Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739790

ABSTRACT

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Subject(s)
Animal Migration , Birds , Genetic Speciation , Animals , Animal Migration/physiology , Birds/genetics , Birds/physiology , Birds/classification , Ecosystem , Altitude , Biological Evolution
2.
J Integr Plant Biol ; 66(6): 1192-1205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639466

ABSTRACT

The mountains of Southwest China comprise a significant large mountain range and biodiversity hotspot imperiled by global climate change. The high species diversity in this mountain system has long been attributed to a complex set of factors, and recent large-scale macroevolutionary investigations have placed a broad timeline on plant diversification that stretches from 10 million years ago (Mya) to the present. Despite our increasing understanding of the temporal mode of speciation, finer-scale population-level investigations are lacking to better refine these temporal trends and illuminate the abiotic and biotic influences of cryptic speciation. This is largely due to the dearth of organismal sampling among closely related species and populations, spanning the incredible size and topological heterogeneity of this region. Our study dives into these evolutionary dynamics of speciation using genomic and eco-morphological data of Stellera chamaejasme L. We identified four previously unrecognized cryptic species having indistinct morphological traits and large metapopulation of evolving lineages, suggesting a more recent diversification (~2.67-0.90 Mya), largely influenced by Pleistocene glaciation and biotic factors. These factors likely influenced allopatric speciation and advocated cyclical warming-cooling episodes along elevational gradients during the Pleistocene. The study refines the evolutionary timeline to be much younger than previously implicated and raises the concern that projected future warming may influence the alpine species diversity, necessitating increased conservation efforts.


Subject(s)
Biodiversity , Genetic Speciation , Thymelaeaceae , Thymelaeaceae/genetics , Phylogeny , Ice Cover
3.
Ecol Evol ; 13(8): e10355, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529589

ABSTRACT

Species boundaries are difficult to establish in groups with very similar morphology. As an alternative, it has been suggested to integrate multiple sources of data to clarify taxonomic problems in taxa where cryptic speciation processes have been reported. This is the case of the harvest mouse Reithrodontomys mexicanus, which has a problematic taxonomy history as it is considered a complex species. Here, we evaluate the cryptic diversity of R. mexicanus using an integrative taxonomy approach in order to detect candidate lineages at the species level. The molecular analysis used one mitochondrial (cytb) and two nuclear (Fgb-I7 and IRBP) genes. Species hypotheses were suggested based on three molecular delimitation methods (mPTP, bGMYC, and STACEY) and cytb genetic distance values. Skull and environmental space differences between the delimited species were also tested to complement the discrimination of candidate species. Based on the consensus across the delimitation methods and genetic distance values, four species were proposed, which were mostly supported by morphometric and ecological data: R. mexicanus clade I, R. mexicanus clade IIA, R. mexicanus clade IIIA, and R. mexicanus clade IIIB. In addition, the evolutionary relationships between the species that comprise the R. mexicanus group were discussed from a phylogenetic approach. Our findings present important taxonomic implications for Reithrodontomys, as the number of known species for this genus increases. Furthermore, we highlight the importance of the use of multiple sources of data in systematic studies to establish robust delimitations between species considered taxonomically complex.

4.
Plants (Basel) ; 12(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050055

ABSTRACT

In Big Cypress National Preserve, the federally threatened Everglades bully (Sideroxylon reclinatum subsp. austrofloridense) is sympatric with its conspecific, more widespread relative, the Florida bully (Sideroxylon reclinatum subsp. reclinatum). In this area of overlap, the only reliable characters to distinguish the two are cryptic, micromorphological traits of the abaxial laminar surface. In order to better understand the distribution of the federally threatened taxon, we used a combination of habitat suitability modeling (HSM), field surveys, and microscopy. Using models to inform initial surveys, we collected leaf material of 96 individuals in the field, 86 of which we were able to identify to subspecies. Of these, 73 (85%) were identified as the threatened taxon, expanding both the known range and population size within Big Cypress. We used these 73 new occurrences to rerun HSMs to create a more accurate picture of where the taxon is likely to occur. A total of 15,015 hectares were predicted to be suitable habitat within Big Cypress, with 34,069 hectares across the entire study area. These model results could be used to inform the critical habitat designation for this taxon. For at-risk, cryptic taxa, such as the Everglades bully, multiple approaches are needed to inform management and conservation priorities, including the consideration of a hybridization zone.

5.
Mol Phylogenet Evol ; 182: 107734, 2023 05.
Article in English | MEDLINE | ID: mdl-36804428

ABSTRACT

Identifying cryptic species is important for the assessments of biodiversity. Further, untangling mechanisms underlying the origins of cryptic species can facilitate our understanding of evolutionary processes. Advancements in genomic approaches for non-model systems have offered unprecedented opportunities to investigate these areas. The White Cloud Mountain minnow (Tanichthys albonubes) is a popular freshwater pet fish worldwide but its wild populations in China are critically endangered. Recent research based on a few molecular markers suggested that this species in fact comprised seven cryptic species, of which six were previously unknown. Here, we tested six of these cryptic species and quantified genomic interspecific divergences between species in the T. albonubes complex by analyzing genome-wide restriction site-associated DNA sequencing (RADseq) data generated from 189 individuals sampled from seven populations (including an outgroup congeneric species, T. micagemmae). We found that six cryptic species previously suggested were well supported by RADseq data. The genetic diversity of each species in the T. albonubes complex was low compared with T. micagemmae and the contemporary effective population sizes (Ne) of each cryptic species were small. Phylogenetic analysis showed seven clades with high support values confirmed with Neighbor-Net trees. The pairwise divergences between species in T. albonubes complex were deep and the highly differentiated loci were evenly distributed across the genome. We proposed that the divergence level of T. albonubes complex is at a late stage of cryptic speciation and lacking gene flow. Our findings provide new insights into cryptic speciation and have important implications for conservation and species management of T. albonubes complex.


Subject(s)
Cyprinidae , Animals , Genome , Phylogeny , Multigene Family , Cyprinidae/genetics , Sequence Analysis, DNA , Fish Proteins/genetics
6.
Mol Phylogenet Evol ; 175: 107587, 2022 10.
Article in English | MEDLINE | ID: mdl-35830913

ABSTRACT

Hybridization occurs often in the genus Diphasiastrum (Lycopodiaceae), which corroborates reports for the two other recognized lycophyte families, Isoëtaceae and Selaginellaceae. Here we investigate the case of D. alpinum and D. sitchense from the Russian Far East (Kamchatka). Their hybrid, D. × takedae, was morphologically recognizable in 16 out of 22 accessions showing molecular signatures of hybridization; the remaining accessions displayed the morphology of either D. alpinum (3) or D. sitchense (3). We sequenced markers for chloroplast microsatellites (cp, 175 accessions from Kamchatka) and for the two nuclear markers RPB and LFY (175 and 152 accessions). A selection of 42 accessions, including all hybrid accessions, was analysed via genotyping by sequencing (GBS). We found multiple, but apparently uniparental hybridization, clearly characterized by a deviating group of haplotypes for D. sitchense and all hybrids. All accessions showing molecular signatures of hybridization in nuclear markers revealed the parental haplotype of D. sitchense, however only the LFY marker differentiated between the parent species. GBS, including 69,819 quality-filtered single nucleotid polymorphisms, unambiguously identified the hybrids and revealed introgression to occur. Most of the hybrids were F1, but three turned out to be backcrosses with D. alpinum (one) and with D. sitchense (two). These observations are in contrast to prior findings on three European species and their intermediates where all three hybrids turned out to be independent F1 crosses without evidence of recent backcrossing. In this study, backcrossing was detected, which indicates a limited fertility of the hybrid taxon D. × takedae. A comparison of accessions of Kamchatkian D. alpinum with plants from Europe indicated possible cryptic speciation. Accessions from the Far East had (i) a lower DNA content (7.0 vs. 7.5 pg/2C), (ii) different prevailing cp haplotypes, and (iii) RPB genotypes, and (iv) a clearly different SNP pattern in GBS. Diphasiastrum sitchense and the similar D. nikoënse, for the latter additional accessions from Japan were investigated, appeared as forms of one diverse species, sharing genotypes in both nuclear markers, although chloroplast haplotypes and DNA content show slight variations.


Subject(s)
Bryophyta , Lycopodiaceae , Tracheophyta , Bryophyta/genetics , DNA , Genetic Variation , Humans , Hybridization, Genetic , Microsatellite Repeats , Phylogeny , Tracheophyta/genetics
7.
Acta Trop ; 233: 106574, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35768041

ABSTRACT

Previous studies have linked the construction of hydroelectric dams with increases in the density of mosquitoes, especially Mansonia. In Brazil, Mansonia mosquitoes are still poorly studied at the taxonomic, biological, ecological and epidemiological levels, and nothing is known about the genetic diversity and the cryptic speciation of the group. The current study analyzed the molecular taxonomy of Mansonia species captured in the area surrounding the Jirau hydroelectric dam, Rondônia state, Brazil. Samples were collected from fifteen locations between 2018 and 2019. Genomic DNA of the specimens was extracted, and the DNA barcode region of the Cytochrome Oxidase, subunit I gene was amplified with PCR and both DNA strands were sequenced. The dataset was analyzed using MEGA, Mr. Bayes and DnaSP software. The results provided COI sequences for 100 specimens collected in the area surrounding from Jirau hydroelectric dam. These belonged to five species of the Mansonia subgenus, identified morphologically as Mansonia humeralis, Mansonia amazonensis, Mansonia titillans, Mansonia dyari and Mansonia indubitans. Findings showed that the COI gene is an effective and accessible DNA barcode that provides a high-resolution tool for delimiting species within the subgenus Mansonia, with the tree construction (Bayesian Inference) well supported and non-overlapping intraspecific and interspecific (K2-P) genetic distance values. These findings also indicate the occurrence of cryptic speciation within M. dyari and near of M. titillans. This is the first study to apply molecular tools to the taxonomy of Mansonia species from Brazil.


Subject(s)
Culicidae , Malvaceae , Animals , Bayes Theorem , Brazil , DNA , DNA Barcoding, Taxonomic
8.
Mitochondrial DNA B Resour ; 7(6): 1090-1092, 2022.
Article in English | MEDLINE | ID: mdl-35756446

ABSTRACT

The barnacle Lepas anatifera Linnaeus, 1758 (Scalpellomorpha, Lepadidae) is a worldwide distributed species. For investigating its genetic diversity in the northwest Pacific, two complete mitochondrial genomes were determined and analyzed. The lengths of the two complete mitogenomes were 15,708 bp and 15,703 bp, respectively. Both of them contained typical 37 genes with an identical order to L. anserifera Linnaeus, 1767 and L. australis Darwin, 1851 mitogenome. Except for ND1 and ND2, 11 protein-coding genes (PCGs) started with an ATN initiation codon (ATA, ATG, ATC, and ATT). Twelve PCGs were terminated with TAA or TAG stop codon, whereas ND1 possessed an incomplete termination codon (T-). Phylogenetic analysis revealed that L. australis and L. anserifera clustered together, and then with L. anatifera. The distinct genetic distances (0.17) based on concatenated sequence of 13 PCGs between the two mitogenomes of L. anatifera suggest the existence of cryptic speciation. Additional samples from multiple localities should be collected and analyzed to deepen the understanding of cryptic diversity within the northwest Pacific.

9.
Mol Phylogenet Evol ; 166: 107296, 2022 01.
Article in English | MEDLINE | ID: mdl-34438051

ABSTRACT

Free-living flatworms of the genus Macrostomum are small and transparent animals, representing attractive study organisms for a broad range of topics in evolutionary, developmental, and molecular biology. The genus includes the model organism M. lignano for which extensive molecular resources are available, and recently there is a growing interest in extending work to additional species in the genus. These endeavours are currently hindered because, even though >200 Macrostomum species have been taxonomically described, molecular phylogenetic information and geographic sampling remain limited. We report on a global sampling campaign aimed at increasing taxon sampling and geographic representation of the genus. Specifically, we use extensive transcriptome and single-locus data to generate phylogenomic hypotheses including 145 species. Across different phylogenetic methods and alignments used, we identify several consistent clades, while their exact grouping is less clear, possibly due to a radiation early in Macrostomum evolution. Moreover, we uncover a large undescribed diversity, with 94 of the studied species likely being new to science, and we identify multiple novel morphological traits. Furthermore, we identify cryptic speciation in a taxonomically challenging assemblage of species, suggesting that the use of molecular markers is a prerequisite for future work, and we describe the distribution of putative synapomorphies and suggest taxonomic revisions based on our finding. Our large-scale phylogenomic dataset now provides a robust foundation for comparative analyses of morphological, behavioural and molecular evolution in this genus.


Subject(s)
Platyhelminths , Animals , Evolution, Molecular , Phenotype , Phylogeny , Platyhelminths/genetics , Transcriptome
10.
Braz. j. biol ; 81(4): 917-927, Oct.-Dec. 2021. tab, graf
Article in English | LILACS | ID: biblio-1153455

ABSTRACT

Abstract The trahira or wolf fish - Hoplias malabaricus- is a valid species, although recent cytogenetic and molecular studies have indicated the existence of a species complex. In this context, the present study analyzed the mitochondrial COI marker to determine the levels of genetic diversity of specimens from the Brazilian state of Maranhão, and verify the occurrence of distinct lineages within the study area. Samples were collected from the basins of the Turiaçu, Pindaré, Mearim, Itapecuru, and Parnaíba rivers. A 630-bp fragment was obtained from 211 specimens, with 484 conserved and 108 variable sites, and 60 haplotypes (Hd = 0,947; π = 0,033). The phylogenetic analyses indicated the existence of three distinct lineages of H. malabaricus from Maranhão. Genetic distances of 1.5-8.2% were found between all the populations analyzed, while the variation between haplogroups ranged from 2.1% to 7.7%. The AMOVA indicated that most of the molecular variation was found among groups, with high FST values. The high levels of genetic variability found in the present study are supported by the available cytogenetic data. These findings reinforce the need for the development of effective programs of conservation and management independently for each river basin, in order to preserve the genetic variability found in this taxon.


Resumo A traíra - Hoplias malabaricus- é uma espécie válida, embora recentes estudos citogenéticos e moleculares tenham indicado a existência de um complexo de espécies. Neste contexto, o presente estudo analisou o marcador mitocondrial COI para determinar os níveis de diversidade genética dos espécimes do estado do Maranhão e verificar a ocorrência de linhagens distintas dentro da área de estudo. As amostras foram coletadas nas bacias dos rios Turiaçu, Pindaré, Mearim, Itapecuru e Parnaíba. As análises filogenéticas indicaram a existência de três linhagens distintas nas populações do Maranhão. Obteve-se um fragmento de 630 pb de 211 espécimes, com 484 sítios conservados, 108 variáveis e 60 haplótipos (Hd = 0,947; π = 0,033). As análises filogenéticas indicaram a ocorrência de três linhagens distintas de H. malabaricus do Maranhão. Distâncias genéticas de 1.5 a 8.2% foram encontradas entre todas as populações analisadas, enquanto a variação entre os haplogrupos variou de 2.1% a 7.7%. A AMOVA indicou que a maior variação molecular foi entre os grupos, com altos valores de FST. Os altos níveis de variabilidade genética encontrados no presente estudo são suportados pelos dados citogenéticos disponíveis. Essas descobertas reforçam a necessidade de desenvolver programas de conservação e manejo independentemente para cada bacia hidrográfica, a fim de preservar a variabilidade genética encontrada neste táxon.


Subject(s)
Animals , DNA Barcoding, Taxonomic , Characiformes/genetics , Phylogeny , Genetic Variation/genetics , Haplotypes/genetics , Brazil , Rivers
11.
BMC Genomics ; 22(1): 604, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34372786

ABSTRACT

BACKGROUND: Seisonidea (also Seisonacea or Seisonidae) is a group of small animals living on marine crustaceans (Nebalia spec.) with only four species described so far. Its monophyletic origin with mostly free-living wheel animals (Monogononta, Bdelloidea) and endoparasitic thorny-headed worms (Acanthocephala) is widely accepted. However, the phylogenetic relationships inside the Rotifera-Acanthocephala clade (Rotifera sensu lato or Syndermata) are subject to ongoing debate, with consequences for our understanding of how genomes and lifestyles might have evolved. To gain new insights, we analyzed first drafts of the genome and transcriptome of the key taxon Seisonidea. RESULTS: Analyses of gDNA-Seq and mRNA-Seq data uncovered two genetically distinct lineages in Seison nebaliae Grube, 1861 off the French Channel coast. Their mitochondrial haplotypes shared only 82% sequence identity despite identical gene order. In the nuclear genome, distinct linages were reflected in different gene compactness, GC content and codon usage. The haploid nuclear genome spans ca. 46 Mb, of which 96% were reconstructed. According to ~ 23,000 SuperTranscripts, gene number in S. nebaliae should be within the range published for other members of Rotifera-Acanthocephala. Consistent with this, numbers of metazoan core orthologues and ANTP-type transcriptional regulatory genes in the S. nebaliae genome assembly were between the corresponding numbers in the other assemblies analyzed. We additionally provide evidence that a basal branching of Seisonidea within Rotifera-Acanthocephala could reflect attraction to the outgroup. Accordingly, rooting via a reconstructed ancestral sequence led to monophyletic Pararotatoria (Seisonidea+Acanthocephala) within Hemirotifera (Bdelloidea+Pararotatoria). CONCLUSION: Matching genome/transcriptome metrics with the above phylogenetic hypothesis suggests that a haploid nuclear genome of about 50 Mb represents the plesiomorphic state for Rotifera-Acanthocephala. Smaller genome size in S. nebaliae probably results from subsequent reduction. In contrast, genome size should have increased independently in monogononts as well as bdelloid and acanthocephalan stem lines. The present data additionally indicate a decrease in gene repertoire from free-living to epizoic and endoparasitic lifestyles. Potentially, this reflects corresponding steps from the root of Rotifera-Acanthocephala via the last common ancestors of Hemirotifera and Pararotatoria to the one of Acanthocephala. Lastly, rooting via a reconstructed ancestral sequence may prove useful in phylogenetic analyses of other deep splits.


Subject(s)
Acanthocephala , Rotifera , Acanthocephala/genetics , Animals , Genomics , Phylogeny , Rotifera/genetics , Transcriptome
12.
Mol Phylogenet Evol ; 163: 107237, 2021 10.
Article in English | MEDLINE | ID: mdl-34147656

ABSTRACT

Molecular species delimitation, usually by COI DNA barcoding, shows that cryptic speciation is a common phenomenon observed in most animal phyla. Cryptic species have frequently been observed among all major taxa of mites. The mites of the eupodoid genus Linopodes are cosmopolitan in distribution and are most often found in soil-related habitats. Currently, the genus consists of 22 morphologically similar species, which, in practice, are indistinguishable on the basis of their morphological features. The diagnostic issue of the Linopodes species may be caused by the poor delineation of the species, which need taxonomic revision, or the low morphological variability among cryptic species. In this paper, we present the results of molecular species delimitation carried out using sampled Linopodes populations and the level of morphological inter/intraspecific variation within defined groups. We compared COI, 18S and 28S sequence data together with morphological characters. The molecular delimitation revealed seven well-defined species of Linopodes based on DNA sequences. A well-supported phylogenetic tree revealed the same seven species, while morphological analysis showed negligible phenotypic differentiation among the species revealed. We demonstrate that mites can undergo changes in their DNA accompanied by morphological stasis lasting at least 80 MY.


Subject(s)
Mites , Animals , DNA , Mites/genetics , Phylogeny
13.
Ecol Evol ; 11(10): 5096-5110, 2021 May.
Article in English | MEDLINE | ID: mdl-34025994

ABSTRACT

Genetic studies are increasingly detecting cryptic taxa that likely represent a significant component of global biodiversity. However, cryptic taxa are often criticized because they are typically detected serendipitously and may not receive the follow-up study required to verify their geographic or evolutionary limits. Here, we follow-up a study of Eucalyptus salubris that unexpectedly detected two divergent lineages but was not sampled sufficiently to make clear interpretations. We undertook comprehensive sampling for an independent genomic analysis (3,605 SNPs) to investigate whether the two purported lineages remain discrete genetic entities or if they intergrade throughout the species' range. We also assessed morphological and ecological traits, and sequenced chloroplast DNA. SNP results showed strong genome-wide divergence (F ST = 0.252) between two discrete lineages: one dominated the north and one the southern regions of the species' range. Within lineages, gene flow was high, with low differentiation (mean F ST = 0.056) spanning hundreds of kilometers. In the central region, the lineages were interspersed but maintained their genomic distinctiveness: an indirect demonstration of reproductive isolation. Populations of the southern lineage exhibited significantly lower specific leaf area and occurred on soils with lower phosphorus relative to the northern lineage. Finally, two major chloroplast haplotypes were associated with each lineage but were shared between lineages in the central distribution. Together, these results suggest that these lineages have non-contemporary origins and that ecotypic adaptive processes strengthened their divergence more recently. We conclude that these lineages warrant taxonomic recognition as separate species and provide fascinating insight into eucalypt speciation.

14.
Zootaxa ; 4949(3): zootaxa.4949.3.1, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33903329

ABSTRACT

Megascops is the most species-rich owl genus in the New World, with 21 species currently recognized. Phylogenetic relationships within this genus are notoriously difficult to establish due to the considerable plumage similarity among species and polymorphism within species. Previous studies have suggested that the widespread lowland Amazonian M. watsonii might include more than one species, and that the Atlantic Forest endemic M. atricapilla is closely related to the M. watsonii complex, but these relationships are as yet poorly understood. A recently published phylogeny of Megascops demonstrated that M. watsonii is paraphyletic with respect to M. atricapilla and that genetic divergences among some populations of M. watsonii are equal to or surpass the degree of differentiation between some M. watsonii and M. atricapilla. To shed light on the taxonomic status of these species and populations within them, we conducted a multi-character study based on molecular, morphological, and vocal characters. We sequenced three mitochondrial (cytb, CO1 and ND2) and three nuclear genes (BF5, CHD and MUSK) for 49 specimens, covering most of the geographic ranges of M. watsonii and M. atricapilla, and used these sequences to estimate phylogenies under alternative Bayesian, Maximum Likelihood, and multilocus coalescent species tree approaches. We studied 252 specimens and vocal parameters from 83 recordings belonging to 65 individuals, distributed throughout the ranges of M. watsonii and M. atricapilla. We used Discriminant Function Analysis (DFA) to analyze both morphometric and vocal data, and a pairwise diagnostic test to evaluate the significance of vocal differences between distinct genetic lineages. Phylogenetic analyses consistently recovered six statistically well-supported clades whose relationships are not entirely in agreement with currently recognized species limits in M. watsonii and M. atricapilla. Morphometric analyses did not detect significant differences among clades. High plumage variation among individuals within clades was usually associated with the presence of two or more color morphs. By contrast, vocal analyses detected significant differentiation among some clades but considerable overlap among others, with some lineages (particularly the most widespread one) exhibiting significant regional variation. The combined results allow for a redefinition of species limits in both M. watsonii and M. atricapilla, with the recognition of four additional species, two of which we describe here as new. We estimated most cladogenesis in the Megascops atricapilla-M. watsonii complex as having taken place during the Plio-Pleistocene, with the development of the modern Amazonian and São Francisco drainages and the expansion and retraction of forest biomes during interglacial and glacial periods as likely events accounting for this relatively recent burst of diversification.


Subject(s)
Strigiformes , Animals , Bayes Theorem , DNA, Mitochondrial , Genetic Variation , Passeriformes/genetics , Phylogeny , Phylogeography , Strigiformes/classification , Strigiformes/physiology
15.
Zootaxa ; 4950(2): zootaxa.4950.2.3, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33903438

ABSTRACT

Two new species of the palaemonid shrimp genus Typton Costa, 1844 are described based on material from Panama and Mexico. Both species are closely related to T. tortugae McClendon, 1911, a species originally described from the Dry Tortugas, off southern Florida, USA, and later scarcely recorded from other western Atlantic localities, from Bermuda to Mexico and Brazil. Some clarification and additional illustrations are provided for the type material of T. tortugae. Typton jonkayei sp. nov., is described based on material from fouling-encrusting communities dominated by sponges, growing on submerged roots of the red mangrove, Rhizhophora mangle L., in Bocas del Toro, Caribbean coast of Panama. This new species differs from T. tortugae in several morphological details, for instance, on the minor and major chelipeds (second pereiopods), telson, uropod, frontal margin and ambulatory pereiopods. Typton cousteaui sp. nov. is described based on a single ovigerous female dredged in the southern Gulf of California off Baja California Sur, Mexico, previously reported as T. tortugae. This new taxon seems to represent a true cryptic species with no significant morphological divergence from the allopatrically isolated T. tortugae, except for slight morphometric differences. In addition, T. granulosus Ayón-Parente, Hendrickx Galvan-Villa, 2015 is recorded from the Pacific coast of Panama, based on material collected in the Coiba Archipelago. Some taxonomic, distributional and ecological remarks are provided for T. granulosus and the closely related T. serratus Holthuis, 1951.


Subject(s)
Palaemonidae , Animal Distribution , Animal Structures , Animals , Decapoda , Palaemonidae/classification , Palaemonidae/physiology , United States
16.
Comput Biol Chem ; 92: 107496, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33930740

ABSTRACT

Exobasidium vexans, a basidiomycete pathogen, is the causal organism of blister blight disease in tea. The molecular identification of the pathogen remains a challenge due to the limited availability of genomic data in sequence repositories and cryptic speciation within its genus Exobasidium. In this study, the nuclear internal transcribed spacer rDNA region (ITS) based DNA barcode was developed for E. vexans, to address the problem of molecular identification within the background of cryptic speciation. The isolation of E. vexans strain was confirmed through morphological studies followed by molecular identification utilizing the developed ITS barcode. Phylogenetic analysis based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI) confirmed the molecular identification of the pathogen as E. vexans strain. Further, BI analysis using BEAST mediated the estimation of the divergence time and evolutionary relationship of E. vexans within genus Exobasidium. The speciation process followed the Yule diversification model wherein the genus Exobasidium is approximated to have diverged in the Paleozoic era. The study thus sheds light on the molecular barcode-based species delimitation and evolutionary relationship of E. vexans within its genus Exobasidium.


Subject(s)
Basidiomycota/genetics , Bayes Theorem , DNA, Fungal/genetics , Phylogeny , Sequence Analysis, DNA
17.
Evolution ; 75(2): 310-329, 2021 02.
Article in English | MEDLINE | ID: mdl-33325041

ABSTRACT

Understanding the mechanisms underlying species divergence remains a central goal in evolutionary biology. Landscape genetics can be a powerful tool for examining evolutionary processes. We used genome-wide scans to genotype samples from populations of eight Angophora species. Angophora is a small genus within the eucalypts comprising common and rare species in a heterogeneous landscape, making it an appropriate group to study speciation. We found A. hispida was highly differentiated from the other species. Two subspecies of A. costata (subsp. costata and subsp. euryphylla) formed a group, while the third (subsp. leiocarpa, which is only distinguished by its smooth fruits and provenance) was supported as a distinct pseudocryptic species. Other species that are morphologically distinct could not be genetically differentiated (e.g., A. floribunda and A. subvelutina). Distribution and genetic differentiation within Angophora were strongly influenced by temperature and humidity, as well as biogeographic barriers, particularly rivers and higher elevation regions. While extensive introgression was found between many populations of some species (e.g., A. bakeri and A. floribunda), others only hybridized at certain locations. Overall, our findings suggest multiple mechanisms drove evolutionary diversification in Angophora and highlight how genome-wide analyses of related species in a diverse landscape can provide insights into speciation.


Subject(s)
Genetic Introgression , Genetic Speciation , Genetic Variation , Myrtaceae/genetics , Sympatry , Australia , Phylogeography
18.
Article in English | MEDLINE | ID: mdl-32882414

ABSTRACT

The toxicological risk assessment of chemicals is largely based on the Organization for Economic Co-operation and Development (OECD) guidelines. These internationally approved methodologies help shape policy and political strategy of environment and human health issues. Risk assessments which pertain to soil biota 'recruit' sentinel organisms, including the earthworm Eisenia fetida. Despite E. fetida being morphologically similar to Dendrobaena veneta, they are characterized by a several-fold difference in sensitivity to xenobiotics. Worms, sold as either as pure E. fetida stocks or E. fetida/D. veneta mixed cultures, were obtained from five commercial suppliers. The species identity of 25 earthworms was determined by sequencing the cytochrome c oxidase subunit 2 (COII). We revealed that only one of 25 worms was E. fetida, the remaining worms were all identified as D. veneta. This underlines the notion that E. fetida and D. veneta are easily mis-identified. The occurrence of cryptic speciation combined with the well-documented species-specific variation in toxicological responses highlights the pressing need to accurately classify earthworms to species level prior to any toxicological research. Only this will ensure the validity and reliability of risk assessments.


Subject(s)
Models, Animal , Oligochaeta/classification , Animals , Ecotoxicology/methods , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Species Specificity , Toxicity Tests
19.
Neotrop. ichthyol ; 19(4): e210095, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1351165

ABSTRACT

Recent studies in eastern Amazon coastal drainages and their surroundings have revealed new fish species that sometimes exhibit little morphological differentiation (cryptic species). Thus, we used a DNA-based species delimitation approach to test if populations showing the morphotype and typical character states of the Aphyocharax avary holotype correspond either to A. avary or A. brevicaudatus, two known species from the region, or if they form independent lineages, indicating cryptic speciation. WP and GMYC analyses recovered five lineages (species) in the ingroup, while a bPTP analysis delimited three lineages. ABGD analyses produced two possible results: one corroborating the WP and GMYC methods and another corroborating the bPTP method. All methods indicate undescribed cryptic species in the region and show variation from at least 1 to 4 species in the ingroup, depending on the approach, corroborating previous studies, and revealing this region as a possible hotspot for discovering undescribed fish species.(AU)


Estudos recentes nas drenagens costeiras da Amazônia oriental e seus arredores revelaram novas espécies de peixes que às vezes exibem pouca diferenciação morfológica (espécies crípticas). Assim, usamos uma abordagem de delimitação de espécies baseada em DNA para testar se as populações que apresentam o morfotipo e os estados de caráter típicos do holótipo Aphyocharax avary correspondem a A. avary ou A. brevicaudatus, duas espécies conhecidas da região, ou se formam linhagens independentes, indicando especiação críptica. As análises de WP e GMYC recuperaram cinco linhagens (espécies) no grupo interno, enquanto uma análise de bPTP delimitou três linhagens. As análises ABGD produziram dois resultados possíveis: um corroborando os métodos WP e GMYC e outro corroborando o método bPTP. Todos os métodos indicam espécies crípticas não descritas na região e apresentam variação de pelo menos uma a quatro espécies no grupo interno, dependendo da abordagem, corroborando estudos anteriores, e revelando esta região como um possível "hotspot" para descoberta de espécies de peixes não descritas.(AU)


Subject(s)
Animals , DNA , Amazonian Ecosystem , Characidae , Rivers/microbiology , Genetic Speciation
20.
Biol Lett ; 16(9): 20200411, 2020 09.
Article in English | MEDLINE | ID: mdl-32991823

ABSTRACT

Ejaculate traits vary extensively among individuals and species, but little is known about their variation among populations of the same species. Here, we investigated patterns of intraspecific variation in male reproductive investment in the terrestrial-breeding frog Pseudophryne guentheri. Like most anurans, breeding activity in P. guentheri is cued by precipitation, and therefore the timing and duration of breeding seasons differ among geographically separated populations, potentially leading to differences in the level of sperm competition. We, therefore, anticipated local adaptation in sperm traits that reflect these phenological differences among populations. Our analysis of six natural populations across a rainfall gradient revealed significant divergence in testes and ejaculate traits that correspond with annual rainfall and rainfall seasonality; males from the northern and drier edge of the species range had significantly smaller testes containing fewer, smaller and less motile sperm compared with those from mesic central populations. These findings may reflect spatial variation in the strength of postcopulatory sexual selection, likely driven by local patterns of precipitation.


Subject(s)
Anura , Testis , Adaptation, Physiological , Animals , Anura/genetics , Breeding , Humans , Male , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL
...