Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Scand J Med Sci Sports ; 34(7): e14692, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982705

ABSTRACT

Few studies have explored the kinetics of performance and perceived fatigability during high-intensity interval training, despite its popularity. We aimed to characterize the kinetics of fatigability and recovery during an 8 × 4-min HIIT protocol, hypothesizing that most muscle function impairment would occur during the initial four intervals. Fifteen healthy males and females (mean ± standard deviation; age = 26 ± 5 years, V̇O2max = 46.8 ± 6.1 mL·kg-1·min-1) completed eight, 4-min intervals at 105% of critical power with 3 min of rest. Maximal voluntary knee extension contractions (MVCs) coupled with electrical nerve stimulation were performed at baseline and after the first, fourth, and eighth intervals. MVC, potentiated twitch force (Pt), and Db10:100 ratio all declined throughout HIIT (p < 0.05). MVC sharply declined after interval 1 (-15 ± 9% relative to baseline; p < 0.05) and had only further declined after interval 8 (-26 ± 11%; p < 0.05), but not interval 4 (-19 ± 13%; p > 0.05). Pt and Db10:100 also sharply declined after interval 1 (Pt: -18 ± 13%, Db10:100: -14 ± 20%; p < 0.05) and further declined after interval 4 (Pt: -35 ± 19%, Db10:100: -30 ± 20%; p < 0.05) but not interval 8 (Pt: -41 ± 19%; Db10:100: -32 ± 18%; p > 0.05). Voluntary activation did not significantly change across the HIIT protocol (p > 0.05). Evoked force recovery was significantly blunted as more intervals were completed: after interval 1, Pt recovered by 7 ± 11% compared to -6 ± 7% recovery after interval 8 (p < 0.05). Ratings of perceived effort, fatigue, and leg pain rose throughout the session (p < 0.05 for each) and were greater (effort and fatigue) for females (p < 0.05). Otherwise, males and females exhibited similar performance fatigability kinetics, with contractile function declines blunted in response to additional intervals.


Subject(s)
Electric Stimulation , High-Intensity Interval Training , Muscle Fatigue , Humans , Male , Muscle Fatigue/physiology , Adult , Female , Young Adult , Knee/physiology , Time Factors , Perception/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology
2.
J Appl Physiol (1985) ; 136(6): 1591-1603, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38695354

ABSTRACT

We investigated the effect of exercise intensity and tolerable duration on the development of exercise-induced diaphragm and expiratory muscle fatigue. Ten healthy adults (25 ± 5 yr; 2 females) cycled to intolerance on three separate occasions: 1) 5% below critical power ( 0.05). In conclusion, the magnitude of exercise-induced diaphragm fatigue was greater after longer-duration severe exercise than after shorter-duration severe and heavy exercise. By contrast, the magnitude of exercise-induced expiratory muscle fatigue was unaffected by exercise intensity and tolerable duration.NEW & NOTEWORTHY Exercise-induced respiratory muscle fatigue contributes to limiting exercise tolerance. Accordingly, better understanding the exercise conditions under which respiratory muscle fatigue occurs is warranted. Although heavy-intensity as well as short- and long-duration severe-intensity exercise performed to intolerance elicit diaphragm and expiratory muscle fatigue, we find, for the first time, that the relationship between exercise intensity, exercise duration, and the magnitude of exercise-induced fatigue is different for the diaphragm compared with the expiratory muscles.


Subject(s)
Diaphragm , Exercise , Muscle Fatigue , Humans , Muscle Fatigue/physiology , Male , Female , Diaphragm/physiology , Diaphragm/physiopathology , Adult , Exercise/physiology , Young Adult , Oxygen Consumption/physiology , Respiratory Muscles/physiology , Exhalation/physiology
3.
J Sport Exerc Psychol ; 46(2): 66-72, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38580300

ABSTRACT

In articles on the methodology of studies investigating affective and enjoyment responses to high-intensity interval training, we noted that, occasionally, exercise conditions described as involving "high" intensity exhibited heart rates that were only as high as, or even lower than, heart rates recorded during comparator conditions described as being of "moderate" intensity. Drs. Vollaard, Metcalfe, Kinghorn, Jung, and Little suggest instead that exercise intensity in high-intensity interval-training studies can be defined in terms of percentages of peak workload. Although we maintain that defining exercise intensity in terms of percentages of maximal heart rate is a suboptimal way to quantify the degree of homeostatic perturbations in response to exercise, we are unconvinced that definitions of intensity relying solely on workload are appropriate for studies investigating affective and enjoyment responses to exercise. The reason is that affect is theorized to have evolved to relay information about homeostatic perturbations to consciousness.


Subject(s)
Exercise , High-Intensity Interval Training , Humans , Exercise/psychology , Pleasure/physiology , Happiness , High-Intensity Interval Training/methods , High-Intensity Interval Training/psychology , Heart Rate/physiology , Oxygen Consumption/physiology
4.
Eur J Appl Physiol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668851

ABSTRACT

PURPOSE: The critical force (CF) concept, differentiating steady and non-steady state conditions, extends the critical power paradigm for sport climbing. This study aimed to validate CF for finger flexors derived from the 4 min all-out test as a boundary for the highest sustainable work intensity in sport climbers. METHODS: Twelve participants underwent multiple laboratory visits. Initially, they performed the 4 min intermittent contraction all-out test for CF determination. Subsequent verification visits involved finger-flexor contractions at various intensities, including CF, CF -2 kg, CF -4 kg, and CF -6 kg, lasting for 720 s or until failure, while monitoring muscle-oxygen dynamics of forearm muscles. RESULTS: CF, determined from the mean force of last three contractions, was measured at 20.1 ± 5.7 kg, while the end-force at 16.8 ± 5.2 kg. In the verification trials, the mean time to failure at CF was 440 ± 140 s, with only one participant completing the 720 s task. When the load was continuously lowered (-2 kg, -4 kg, and -6 kg), a greater number of participants (38%, 69%, and 92%, respectively) successfully completed the 720 s task. Changes of muscle-oxygen dynamics showed a high variability and could not clearly distinguish between exhaustive and non-exhaustive trials. CONCLUSIONS: CF, based on the mean force of the last three contractions, failed to reliably predict the highest sustainable work rate. In contrast, determining CF as the end-force of the last three contractions exhibited a stronger link to sustainable work. Caution is advised in interpreting forearm muscle-oxygen dynamics, lacking sensitivity for nuanced metabolic responses during climbing-related tasks.

5.
Int J Exerc Sci ; 17(4): 115-128, 2024.
Article in English | MEDLINE | ID: mdl-38665850

ABSTRACT

The addition of wearable technology during a 3-minute all-out overground running test (3MAOT) could provide additional insights to guide training and coaching strategies. The purpose of this study was to explore the relationships between critical speed (CS) and biomechanical parameters (cadence, stride length, vertical oscillation, stance time, form power, leg spring stiffness, and impact loading rate), and changes in biomechanical parameters throughout the 3MAOT. Sixty-three (male, n=37, female, n=26) recreationally active college-aged (23.4±3.9 years) subjects completed a 3MAOT while wearing a Stryd foot-pod. The correlations between CS and biomechanical parameters were evaluated using Pearson coefficients. Stepwise multiple linear regressions were used to test if biomechanical parameters could predict CS. Stance time and impact loading rate explained 69% and 63% of the variance in CS, respectively (R2=0.69, p<0.05; R2=0.63, p<0.05). Step-wise multiple linear regression analysis indicated that vertical oscillation, stance time, form power, leg spring stiffness, and impact loading rate explained 90% of the variance in CS (R2=0.90, p<0.05). Throughout the 3MAOT, changes in cadence (-29%), stride length (57%), vertical oscillation (-8%), stance time (82%), form power (-5%), leg spring stiffness (-24%), and impact loading rate (-48%) were observed. Interventions such as auditory cueing or training designed to improve CS should focus on maintaining large impact loading rates and short stance times, and efforts should be made to enhance an athlete's ability to maintain cadence, leg spring stiffness, vertical oscillation, and form power throughout the 3MAOT.

6.
Sensors (Basel) ; 24(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276342

ABSTRACT

Current research on the interference of GNSS (Global Navigation Satellite System) array antennas focuses on the single interference effect and the improvement of interference hardware capability, while the multi-degree-of-freedom (DOF) interference model and mechanism remain to be fully studied. Aiming at this problem, this paper analyzes the preconditions for the definition of anti-jamming degrees of freedom and the characteristics of super-DOF interference through formula derivation and simulation. First, by analyzing the influence of the number of interfering signals on the angular resolution, the prerequisite of the definition of anti-interference degrees of freedom in the airspace is proposed. Second, the definition of anti-interference degrees of freedom is used to calculate the change rule of the critical power of the interference under different numbers of interfering signals. Finally, the influence of super-DOF interference on the array antenna is analyzed. The results show that the prerequisite for the anti-interference freedom of the array antenna is that the distribution interval of the interfering signal is greater than 15°, taking a four-array element uniform circular array antenna as an example. The critical interference power of the array antenna decreases by about 15 dB when the number of interfering signals exceeds the degrees of freedom of the array antenna's interference immunity, provided that the interference resolution is satisfied. The conclusions of this paper give the critical power change rule of multi-DOF interference and the effect of super-DOF interference, as well as the prerequisites for the setting of interference signals, which can be used, for example, in the deployment of distributed interference sources and the development of anti-jamming algorithms.

8.
J Theor Biol ; 578: 111696, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38070705

ABSTRACT

Muscle fatigue is the decay in the ability of muscles to generate force, and results from neural and metabolic perturbations. This article presents an integrative mathematical model that describes the decrease in maximal force capacity (i.e. fatigue) over exercises performed at intensities above the critical force Fc (i.e. severe domain). The model unifies the previous Critical Power Model and All-Out Model and can be applied to any exercise described by a changing force F over time. The assumptions of the model are (i) isokinetic conditions, an intensity domain of Fc

Subject(s)
Exercise , Muscle Fatigue , Exercise/physiology , Muscles/physiology , Models, Theoretical , Muscle, Skeletal/physiology
9.
Sports (Basel) ; 11(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38133105

ABSTRACT

The current investigation compared the acute oxygen consumption (VO2) response of two high-intensity interval exercises (HIIE), fast start (FSHIIE), and steady power (SPHIIE), which matched w prime (W') depletion. Eight cyclists completed an incremental max test and a three-minute all-out test (3MT) to determine maximal oxygen consumption (VO2max), critical power (CP), and W'. HIIE sessions consisted of 3 X 4 min intervals interspersed by 3 min of active recovery, with W' depleted by 60% (W'target) within each working interval. SPHIIE depleted the W'target consistently throughout the 3 min intervals, while FSHIIE depleted the W'target by 50% within the first minute, with the remaining 50% depleted evenly across the remainder of the interval. The paired samples t-test revealed no differences in the percentage of training time spent above 90% of VO2max (PT ≥ 90% VO2max) between SPHIIE and FSHIIE with an average of 25.20% and 26.07%, respectively. Pairwise comparisons indicated a difference between minute 1 peak VO2, minute 2, and minute 3, while no differences were present between minutes 2 and 3. The results suggest that when HIIE formats are matched based on W' expenditure, there are no differences in PT ≥ 90% VO2max or peak VO2 during each interval.

10.
Metabolites ; 13(11)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37999207

ABSTRACT

Computer simulations using a dynamic model of the skeletal muscle bioenergetic system, involving the Pi-double-threshold mechanism of muscle fatigue, demonstrate that the training-induced increase in V·O2max, increase in critical power (CP) and acceleration of primary phase II of the V·O2 on kinetics (decrease in t0.63) is caused by elevated OXPHOS activity acting through a decrease in and slowing of the Pi (inorganic phosphate) rise during the rest-to-work transition. This change leads to attenuation of the reaching by Pi of Pipeak, peak Pi at which exercise is terminated because of fatigue. The delayed (in time and in relation to V·O2 increase) Pi rise for a given power output (PO) in trained muscle causes Pi to reach Pipeak (in very heavy exercise) after a longer time and at a higher V·O2; thus, exercise duration is lengthened, and V·O2max is elevated compared to untrained muscle. The diminished Pi increase during exercise with a given PO can cause Pi to stabilize at a steady state less than Pipeak, and exercise can continue potentially ad infinitum (heavy exercise), instead of rising unceasingly and ultimately reaching Pipeak and causing exercise termination (very heavy exercise). This outcome means that CP rises, as the given PO is now less than, and not greater than CP. Finally, the diminished Pi increase (and other metabolite changes) results in, at a given PO (moderate exercise), the steady state of fluxes (including V·O2) and metabolites being reached faster; thus, t0.63 is shortened. This effect of elevated OXPHOS activity is possibly somewhat diminished by the training-induced decrease in Pipeak.

11.
Exp Physiol ; 108(11): 1409-1421, 2023 11.
Article in English | MEDLINE | ID: mdl-37712355

ABSTRACT

The effect of different exercise intensities on the magnitude of post-exercise hypotension has not been rigorously clarified with respect to the metabolic thresholds that partition discrete exercise intensity domains (i.e., critical power and the gas exchange threshold (GET)). We hypothesized that the magnitude of post-exercise hypotension would be greater following isocaloric exercise performed above versus below critical power. Twelve non-hypertensive men completed a ramp incremental exercise test to determine maximal oxygen uptake and the GET, followed by five exhaustive constant load trials to determine critical power and W' (work available above critical power). Subsequently, criterion trials were performed at four discrete intensities matched for total work performed (i.e., isocaloric) to determine the impact of exercise intensity on post-exercise hypotension: 10% above critical power (10% > CP), 10% below critical power (10% < CP), 10% above GET (10% > GET) and 10% below GET (10% < GET). The post-exercise decrease (i.e., the minimum post-exercise values) in mean arterial (10% > CP: -12.7 ± 8.3 vs. 10% < CP: v3.5 ± 2.9 mmHg), diastolic (10% > CP: -9.6 ± 9.8 vs. 10% < CP: -1.4 ± 5.0 mmHg) and systolic (10% > CP: -23.8 ± 7.0 vs. 10% < CP: -9.9 ± 4.3 mmHg) blood pressures were greater following exercise performed 10% > CP compared to all other trials (all P < 0.01). No effects of exercise intensity on the magnitude of post-exercise hypotension were observed during exercise performed below critical power (all P > 0.05). Critical power represents a threshold above which the magnitude of post-exercise hypotension is greatly augmented. NEW FINDINGS: What is the central questions of this study? What is the influence of exercise intensity on the magnitude of post-exercise hypotension with respect to metabolic thresholds? What is the main finding and its importance? The magnitude of post-exercise hypotension is greatly increased following exercise performed above critical power. However, below critical power, there was no clear effect of exercise intensity on the magnitude of post-exercise hypotension.


Subject(s)
Post-Exercise Hypotension , Male , Humans , Exercise Tolerance/physiology , Exercise/physiology , Oxygen Consumption/physiology , Exercise Test/methods
12.
J Sports Sci ; 41(10): 1025-1032, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37722819

ABSTRACT

The metabolic rate (VO2) at the maximal metabolic steady state (MMSS) is generally not different from the VO2 at the respiratory compensation point (RCP). Based on this, it is often assumed that the heart rate (HR) at RCP would also be similar to that at MMSS. The study aims to compare the HR at RCP with that at MMSS. Seventeen individuals completed a ramp-incremental test, a series of severe-intensity trials to estimate critical power and two-to-three 30-min trials to confirm MMSS. The HR at RCP was retrieved by linear interpolation of the ramp-VO2/HR relationship and compared to the HR at MMSS recorded at 10, 15, 20, 25 and 30 min. The HR at RCP was 166 ± 12 bpm. The HR during MMSS at the timepoints of interest was 168 ± 8, 171 ± 8, 175 ± 9, 177 ± 9 and 178 ± 10 bpm. The HR at RCP was not different from the HR at MMSS at 10 min (P > 0.05) but lower at subsequent timepoints (P < 0.05) with this difference becoming progressively larger. For all timepoints, limits of agreement were large (~30 bpm). Given these differences and the variability at the individual level, the HR at RCP cannot be used to control the metabolic stimulus of endurance exercise.


Subject(s)
Oxygen Consumption , Pulmonary Gas Exchange , Humans , Oxygen Consumption/physiology , Heart Rate , Pulmonary Gas Exchange/physiology , Exercise Test
14.
Eur J Sport Sci ; 23(12): 2368-2378, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37470470

ABSTRACT

ABSTRACTThe aim of this study was to investigate the effects of different recovery power outputs on the reconstitution of W' and to develop a dynamic bi-exponential model of W' during depletion and reconstitution. Ten trained cyclists (mass 71.7 ± 8.4 kg; V̇O2max 60.0 ± 6.3 ml·kg-1·min-1) completed three incremental ramps (20 W·min-1) to the limit of tolerance on each of six occasions with recovery durations of 30 and 240 s. Recovery power outputs varied between 50 W (LOW); 60% of critical power (CP) (MOD) and 85% of CP (HVY). W' reconstitution was measured following each recovery and fitted to a bi-exponential model. Amplitude and time constant (τ) parameters were then determined via regression analysis accounting for relative intensity and duration to produce a dynamic model of W'. W' reconstitution slowed disproportionately as recovery power output increased (p < 0.001) and increased with recovery duration (p < 0.001). The amplitudes of each recovery component were strongly correlated to W' reconstitution after 240 s at HVY (r = 0.95), whilst τ parameters were found to be related to the fractional difference between recovery power and CP. The predictive capacity of the resultant model was assessed against experimental data with no differences found between predicted and experimental values of W' reconstitution (p > 0.05). The dynamic bi-exponential model of W' accounting for varying recovery intensities closely described W' kinetics in trained cyclists facilitating real-time decisions about pacing and tactics during competition. The model can be customised for individuals from known CP and W' and a single additional test session.HighlightsA dynamic bi-exponential model of W' accounting for both varying power output and duration.Individual customisation of the model can be achieved with a single specific test session.W' reconstitution slows disproportionally with increasing intensity after repeated bouts.


Subject(s)
Exercise Test , Health Expenditures , Humans , Kinetics , Oxygen Consumption , Physical Endurance
15.
Eur J Appl Physiol ; 123(10): 2283-2294, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37272943

ABSTRACT

When facing a long-distance race, athletes and practitioners could develop an efficient pacing strategy and training paces if an accurate performance estimate of the target distance is achieved. Therefore, this study aims to determine the validity of different empirical models (i.e. critical power [CP], Power law and Peronnet) to predict long-duration power output (i.e. 60 min) when using two or three time trial configurations. In a 5-week training period, fifteen highly trained athletes performed nine-time trials (i.e. 1, 2, 3, 4, 5, 10, 20, 30, and 60 min) in a randomized order. Their power-duration curves were defined through the work-time (CPwork), power-1/time (CP1/time), two-parameter hyperbolic (CP2hyp), three-parameter hyperbolic (CP3hyp) CP models using different two- and three-time trial configurations. The undisclosed proprietary CP models of the Stryd (CPstryd) and Golden Cheetah training software (CPcheetah) were also computed as well as the non-asymptotic Power law and Peronnet models. These were extrapolated to the 60-min power output and compared to the actual performance. The shortest valid configuration (95% confidence interval < 12 W) for CPwork and CP1/time was 3-30 min (Bias: 8.3 [4.9 to 11.7] W), for CPstryd was 10-30 min (Bias: 4.2 [- 1.0 to 9.4] W), for CP2hyp, CP3hyp and CPcheetah was 3-5-30 min (Bias < 5.7 W), for Power law was 1-3-10 min (- 1.0 [- 11.9 to 9.9] W), and for Peronnet was 4-20 min (- 3.0 [- 10.2 to 4.3] W). All the empirical models provided valid estimates when the two or three predicting trial configurations selected attended each model fitting needs.


Subject(s)
Running , Humans , Athletes , Bicycling , Exercise Test , Oxygen Consumption , Physical Endurance
16.
Percept Mot Skills ; 130(4): 1663-1686, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308451

ABSTRACT

This is a two-part study to determine one or more reliable physiological anchors for perception of effort. The purpose of Study 1 was to compare ratings of perceived exertion (RPE) at the ventilatory threshold (VT) in running, cycling, and upper body exercise with the premise that if RPE at VT did not differ across exercise modes, VT might provide a unique set of physiological inputs for perception of effort. For 27 participants, values for VT and for RPE at VT (Borg 6 to 20 scale) averaged 9.4 km⋅h-1 (SD = 0.7) and 11.9 km⋅h-1 (SD = 1.4) respectively in running, 135 W (SD = 24) and 12.1 W (SD = 1.6) in cycling, and 46 W (SD = 5) and 12.0 W (SD = 1.7) in upper body exercise. RPE did not differ, suggesting that VT may anchor effort perception. In Study 2, 10 participants performed cycle ergometer exercise for 30 minutes at their VT (M = 101 W, SD = 21), at their maximal lactate steady state (M = 143 W, SD = 22), and at their critical power (CP; M = 167 W, SD = 23). Mean end-exercise RPE were 12.1 (SD = 2.1), 15.0 (SD = 1.9), and 19.0 (SD = 0.5), respectively. The very close clustering of RPE during exercise at CP hints that the confluence of physiological responses at CP may (also) serve as a determinant in perception of effort.


Subject(s)
Oxygen Consumption , Physical Exertion , Humans , Physical Exertion/physiology , Oxygen Consumption/physiology , Exercise/physiology , Lactic Acid , Exercise Test , Perception/physiology , Heart Rate/physiology
17.
J Sports Sci Med ; 22(1): 68-74, 2023 03.
Article in English | MEDLINE | ID: mdl-36876184

ABSTRACT

Maximal Lactate steady-state (MLSS) demarcates sustainable from unsustainable exercise and is used for evaluation/monitoring of exercise capacity. Still, its determination is physically challenging and time-consuming. This investigation aimed at validating a simple, submaximal approach based on blood lactate accumulation ([Δlactate]) at the third minute of cycling in a large cohort of men and women of different ages. 68 healthy adults (40♂, 28♀, 43 ± 17 years (range 19-78), VO2max 45 ± 11 ml-1·kg-1·min-1 (25-68)) performed 3-5 constant power output (PO) trials with a target duration of 30 minutes to determine the PO corresponding to MLSS. During each trial, [Δlactate] was calculated as the difference between the third minute and baseline. A multiple linear regression was computed to estimate MLSS based on [Δlactate], subjects` gender, age and the trial PO. The estimated MLSS was compared to the measured value by paired t-test, correlation, and Bland-Altman analysis. The group mean value of estimated MLSS was 180 ± 51 W, not significantly different from (p = 0.98) and highly correlated with (R2 = 0.89) measured MLSS (180 ± 54 watts). The bias between values was 0.17 watts, and imprecision 18.2 watts. This simple, submaximal, time- and cost-efficient test accurately and precisely predicts MLSS across different samples of healthy individuals (adjusted R2 = 0.88) and offers a practical and valid alternative to the traditional MLSS determination.


Subject(s)
Bicycling , Lactic Acid , Adult , Male , Female , Humans , Aged , Exercise , Linear Models
19.
J Sport Exerc Psychol ; 45(2): 92-109, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36898386

ABSTRACT

Recent studies have concluded that high-intensity interval training should be seen as a "viable alternative" to, and may be more enjoyable than, moderate-intensity continuous exercise. If true, these claims have the potential to revolutionize the science and practice of exercise, establishing high-intensity interval training as not only a physiologically effective exercise modality but also a potentially sustainable one. However, these claims stand in contrast to voluminous evidence according to which high levels of exercise intensity are typically experienced as less pleasant than moderate levels. To help researchers, peer reviewers, editors, and critical readers appreciate possible reasons for the apparently conflicting results, we present a checklist that identifies crucial methodological elements in studies investigating the effects of high-intensity interval training on affect and enjoyment. This second installment covers how "high-intensity" and "moderate-intensity" experimental conditions are defined, the timing of assessments of affect, the modeling of affective responses, and data interpretation.


Subject(s)
High-Intensity Interval Training , Pleasure , Humans , High-Intensity Interval Training/psychology , Checklist , Oxygen Consumption/physiology , Happiness
20.
Exp Physiol ; 108(4): 581-594, 2023 04.
Article in English | MEDLINE | ID: mdl-36710454

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does prescribing exercise intensity using physiological thresholds create a more homogeneous exercise stimulus than using traditional intensity anchors? What is the main finding and its importance? Prescribing exercise using physiological thresholds, notably critical power, reduced the variability in exercise tolerance and acute metabolic responses. At higher intensities, approaching or exceeding the transition from heavy to severe intensity exercise, the imprecision of using fixed % V ̇ O 2 max ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$  as an intensity anchor becomes amplified. ABSTRACT: The objective of this study was to determine whether the variability in exercise tolerance and physiological responses is lower when exercise is prescribed relative to physiological thresholds (THR) compared to traditional intensity anchors (TRAD). Ten individuals completed a series of maximal exercise tests and a series of moderate (MOD), heavy (HVY) and severe intensity (HIIT) exercise bouts prescribed using THR intensity anchors (critical power and gas exchange threshold) and TRAD intensity anchors (maximum oxygen uptake; V ̇ O 2 max ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ ). There were no differences in exercise tolerance or acute response variability between MODTHR and MODTRAD . All individuals completed HVYTHR but only 30% completed HVYTRAD . Compared to HVYTHR , where work rates were all below critical power, work rates in HVYTRAD exceeded critical power in 70% of individuals. There was, however, no difference in acute response variability between HVYTHR and HVYTRAD . All individuals completed HIITTHR but only 20% completed HIITTRAD . The variability in peak (F = 0.274) and average (F = 0.318) blood lactate responses was lower in HIITTHR compared to HIITTRAD . The variability in W' depletion (the finite work capacity above critical power) after the final interval bout was lower in HIITTHR compared to HIITTRAD (F = 0.305). Using physiological thresholds to prescribe exercise intensity reduced the heterogeneity in exercise tolerance and physiological responses to exercise spanning the boundary between the heavy and severe intensity domains. To increase the precision of exercise intensity prescription, it is recommended that, where possible, physiological thresholds are used in place of V ̇ O 2 max ${\dot V_{{{\rm{O}}_{\rm{2}}}{\rm{max}}}}$ .


Subject(s)
Exercise Tolerance , Oxygen Consumption , Humans , Exercise Tolerance/physiology , Oxygen Consumption/physiology , Pulmonary Gas Exchange/physiology , Oxygen , Exercise/physiology , Exercise Test
SELECTION OF CITATIONS
SEARCH DETAIL
...