscoring the importance of Runx2 dosage control in skeletal formation. RUNX2 activity is regulated by several molecular mechanisms, including epigenetic modification such as DNA methylation. In this study, we investigated whether targeted repressive epigenome editing including hypermethylation to the Runx2-DMR/CpG island shore could influence Runx2 expression using Cas9-based epigenome-editing tools. Through the transient introduction of CRISPRoff-v2.1 and gRNAs targeting Runx2-DMR into MC3T3-E1 cells, we successfully induced hypermethylation of the region and concurrently reduced Runx2 expression during osteoblast differentiation. Although the epigenome editing of Runx2-DMR did not impact the expression of RUNX2 downstream target genes, these results indicate a causal relationship between the epigenetic status of the Runx2-DMR and Runx2 transcription. Additionally, we observed that hypermethylation of the Runx2-DMR persisted for at least 24 days under growth conditions but decreased during osteogenic differentiation, highlighting an endogenous DNA demethylation activity targeting the Runx2-DMR during the differentiation process. In summary, our study underscore the usefulness of the epigenome editing technology to evaluate the function of endogenous genetic elements and revealed that the Runx2-DMR methylation is actively regulated during osteoblast differentiation, subsequently could influence Runx2 expression.

5.
Mol Hum Reprod ; 30(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38704863

ABSTRACT

Persistent and intense uterine contraction is a risk factor for preterm labor. We previously found that methyl-CpG-binding protein 2 (MeCP2), as a target of infection-related microRNA miR-212-3p, may play an inhibitory role in regulating myometrium contraction. However, the molecular mechanisms by which MeCP2 regulates myometrial contraction are still unknown. In this study, we found that MeCP2 protein expression was lower in myometrial specimens obtained from preterm labor cases, compared to those obtained from term labor cases. Herein, using RNA sequence analysis of global gene expression in human uterine smooth muscle cells (HUSMCs) following siMeCP2, we show that MeCP2 silencing caused dysregulation of the cholesterol metabolism pathway. Notably, MeCP2 silencing resulted in the upregulation of CYP27A1, the key enzyme involved in regulating cholesterol homeostasis, in HUSMCs. Methylation-specific PCR, chromatin immunoprecipitation, and dual luciferase reporter gene technology indicated that MeCP2 could bind to the methylated CYP27A1 promoter region and repress its transcription. Administration of siCYP27A1 in a lipopolysaccharide (LPS)-induced preterm labor mouse model delayed the onset of preterm labor. Human preterm myometrium and the LPS-induced preterm labor mouse model both showed lower expression of MeCP2 and increased expression of CYP27A1. These results demonstrated that aberrant upregulation of CYP27A1 induced by MeCP2 silencing is one of the mechanisms facilitating inappropriate myometrial contraction. CYP27A1 could be exploited as a novel therapeutic target for preterm birth.


Subject(s)
Methyl-CpG-Binding Protein 2 , Myometrium , Obstetric Labor, Premature , Uterine Contraction , Adult , Animals , Female , Humans , Mice , Pregnancy , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Cholesterol/metabolism , Lipopolysaccharides/pharmacology , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Myocytes, Smooth Muscle/metabolism , Myometrium/metabolism , Obstetric Labor, Premature/metabolism , Obstetric Labor, Premature/genetics , Promoter Regions, Genetic , Uterine Contraction/drug effects
6.
Br Poult Sci ; 65(3): 259-264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578288

ABSTRACT

1. This study focused on the relationship between MITF mRNA expression and plumage colour in quail and the effect of promoter methylation on the expression of MITF mRNA.2. The CDS region of MITF mRNA was cloned by RT-PCR, followed by DNA sequencing. The RT-qPCR method was used to analyse the expression levels of MITF mRNA in dorsal skin tissue in Korean quail and Beijing white quail. The promoter region of the MITF gene was cloned, and the CpG island was predicted by the CpGplot program. The methylation levels of the CpG island were analysed using BS-PCR technology.3. Quail MITF mRNA contains a 1,476 bp complete ORF, which encodes a 492 amino acid residue protein. The MITF protein has no signal peptide or transmembrane region. The expression of MITF mRNA in dorsal tissue of Korean quail was significantly higher than that in Beijing white quail (p < 0.01). Abundant cis-elements and a 346 bp CpG island were found in the promoter region of the MITF gene. The average methylation level of the CpG island was 22 (22%) in Korean quail, and 46 (30%) in Beijing white quail (p < 0.05).4. The hypermethylation of the MITF gene promoter region in Beijing white quail resulted in a decrease in expression level, which was related to white feather colour.


Subject(s)
Coturnix , CpG Islands , DNA Methylation , Feathers , Microphthalmia-Associated Transcription Factor , Pigmentation , Promoter Regions, Genetic , Animals , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Feathers/chemistry , Coturnix/genetics , Coturnix/metabolism , Coturnix/physiology , Pigmentation/genetics , Avian Proteins/genetics , Avian Proteins/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression , Base Sequence , Amino Acid Sequence , Male
7.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645208

ABSTRACT

Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc-fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711 it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal ligand. The Z7 domain adopts a stable tertiary structure upon metal binding. The NMR structure of Zn2+-bound Z7 shows the classical ßßα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenyalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80 °C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors. Our findings that Z7 can fold with only a subset of three metal ligands suggests the recent view that most everything about protein structure can be predicted through homology modeling might be premature for at least the resilient and versatile zinc-finger motif.

8.
Pathol Int ; 74(4): 167-186, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38482965

ABSTRACT

Careful microscopic observation of histopathological specimens, accumulation of large numbers of high-quality tissue specimens, and analysis of molecular pathology in relation to morphological features are considered to yield realistic data on the nature of multistage carcinogenesis. Since the morphological hallmark of cancer is disruption of the normal histological structure maintained through cell-cell adhesiveness and cellular polarity, attempts have been made to investigate abnormalities of the cadherin-catenin cell adhesion system in human cancer cells. It has been shown that the CDH1 tumor suppressor gene encoding E-cadherin is silenced by DNA methylation, suggesting that a "double hit" involving DNA methylation and loss of heterozygosity leads to carcinogenesis. Therefore, in the 1990s, we focused on epigenomic mechanisms, which until then had not received much attention. In chronic hepatitis and liver cirrhosis associated with hepatitis virus infection, DNA methylation abnormalities were found to occur frequently, being one of the earliest indications that such abnormalities are present even in precancerous tissue. Aberrant expression and splicing of DNA methyltransferases, such as DNMT1 and DNMT3B, was found to underlie the mechanism of DNA methylation alterations in various organs. The CpG island methylator phenotype in renal cell carcinoma was identified for the first time, and its therapeutic targets were identified by multilayer omics analysis. Furthermore, the DNA methylation profile of nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma was clarified in groundbreaking studies. Since then, we have developed diagnostic markers for carcinogenesis risk in NASH patients and noninvasive diagnostic markers for upper urinary tract cancer, as well as developing a new high-performance liquid chromatography-based diagnostic system for DNA methylation diagnosis. Research on the cancer epigenome has revealed that DNA methylation alterations occur from the precancerous stage as a result of exposure to carcinogenic factors such as inflammation, smoking, and viral infections, and continuously contribute to multistage carcinogenesis through aberrant expression of cancer-related genes and genomic instability. DNA methylation alterations at the precancerous stages are inherited by or strengthened in cancers themselves and determine the clinicopathological aggressiveness of cancers as well as patient outcome. DNA methylation alterations have applications as biomarkers, and are expected to contribute to diagnosis, as well as preventive and preemptive medicine.


Subject(s)
Carcinoma, Hepatocellular , Kidney Neoplasms , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Precancerous Conditions , Humans , Epigenomics , Non-alcoholic Fatty Liver Disease/pathology , Pathology, Molecular , Carcinoma, Hepatocellular/pathology , DNA Methylation , Carcinogenesis/genetics , Liver Neoplasms/pathology , Kidney Neoplasms/genetics , Precancerous Conditions/pathology , CpG Islands
9.
Biosci Rep ; 44(3)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38348744

ABSTRACT

DNA methylation is widely recognized to play a role in intracranial aneurysm (IA) pathogenesis. We investigated the levels of methylation of vestigial-like 3 (VGLL3) in IA and explored its potential as a prognostic indicator. A total of 48 patients with IA and 48 healthy controls were included in the present study. Methylation levels of CpG sites were assessed using bisulfite pyrosequencing, and levels of VGLL3, TEAD, and YAP in the blood were measured by real-time quantitative polymerase chain reaction testing. VGLL3 methylation was significantly higher in controls than in IA patients (P=0.001), and this phenomenon was more pronounced in females (P<0.001). Compared with the control group, the expression levels of VGLL3 and TEAD in the blood of IA patients were significantly increased, while YAP was significantly decreased. VGLL3 methylation was positively correlated with HDL (P=0.003) and female Lpa concentration (r = 0.426, P=0.03), and was also negatively correlated with age (P=0.003), APOE (P=0.005), and VGLL3 mRNA expression (P<0.001). Methylation and mRNA expression of VGLL3 may serve as indicators of IA risk in females (AUC = 0.810 and 0.809). VGLL3 methylation may participate in the pathogenesis of IA by regulating the expression of the VGLL3/TEAD/YAP pathway, and its gene methylation and expression levels have IA risk prediction value.


Subject(s)
Intracranial Aneurysm , Female , Humans , DNA Methylation , Intracranial Aneurysm/genetics , Prognosis , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Male
10.
Biochem Soc Trans ; 52(1): 151-161, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38288743

ABSTRACT

Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are transcriptional repressor complexes that play a fundamental role in epigenomic regulation and the cell-fate decision; these complexes are widely conserved in multicellular organisms. PRC1 is an E3 ubiquitin (ub) ligase that generates histone H2A ubiquitinated at lysine (K) 119 (H2AK119ub1), whereas PRC2 is a histone methyltransferase that specifically catalyzes tri-methylation of histone H3K27 (H3K27me3). Genome-wide analyses have confirmed that these two key epigenetic marks highly overlap across the genome and contribute to gene repression. We are now beginning to understand the molecular mechanisms that enable PRC1 and PRC2 to identify their target sites in the genome and communicate through feedback mechanisms to create Polycomb chromatin domains. Recently, it has become apparent that PRC1-induced H2AK119ub1 not only serves as a docking site for PRC2 but also affects the dynamics of the H3 tail, both of which enhance PRC2 activity, suggesting that trans-tail communication between H2A and H3 facilitates the formation of the Polycomb chromatin domain. In this review, we discuss the emerging principles that define how PRC1 and PRC2 establish the Polycomb chromatin domain and regulate gene expression in mammals.


Subject(s)
Genome-Wide Association Study , Histone Code , Animals , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/metabolism , Histones/metabolism , Chromatin , Polycomb Repressive Complex 2/genetics , Ubiquitin-Protein Ligases/metabolism , Mammals/metabolism
11.
Biochimie ; 219: 74-83, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37619809

ABSTRACT

Glioblastoma (GBM) is the most aggressive and frequent type of primary brain cancer in adult patients. One of the key molecular features associated with GBM pathogenesis is the dysfunction of PTEN oncosuppressor. In addition to PTEN gene, humans and several primates possess processed PTEN pseudogene (PTENP1) that gives rise to long non-coding RNA lncPTENP1-S. Regulation and functions of PTEN and PTENP1 are highly interconnected, however, the exact molecular mechanism of how these two genes affect each other remains unclear. Here, we analyzed the methylation level of the CpG islands (CpGIs) in the promoter regions of PTEN and PTENP1 in patient-derived GBM neurospheres. We found that increased PTEN methylation corelates with decreased PTEN mRNA level. Unexpectedly, we showed the opposite trend for PTENP1. Using targeted methylation and demethylation of PTENP1 CpGI, we demonstrated that DNA methylation increases lncPTENP1-S expression in the presence of wild type PTEN protein but decreases lncPTENP1-S expression if PTEN protein is absent. Further experiments revealed that PTEN protein binds to PTENP1 promoter region and inhibits lncPTENP1-S expression if its CpGI is demethylated. Interestingly, we did not detect any effect of lncPTENP1-S on the level of PTEN mRNA, indicating that in GBM cells PTENP1 is a downstream target of PTEN rather than its upstream regulator. Finally, we studied the functions of lncPTENP1-S and demonstrated that it plays a pro-oncogenic role in GBM cells by upregulating the expression of cancer stem cell markers and decreasing cell adhesion.


Subject(s)
Glioblastoma , MicroRNAs , Adult , Animals , Humans , MicroRNAs/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Pseudogenes , DNA Methylation , Glioblastoma/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Mol Carcinog ; 63(2): 266-274, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37846801

ABSTRACT

Helicobacter pylori induces DNA methylation in gastric mucosa, which links to gastric cancer (GC) risk. In contrast, CpG island methylator phenotype (CIMP) is defined as high levels of cancer-specific methylation and provides distinct molecular and clinicopathological features of GC. The association between those two types of methylation in GC remains unclear. We examined DNA methylation of well-validated H. pylori infection associated genes in GC and its adjacent mucosa and investigated its association with CIMP, various molecular subtypes and clinical features. We studied 50 candidate loci in 24 gastric samples to identify H. pylori infection associated genes. Identified loci were further examined in 624 gastric tissue from 217 primary GC, 217 adjacent mucosa, and 190 mucosae from cancer-free subjects. We identified five genes (IGF2, SLC16A2, SOX11, P2RX7, and MYOD1) as hypermethylated in H. pylori infected gastric mucosa. In non-neoplastic mucosa, methylation of H. pylori infection associated genes was higher in patients with GC than those without. In primary GC tissues, higher methylation of H. pylori infection associated genes correlated with CIMP-positive and its related features, such as MLH1 methylated cases. On the other hand, GC with lower methylation of these genes presented aggressive clinicopathological features including undifferentiated histopathology, advanced stage at diagnosis. H. pylori infection associated DNA methylation is correlated with CIMP, specific molecular and clinicopathological features in GC, supporting its utility as promising biomarker in this tumor type.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Symporters , Humans , DNA Methylation , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Helicobacter Infections/complications , Helicobacter Infections/genetics , Phenotype , CpG Islands/genetics , Monocarboxylic Acid Transporters/genetics , Symporters/genetics
13.
Gene ; 893: 147897, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37832806

ABSTRACT

The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.


Subject(s)
DNA Methylation , Semen , Sodium-Hydrogen Exchangers , Animals , Humans , Male , Mice , Rats , CpG Islands , DNA , Gene Expression Regulation , HEK293 Cells , Sodium-Hydrogen Exchangers/genetics
14.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693488

ABSTRACT

The SLC9C1 gene (which encodes the NHE10 protein) is essential for male fertility in both mice and humans, however the epigenetic mechanisms regulating its testis/sperm-specific gene expression have yet to be studied. Here we identify and characterize DNA regulatory elements of the SLC9C1 gene across three mammalian species: mouse, rat, and human. First, in silico analysis of these mammalian SLC9C1 genes identified a CpG island located upstream of the transcription start site in the same relative position in all three genes. Further analysis reveals that this CpG island behaves differently, with respect to gene regulatory activity, in the mouse SLC9C1 gene than it does in the rat and human SLC9C1 gene. The mouse SLC9C1 CpG island displays strong promoter activity by itself and seems to have a stronger gene regulatory effect than either the rat or human SLC9C1 CpG islands. While the function of the upstream SLC9C1 CpG island may be divergent across the three studied species, it appears that the promoters of these three mammalian SLC9C1 genes share similar DNA methylation-sensitive regulatory mechanisms. All three SLC9C1 promoter regions are differentially methylated in lung and testis, being more hypermethylated in lung relative to the testis, and DNA sequence alignments provide strong evidence of primary sequence conservation. Luciferase assays reveal that in vitro methylation of constructs containing different elements of the three SLC9C1 genes largely exhibit methylation-sensitive promoter activity (reduced promoter activity when methylated) in both HEK 293 and GC-1spg cells. In total, our data suggest that the DNA methylation-sensitive elements of the mouse, rat, and human SLC9C1 promoters are largely conserved, while the upstream SLC9C1 CpG island common to all three species seems to perform a different function in mouse than it does in rat and human. This work provides evidence that while homologous genes can all be regulated by DNA methylation-dependent epigenetic mechanisms, the location of the specific cis-regulatory elements responsible for this regulation can differ across species.

15.
BMC Biol ; 21(1): 179, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612705

ABSTRACT

BACKGROUND: The radiation of mammals at the extinction of the dinosaurs produced a plethora of new forms-as diverse as bats, dolphins, and elephants-in only 10-20 million years. Behind the scenes, adaptation to new niches is accompanied by extensive innovation in large families of genes that allow animals to contact the environment, including chemosensors, xenobiotic enzymes, and immune and barrier proteins. Genes in these "outward-looking" families are allelically diverse among humans and exhibit tissue-specific and sometimes stochastic expression. RESULTS: Here, we show that these tandem arrays of outward-looking genes occupy AT-biased isochores and comprise the "tissue-specific" gene class that lack CpG islands in their promoters. Models of mammalian genome evolution have not incorporated the sharply different functions and transcriptional patterns of genes in AT- versus GC-biased regions. To examine the relationship between gene family expansion, sequence content, and allelic diversity, we use population genetic data and comparative analysis. First, we find that AT bias can emerge during evolutionary expansion of gene families in cis. Second, human genes in AT-biased isochores or with GC-poor promoters experience relatively low rates of de novo point mutation today but are enriched for non-synonymous variants. Finally, we find that isochores containing gene clusters exhibit low rates of recombination. CONCLUSIONS: Our analyses suggest that tolerance of non-synonymous variation and low recombination are two forces that have produced the depletion of GC bases in outward-facing gene arrays. In turn, high AT content exerts a profound effect on their chromatin organization and transcriptional regulation.


Subject(s)
Chiroptera , Isochores , Animals , Humans , Mammals/genetics , Chiroptera/genetics , Acclimatization , Alleles
16.
Cells ; 12(15)2023 08 03.
Article in English | MEDLINE | ID: mdl-37566072

ABSTRACT

Retinoid X receptor (RXR) heterodimerizes with the PPAR nuclear hormone receptor and regulates its downstream events. We investigated the effects of RXR agonists (LG100754, bexarotene, AGN194204, and LG101506) on lenalidomide's anti-myeloma activity, T cell functions, and the level of glucose and lipids in vivo. Genetic overexpression and CRISPR/Cas9 knockout experiments were conducted in multiple myeloma (MM) cell lines and Jurkat T cell lines to determine the roles of CRBN in RXR-agonist mediated effects. A xenograft mouse model of MM was established to determine the combination effect of LG100754 and lenalidomide. The combination of RXR agonists and lenalidomide demonstrated synergistic activity in increasing CRBN expression and killing myeloma cells. Mechanistically, the RXR agonists reduced the binding of PPARs to the CRBN promoter, thereby relieving the repressor effect of PPARs on CRBN transcription. RXR agonists downregulated the exhaustion markers and increased the activation markers of Jurkat T cells and primary human T cells. Co-administration of LG100754 and lenalidomide showed enhanced anti-tumor activity in vivo. LG100754 retained its glucose- and lipid-lowering effects. RXR agonists demonstrate potential utility in enhancing drug sensitivity and T-cell function in the treatment of myeloma.


Subject(s)
Lenalidomide , Multiple Myeloma , Retinoid X Receptors , Animals , Humans , Mice , Glucose , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Multiple Myeloma/drug therapy , Peroxisome Proliferator-Activated Receptors , Retinoid X Receptors/agonists , T-Lymphocytes
17.
J Mol Med (Berl) ; 101(9): 1097-1112, 2023 09.
Article in English | MEDLINE | ID: mdl-37486375

ABSTRACT

Non-coding RNA (ncRNA) species, mainly long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been currently imputed for lesser or greater involvement in human erythropoiesis. These RNA subsets operate within a complex circuit with other epigenetic components and transcription factors (TF) affecting chromatin remodeling during cell differentiation. Lymphoma/leukemia-related (LRF) TF exerts higher occupancy on DNA CpG rich sites and is implicated in several differentiation cell pathways and erythropoiesis among them and also directs the epigenetic regulation of hemoglobin transversion from fetal (HbF) to adult (HbA) form by intervening in the γ-globin gene repression. We intended to investigate LRF activity in the evolving landscape of cells' commitment to the erythroid lineage and specifically during HbF to HbA transversion, to qualify this TF as potential repressor of lncRNAs and miRNAs. Transgenic human erythroleukemia cells, overexpressing LRF and further induced to erythropoiesis, were subjected to expression analysis in high LRF occupancy genetic loci-producing lncRNAs. LRF abundance in genetic loci transcribing for studied lncRNAs was determined by ChIP-Seq data analysis. qPCRs were performed to examine lncRNA expression status. Differentially expressed miRNA pre- and post-erythropoiesis induction were assessed by next-generation sequencing (NGS), and their promoter regions were charted. Expression levels of lncRNAs were correlated with DNA methylation status of flanked CpG islands, and contingent co-regulation of hosted miRNAs was considered. LRF-binding sites were overrepresented in LRF overexpressing cell clones during erythropoiesis induction and exerted a significant suppressive effect towards lncRNAs and miRNA collections. Based on present data interpretation, LRF's multiplied binding capacity across genome is suggested to be transient and associated with higher levels of DNA methylation. KEY MESSAGES: During erythropoiesis, LRF displays extensive occupancy across genetic loci. LRF significantly represses subsets of lncRNAs and miRNAs during erythropoiesis. Promoter region CpG islands' methylation levels affect lncRNA expression. MiRNAs embedded within lncRNA loci show differential regulation of expression.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Adult , Humans , Epigenesis, Genetic , Erythropoiesis , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics
18.
Front Mol Neurosci ; 16: 971565, 2023.
Article in English | MEDLINE | ID: mdl-37122620

ABSTRACT

Objective: Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuropathology and cognitive decline and associated with age. The comprehensive deoxyribonucleic acid methylation (DNAm)-transcriptome profile association analysis conducted in this study aimed to establish whole-genome DNAm profiles and explore DNAm-related genes and their potential functions. More appropriate biomarkers were expected to be identified in terms of AD. Materials and methods: Illumina 450KGSE59685 dataset AD (n = 54) and HC (n = 21) and ribonucleic-acid-sequencing data GSE118553 dataset AD patients (n = 21) and HCs (n = 13) were obtained from the gene expression omnibus database before a comprehensive DNAm-transcriptome profile association analysis, and we performed functional enrichment analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses (KEGG). Three transgenic mice and three wild-type mice were used to validate the hub genes. Results: A total of 18,104 DNAm sites in healthy controls (n = 21) and AD patients (n = 54) were surveyed across three brain regions (superior temporal gyrus, entorhinal cortex, and dorsolateral prefrontal cortex). With the addition of the transcriptome analysis, eight hypomethylated-related highly expressed genes and 61 hypermethylated-related lowly expressed genes were identified. Based on 69 shared differentially methylated genes (DMGs), the function enrichment analysis indicated Guanosine triphosphate enzymes (GTPase) regulator activity, a synaptic vesicle cycle, and tight junction functioning. Following this, mice-based models of AD were constructed, and five hub DMGs were verified, which represented a powerful, disease-specific DNAm signature for AD. Conclusion: The results revealed that the cross-brain region DNAm was altered in those with AD. The alterations in DNAm affected the target gene expression and participated in the key biological processes of AD. The study provides a valuable epigenetic resource for identifying DNAm-based diagnostic biomarkers, developing effective drugs, and studying AD pathogenesis.

19.
Epigenetics Chromatin ; 16(1): 17, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37170330

ABSTRACT

The inheritance of acquired traits in mammals is a highly controversial topic in biology. Recently, Takahashi et al. (Cell 186:715-731, 2023) have reported that insertion of CpG-free DNA into a CpG island (CGI) can induce DNA methylation of the CGI and that this aberrant methylation pattern can be transmitted across generations, even after removal of the foreign DNA. These results were interpreted as evidence for transgenerational inheritance of acquired DNA methylation patterns. Here, we discuss several interpretational issues raised by this study and consider alternative explanations.


Subject(s)
DNA Methylation , DNA , Animals , CpG Islands , Mutation , Mammals/genetics
20.
Comput Struct Biotechnol J ; 21: 1921-1929, 2023.
Article in English | MEDLINE | ID: mdl-36936815

ABSTRACT

Lung adenocarcinoma (LUAD) is the most prevalent lung cancer and one of the leading causes of death. Previous research found a link between LUAD and Aldehyde Dehydrogenase 2 (ALDH2), a member of aldehyde dehydrogenase gene (ALDH) superfamily. In this study, we identified additional useful prognostic markers for early LUAD identification and targeting LUAD therapy by analyzing the expression level, epigenetic mechanism, and signaling activities of ALDH2 in LUAD patients. The obtained results demonstrated that ALDH2 gene and protein expression significantly downregulated in LUAD patient samples. Furthermore, The American Joint Committee on Cancer (AJCC) reported that diminished ALDH2 expression was closely linked to worse overall survival (OS) in different stages of LUAD. Considerably, ALDH2 showed aberrant DNA methylation status in LUAD cancer. ALDH2 was found to be downregulated in the proteomic expression profile of several cell biology signaling pathways, particularly stem cell-related pathways. Finally, the relationship of ALDH2 activity with stem cell-related factors and immune system were reported. In conclusion, the downregulation of ALDH2, abnormal DNA methylation, and the consequent deficit of stemness signaling pathways are relevant prognostic and therapeutic markers in LUAD.

SELECTION OF CITATIONS
SEARCH DETAIL
...