Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.388
Filter
1.
Stress Biol ; 4(1): 33, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38981936

ABSTRACT

Global crop production is severely affected by environmental factors such as drought, salinity, cold, flood etc. Among these stresses, drought is one of the major abiotic stresses reducing crop productivity. It is expected that drought conditions will further increase because of the increasing global temperature. In general, viruses are seen as a pathogen affecting the crop productivity. However, several researches are showing that viruses can induce drought tolerance in plants. This review explores the mechanisms underlying the interplay between viral infections and the drought response mechanisms in plants. We tried to address the molecular pathways and physiological changes induced by viruses that confer drought tolerance, including alterations in hormone signaling, antioxidant defenses, scavenging the reactive oxygen species, role of RNA silencing and miRNA pathway, change in the expression of several genes including heat shock proteins, cellulose synthase etc. Furthermore, we discuss various viruses implicated in providing drought tolerance and examine the range of plant species exhibiting this phenomenon. By applying current knowledge and identifying gaps in understanding, this review aims to provide valuable insights into the complex dynamics of virus-induced drought tolerance in plants, paving the way for future research directions and practical applications in sustainable agriculture.

2.
J Exp Bot ; 75(13): 3754-3757, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982746

ABSTRACT

This article comments on: Turc B, Sahay S, Haupt J, de Oliveira Santos T, Bai G, Glowacka K. 2024. Up-regulation of non-photochemical quenching improves water use efficiency and reduces whole-plant water consumption under drought in Nicotianatabacum. Journal of Experimental Botany 75, 3959-3972.


Subject(s)
Agriculture , Water , Water/metabolism , Agriculture/methods , Droughts
3.
Ecol Evol ; 14(7): e11662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38983700

ABSTRACT

Crop wild relatives (CWR) provide a valuable resource for improving crops. They possess desirable traits that confer resilience to various environmental stresses. To fully utilize crop wild relatives in breeding and conservation programs, it is important to understand the genetic basis of their adaptation. Landscape genomics associates environments with genomic variation and allows for examining the genetic basis of adaptation. Our study examined the differences in allele frequency of 15,416 single nucleotide polymorphisms (SNPs) generated through genotyping by sequencing approach among 153 accessions of 15 wild eggplant relatives and two cultivated species from Africa, the principal hotspot of these wild relatives. We also explored the correlation between these variations and the bioclimatic and soil conditions at their collection sites, providing a comprehensive understanding of the genetic signals of environmental adaptation in African wild eggplant. Redundancy analysis (RDA) results showed that the environmental variation explained 6% while the geographical distances among the collection sites explained 15% of the genomic variation in the eggplant wild relative populations when controlling for population structure. Our findings indicate that even though environmental factors are not the main driver of selection in eggplant wild relatives, it is influential in shaping the genomic variation over time. The selected environmental variables and candidate SNPs effectively revealed grouping patterns according to the environmental characteristics of sampling sites. Using four genotype-environment association methods, we detected 396 candidate SNPs (2.5% of the initial SNPs) associated with eight environmental factors. Some of these SNPs signal genes involved in pathways that help adapt to environmental stresses such as drought, heat, cold, salinity, pests, and diseases. These candidate SNPs will be useful for marker-assisted improvement and characterizing the germplasm of this crop for developing climate-resilient eggplant varieties. The study provides a model for applying landscape genomics to other crops' wild relatives.

4.
J Sci Food Agric ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984444

ABSTRACT

BACKGROUND: Reserved arable lands in China is of great significance for rationally allocating crop planting structures, alleviating the pressure of grain imports, and protecting food security. Owing to data acquisition limitations, obtaining the spatial distribution of reserved arable lands at large spatial scales is relatively rare, and there is little information on predicting the suitability, production capacity, and ecological effects of crop cultivation in reserved arable lands. This study obtained the distribution of reserved arable lands in China by applying restrictive factors, and used the Food and Agriculture Organisation of the United Nations (FAO) suitability index for eight crops to obtain a spatial distribution map of suitable crops, proposed a cropland ecological efficiency index (CEEI) to analyse the ecological impact of crop cultivation in reserved arable lands. RESULTS: China possesses approximately 3.93 million hectares of viable reserved arable lands comprising primarily grasslands (67.68%), sandy land (8.11%), saline-alkali land (20.68%), and bare land (3.53%). The average CEEI for the eight crops under irrigation conditions ranges from 0.844 to 0.865, and that under rain-fed conditions (excluding rice) ranges from 0.609 to 0.779. CONCLUSION: We proposed the development of rain-fed agriculture with sorghum as the primary crop in the central part of Shanxi and Inner Mongolia, while promoting the cultivation of rapeseed and soybeans in the eastern parts of Heilongjiang, Jilin, and Inner Mongolia. Overall, the development of irrigation agriculture focusing on wheat and barley should be pursued only when water resources are guaranteed, particularly in north-western regions such as Gansu, Ningxia, Xinjiang, Qinghai, and Shaanxi. © 2024 Society of Chemical Industry.

5.
J Econ Entomol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984916

ABSTRACT

The majority of field corn, Zea mays L., in the southeastern United States has been genetically engineered to express insecticidal toxins produced by the soil bacterium, Bacillus thuringiensis (Bt). Field corn is the most important mid-season host for corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), which has developed resistance to all Cry toxins in Bt corn. From 2020 to 2023, corn earworm pupae were collected from early- and late-planted pyramided hybrids expressing Bt toxins and non-Bt near-isolines in North and South Carolina (16 trials). A total of 5,856 pupae were collected across all trials, with 55 and 88% more pupae collected in later-planted trials relative to early plantings in North and South Carolina, respectively. Only 20 pupae were collected from hybrids expressing Cry1F + Cry1Ab + Vip3A20 across all trials. Averaged across trials, Cry1A.105 + Cry2Ab2 hybrids reduced pupal weight by 6 and 9% in North and South Carolina, respectively, relative to the non-Bt near-isoline. Cry1F + Cry1Ab hybrids reduced pupal weight on average by 3 and 8% in North and South Carolina, respectively, relative to the non-Bt near-isoline. The impact of the Bt toxins on pupal weight varied among trials. When combined with data from 2014 to 2019 from previous studies, a significant decline in the percent reduction in pupal weight over time was found in both states and hybrid families. This study demonstrates a continued decline in the sublethal impacts of Bt toxins on corn earworm, emphasizing the importance of insect resistance management practices.

6.
Plant Biotechnol J ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975807

ABSTRACT

Decades of studies have shown that Bt corn, by reducing insect damage, has lower levels of mycotoxins (fungal toxins), such as aflatoxin and fumonisin, than conventional corn. We used crop insurance data to infer that this benefit from Bt crops extends to reducing aflatoxin risk in peanuts: a non-Bt crop. In consequence, we suggest that any benefit-cost assessment of how transgenic Bt crops affect food safety should not be limited to assessing those crops alone; because the insect pest control offered by Bt crops affects the food safety profile of other crops grown nearby. Specifically, we found that higher Bt corn and Bt cotton planting rates in peanut-growing areas of the United States were associated with lower aflatoxin risk in peanuts as measured by aflatoxin-related insurance claims filed by peanut growers. Drought-related insurance claims were also lower: possibly due to Bt crops' suppression of insects that would otherwise feed on roots, rendering peanut plants more vulnerable to drought. These findings have implications for countries worldwide where policies allow Bt cotton but not Bt food crops to be grown: simply planting a Bt crop may reduce aflatoxin and drought stress in nearby food crops, resulting in a safer food supply through an inter-crop "halo effect."

7.
aBIOTECH ; 5(2): 262-277, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974863

ABSTRACT

Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.

8.
Heliyon ; 10(12): e32434, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975170

ABSTRACT

Our knowledge of fluorine's unique and complex properties has significantly increased over the past 20 years. Consequently, more sophisticated and innovative techniques have emerged to incorporate this feature into the design of potential drug candidates. In recent years, researchers have become interested in synthesizing fluoro-sulphonamide compounds to discover new chemical entities with distinct and unexpected physical, chemical, and biological characteristics. The fluorinated sulphonamide molecules have shown significant biomedical importance. Their potential is not limited to biomedical applications but also includes crop protection. The discovery of novel fluorine and Sulfur compounds has highlighted their importance in the chemical sector, particularly in the agrochemical and medicinal fields. Recently, several fluorinated sulphonamide derivatives have been developed and frequently used by agriculturalists to produce food for the growing global population. These molecules have also exhibited their potential in health by inhibiting various human diseases. In today's world, it is crucial to have a steady supply of innovative pharmaceutical and agrochemical molecules that are highly effective, less harmful to the environment, and affordable. This review summarizes the available information on the activity of Fluorine and Sulphonamide compounds, which have proven active in pharmaceuticals and agrochemicals with excellent environmental and human health approaches. Moreover, it focuses on the current literature on the chemical structures, the application of fluorinated sulphonamide compounds against various pathological conditions, and their effectiveness in crop protection.

9.
Plant Sci ; 346: 112171, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969140

ABSTRACT

The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.

10.
Ann Bot ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980751

ABSTRACT

BACKGROUND AND AIMS: Five species of cotton (Gossypium) were exposed to 38°C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (G. australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS: Plants were grown at daytime maxima of 30°C or 38°C for 25 d, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, as well as electron transport rates (ETR) and carboxylation efficiency (CE) in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape were quantified), along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS: Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38°C than at 30°C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and leaf numbers both contributed to these contrasting growth responses, with fewer, smaller leaves at 38°C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced ETR and CE in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Similarly, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS: These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38°C.

11.
Plant Reprod ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954018

ABSTRACT

KEY MESSAGE: This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.

12.
Trends Plant Sci ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955584

ABSTRACT

14-3-3 proteins, ubiquitously present in eukaryotic cells, are regulatory proteins involved in a plethora of cellular processes. In plants, they have been studied in the context of metabolism, development, and stress responses. Recent studies have highlighted the pivotal role of 14-3-3 proteins in regulating plant immunity. The ability of 14-3-3 proteins to modulate immune responses is primarily attributed to their function as interaction hubs, mediating protein-protein interactions and thereby regulating the activity and overall function of their binding partners. Here, we shed light on how 14-3-3 proteins contribute to plant defense mechanisms, the implications of their interactions with components of plant immunity cascades, and the potential for leveraging this knowledge for crop improvement strategies.

13.
Plant Dis ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956954

ABSTRACT

Epicoccum sorghinum is a notorious fungal pathogen that causes leaf spot symptoms on a wide range of plants, leading to devastating losses in crop production and quality. Here, all reports regarding the occurrence and management of E. sorghinum are covered for the first time. E. sorghinum has been detected in tropical and subtropical climate areas during the rainy season, mainly from March to August, since 2016. Although E. sorghinum shows broad host spectrum, the disease incidence is especially notorious in cereal crops and ornamental plants, suggesting that these plants are especially susceptible. Control methods based on synthetic fungicides, plant extracts, and microbial biocontrol agents have been reported. However, most agents were applied using only in vitro conditions, restricting the information about their actual applicability in field conditions. Additionally, E. sorghinum can colonize cereal grains and synthesize the carcinogenic mycotoxin tenuazonic acid, posing an enormous hazard for human health. Furthermore, although E. sorghinum is an emerging pathogen that is currently causing yield penalties in important crops, there is lack of information about its pathogenic mechanisms and virulence factors, and there is currently no commercial antifungal agent to manage E. sorghinum. Collectively, it is imperative to conduct in vivo studies to determine the efficacy of antifungal agents and the most effective methods of application in order to develop suitable management strategies against E. sorghinum.

14.
Plant Dis ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956958

ABSTRACT

Fusarium rot on melon fruit has become an important postharvest disease for producers worldwide, typically involving multiple Fusarium pathogens (Khuna et al. 2022; Medeiros Araújo et al. 2021). In 2022, Fusarium fruit rot of muskmelon (Cucumis melo var. conomon) occurred sporadically in a field at Huainan Academy of Agricultural Sciences (32.658193º N, 117.064922º E) with an incidence of about 10%. Among these diseased muskmelons, a fruit exhibiting a white to yellowish colony athe intersection of the diseased and healthy tissues was collected and labeled TGGF22-17. The streak plate method was employed to isolate fungal spores on Bengal Red PDA (potato dextrose agar), which were then incubated at 25℃ in darkness. Following isolation and purification, a single-spore strain, TGGF22-17, was obtained and analyzed using morphological characters on PDA, synthetic nutrient agar (SNA) and carnation leaf agar (CLA) (Leslie and Summerell 2006), along with molecular identification. Colours were rated according to the color charts of Kornerup and Wanscher (1978). Based on the colony morphology on PDA, the isolate displayed a rosy buff or buff color with a white to buff margin. The colony margin was undulate, with the reverse transitioning from amber-yellow to honey-yellow. Aerial macroconidia on SNA were thin-walled, hyaline, mostly 3-5 septate, falcate, and measured 18.5-46.4 (x̄=34.2) × 2.9-4.8 (x̄ =3.9) µm in size (n =50). Sporodochial macroconidia on CLA were mostly five-septate with long apical and basal cells, exhibiting dorsiventral curvature. They were hyaline, with the apical cell hooked to tapering and the basal cell foot-shaped, measuring 46.5-89.6 (x̄ =72.3) × 3.5-5.0 (x̄ =4.3) µm in size (n = 100). Portions of three loci (TEF-1α, RPB1 and RPB2) were amplified and sequenced as described by Wang et al. (2019). Sequences were deposited in GenBank with accession number PP196583 to PP196585. The three gene sequences (TEF-1α, RPB1 and RPB2) of strain TGGF2022-17 shared 99.5% (629/632bp), 97.9% (1508/1540 bp) and 99.9% (1608/1609 bp) identity to the ex-type strain F. ipomoeae LC12165 respectively by pairwise DNA alignments on the FUSARIOID-ID database (https://www.fusarium.org). Phylogenetic analysis of the partial TEF-1α and RPB2 sequences with PhyloSuite (Zhang et al. 2020) showed the isolated fungus clustered with F. ipomoeae. Based on the morphological and phylogenetic analyses, TGGF22-17 was identified as F. ipomoeae. Pathogenicity tests were performed on healthy melons, which were surface-sterilized with 75% alcohol and wounded using a sterilized inoculation needle. A 4-mm diameter plug from a 7-day-old SNA culture of TGGF22-17 was aseptically inserted in the middle of the wound, sealed with plastic bag after absorbent cotton was included to maintain moisture. Five melons were each inoculated at three points. Noncolonized PDA agar plugs served as the negative control. The inoculated and uninoculated plugs were removed approximately 48 hours after inoculation. The melon inoculated with TGGF22-17 exhibited water-soaked black lesions 48h post-inoculation, resulting in a 100% infection rate (15/15). After 7 days, mycelium was obseved on the inoculated melons. No disease symptoms were observed on the uninoculated melons. To fulfill Koch's postulates, fungi were isolated from the inoculated fruit and confirmed as F. ipomoeae by morphological observation. Fusarium ipomoeae has been reported to cause fruit rot on winter squash (Cucurbita maxima) in Japan (Kitabayashi et al. 2023). To our knowledge, this is the first report of fruit rot on muskmelon caused by F. ipomoeae in China and this report will be valuable for monitoring and management of fruit rot disease on muskmelons.

15.
Plant Dis ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949762

ABSTRACT

Since its debut in 1982, The Land has embodied Walt Disney's vision, capturing the attention of millions of EPCOT guests with venues focusing on agriculture and environmental stewardship and sustainability. The Land pavilion spans over eight acres in the World Nature section of EPCOT at the Walt Disney World Resort in Lake Buena Vista, Florida. The pavilion houses three attractions, namely Soarin' Around the World, Awesome Planet, and the Living with The Land boat ride, complemented by a greenhouse walking tour entitled Behind the Seeds and two restaurants. Each attraction derives inspiration from nature and challenges mankind to be responsible stewards of planet earth. This feature article focuses on the Living with The Land boat ride attraction, which traverses greenhouses showcasing agricultural technologies and crops from around the world. The sections below describe both how various show elements are designed to engage guests and how the show is made possible by applying relevant science and technology.

16.
Article in English | MEDLINE | ID: mdl-38951399

ABSTRACT

The growing demand for agricultural products, driven by the Green Revolution, has led to a significant increase in food production. However, the demand is surpassing production, making food security a major concern, especially under climatic variation. The Indian agriculture sector is highly vulnerable to extreme rainfall, drought, pests, and diseases in the present climate change scenario. Nonetheless, the key agriculture sub-sectors such as livestock, rice cultivation, and biomass burning also significantly contribute to greenhouse gas (GHG) emissions, a driver of global climate change. Agriculture activities alone account for 10-12% of global GHG emissions. India is an agrarian economy and a hub for global food production, which is met by intensive agricultural inputs leading to the deterioration of natural resources. It further contributes to 14% of the country's total GHG emissions. Identifying the drivers and best mitigation strategies in the sector is thus crucial for rigorous GHG mitigation. Therefore, this review aims to identify and expound the key drivers of GHG emissions in Indian agriculture and present the best strategies available in the existing literature. This will help the scientific community, policymakers, and stakeholders to evaluate the current agricultural practices and uphold the best approach available. We also discussed the socio-economic, and environmental implications to understand the impacts that may arise from intensive agriculture. Finally, we examined the current national climate policies, areas for further research, and policy amendments to help bridge the knowledge gap among researchers, policymakers, and the public in the national interest toward GHG reduction goals.

17.
Data Brief ; 54: 110286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962187

ABSTRACT

This study provides sequence datasets of endophytic and rhizobacteria of jute using 16S rRNA gene sequencing. The plant samples were first surface sterilized and DNA of the bacteria from soil and jute roots and stem was extracted using Quick-DNA™ Fungal/Bacterial Miniprep Kit. The purified DNA was amplified and subjected to polymerase chain reaction using forward and reverse primers. The PCR products were sequenced on Applied Biosystems ABI 3500XL Genetic Analyser (Applied Biosystems, ThermoFisher Scientific). The sequences were analyzed using BioEdit version 7.2.5 and then BLAST on NCBI. The identifiable bacteria include the rhizobacteria, Citrobacter fruendii RZS23 (accession number: CP024673.1), endophytic bacteria, Bacillus cereus EDR23 (accession number: LN890242.1), and Morganella morganii EDS23 (accession number: KR094121.1). The plant growth-promoting traits exhibited by these bacteria suggest their future exploration as bioinoculants.

18.
Arch Microbiol ; 206(8): 341, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967784

ABSTRACT

Soil salinization poses a great threat to global agricultural ecosystems, and finding ways to improve the soils affected by salt and maintain soil health and sustainable productivity has become a major challenge. Various physical, chemical and biological approaches are being evaluated to address this escalating environmental issue. Among them, fully utilizing salt-tolerant plant growth-promoting bacteria (PGPB) has been labeled as a potential strategy to alleviate salt stress, since they can not only adapt well to saline soil environments but also enhance soil fertility and plant development under saline conditions. In the last few years, an increasing number of salt-tolerant PGPB have been excavated from specific ecological niches, and various mechanisms mediated by such bacterial strains, including but not limited to siderophore production, nitrogen fixation, enhanced nutrient availability, and phytohormone modulation, have been intensively studied to develop microbial inoculants in agriculture. This review outlines the positive impacts and growth-promoting mechanisms of a variety of salt-tolerant PGPB and opens up new avenues to commercialize cultivable microbes and reduce the detrimental impacts of salt stress on plant growth. Furthermore, considering the practical limitations of salt-tolerant PGPB in the implementation and potential integration of advanced biological techniques in salt-tolerant PGPB to enhance their effectiveness in promoting sustainable agriculture under salt stress are also accentuated.


Subject(s)
Bacteria , Crops, Agricultural , Salt Stress , Soil Microbiology , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Bacteria/metabolism , Bacteria/genetics , Bacteria/growth & development , Plant Development , Salt Tolerance , Plant Growth Regulators/metabolism , Soil/chemistry , Salt-Tolerant Plants/microbiology , Salt-Tolerant Plants/growth & development , Salinity
19.
Plant Dis ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971960

ABSTRACT

Onion (Allium cepa L.) is the most produced vegetable after tomato worldwide and is grown on about 15,000 ha in Germany. In Lampertheim, Hesse in southwest Germany (49°40'02.3"N, 8°26'00.0"E) bulbs of the cultivar 'Red Baron F1' were harvested in September 2023 in an apparently healthy state. Four months later some of the onions showed rotting symptoms, which could not be assigned to a known storage disease. At first, the bulbs became glassy, later they showed soft rot. They originated from a field located in a growing region severely affected by "Syndrome Basses Richesses" (SBR). 'Candidatus Arsenophonus phytopathogenicus' as well as 'Candidatus Phytoplasma solani' are associated with this disease in sugar beet (Gatineau et al. 2002). Moreover, 'Ca. A. phytopathogenicus' was recently reported in association of bacterial wilt and yellowing in potato (Behrmann et al. 2023). Both phloem-restricted bacteria are vectored by the polyphagous planthopper Pentastiridius leporinus (Therhaag et al. 2024), which is highly abundant in this region. To examine, if the unknown symptoms in onion might be related to the presence of these pathogens, DNA of 69 bulbs showing a different degree of softening were analyzed. The samples were tested for the presence of 'Ca. Phytoplasma solani' in a TaqMan assay (Behrmann et al. 2022). All showed negative results. To demonstrate the presence of 'Ca. A. phytopathogenicus', universal and genus-specific primers for the amplification of 16S rDNA and a real-time qPCR assay amplifying an hsp20 fragment were employed (Christensen et al. 2004, Zübert and Kube 2021). Two bulbs of the five positive samples were in an apparently healthy state, the other three showed light to moderate softening symptoms. The 16S rDNA fragments from two samples were sequenced on both strands and aligned. Both fragments were homologous. One fragment of 1474 bp fragment showing 100% homology to the 16S rDNA from SBR (accession no. AY057392) was submitted to GenBank (accession no. PP400342). Other taxa of 'Ca. Arsenophonus' showed 16S rDNA homologies of less than 99.3 %. To corroborate the finding onion samples were subjected to PCR reactions employing genus-specific primers for the conserved tufB, secY and manA gene, which had been derived from multiple alignments of 'Ca. A. spp' sequence submissions (Sela et al. 1989, Lee et al. 2010). The tufB, secY and manA primers amplified fragments of about 980 bp, 640 bp and 930 bp, respectively, from all previously positive samples. Samples which had been tested negative for 'Ca. P. phytopathogenicus' remained negative. Fragments from two accessions were sequenced and the sequences from both isolates were 100 % identical. A BLAST search of the partial tufB gene (acc. no. PP950434) showed 98.57 % sequence identity to a yet unnamed Arsenophonus endosymbiont (acc. no. OZ026540) and 91.85 to 91.83 % to 'Ca. A. nasoniae' and 'Ca. A. apicola', respectively. A similar result was obtained for the partial secY sequence (acc. no. PP950433). The manA sequence (acc. no. PP942231) was identical to a partial sequence of 'Ca. A. phytopathogenicus' strain HN (acc. no. OK335757) and 97.42 % to 'Ca. A. nasoniae and about 87 % to related Arsenophonus species. The finding of 'Ca. A. phytopathogenicus' in onion is novel and might indicate an expanding host range of vector and pathogen in the regional crop rotation. As a correlation between the pathogen and the soft rot symptom is unclear at present, further investigations are needed.

20.
Plant Dis ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971962

ABSTRACT

Xanthium strumarium, known as cocklebur, is an annual herb and has been used in traditional Chinese medicine. In October 2020, powdery mildew-like disease signs and symptoms were observed on X. strumarium grown in a crop field, Xinxiang city, Henan Province, China (35.36076° N, 113.93467° E). The specimen (PX-XS2023) was stored in Xinxiang Key Laboratory of Plant Stress Biology. White colonies in irregular or coalesced circular shaped-lesions were abundant on both ad- and abaxial surfaces of leaves and covered up to 99 % of the leaf area. Some of the infected leaves were senesced. More than 70 % of plants (n = 130) exhibited these signs and symptoms. Conidiophores were straight or slightly curved, 55 to 160 × 11 to 13 µm composed of foot-cells, shorter cells and conidia. Conidia were ellipsoid to oval, 29 to 40 × 14 to 20 µm (n = 50), with a length/width ration of 2.0 to 2.5, containing fibrosin bodies. Dark brown to black chasmothecia were found on infected leaves. The appendages were mycelium-shaped and at the base of scattered or gregarious chasmothecia (n = 50, 70 to 120 µm in diameter). Asci were 55 to 80 × 50 to 65 µm (n=30). These morphological characteristics were consistent with those of Podosphaera xanthii (Braun and Cook 2012). The internal transcribed spacer (ITS) region and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) region of the fungus (PX-XS2023) were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990) and GAPDH1/GAPDH3R (Bradshaw et al. 2022) according to a previously reported method (Zhu et al. 2022). The resulting sequences were respectively deposited into GenBank (Accession No. MW300956 and PP236083). BLASTn analysis indicated that the sequences were respectively 99.82 % (564/565) and 100% (272/272) identical to P. xanthii (MT260063 and ON075658). The phylogenetic analysis indicated that the strain PX-XS2023 and P. xanthii were clustered into a same branch. Therefore, the causal agent of powdery mildew on X. strumarium was P. xanthii. To conduct pathogenicity assays, mature leaves of five healthy X. strumarium (height in 50 centimeters) were inoculated with fungal conidia by gently pressing surfaces of infested leaves onto leaves of healthy plants (Zhu et al. 2020). Five untreated plants served as controls. The controls and inoculated plants were separately maintained in greenhouses (humidity, 60%; light/dark, 16 h/8 h; temperature, 18°C). Eight days post-inoculation, signs of powdery mildew were detectable on inoculated plants, however, the controls were asymptomatic. Thus, the fungal pathogen was morphologically and molecularly identified and confirmed as P. xanthii. This powdery mildew caused by P. xanthii was previously reported on X. strumarium in Korea, Russia and India (Farr and Rossman, 2021). In addition, P. xanthii was recorded on X. strumarium in Xinjiang Province, China (Tai 1979). However, this is the first report of P. xanthii on X. strumarium in central China, where is around 3000 km away from Xinjiang Province with geographically differences. The sudden presence of powdery mildew caused by P. xanthii may adversely affect plant health and thus reduce medical value of X. strumarium. Therefore, the identification and confirmation of P. xanthii infecting X. strumarium enhance the knowledge on the hosts of this pathogen in China and will provide fundamental information for disease control in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...