Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Inorg Organomet Polym Mater ; 32(4): 1473-1486, 2022.
Article in English | MEDLINE | ID: mdl-35106063

ABSTRACT

Novel antiviral cotton fabrics impregnated with different formulations based on Chitosan (CH), citric acid (CA), and Copper (Cu) were developed. CA was selected as a CH crosslinker agent and Cu salts as enhancers of the polymer antimicrobial activity. The characterization of the polymeric-inorganic formulations was assessed by using atomic absorption spectroscopy, X-ray diffraction, Fourier transform infrared and UV-Vis spectroscopy, as well as thermogravimetric analysis. The achieved data revealed that CuO nanoparticles were formed by means of chitosan and citric acid in the reaction media. The antiviral activity of CH-based formulations against bovine alphaherpesvirus and bovine betacoronavirus was analyzed. Cotton fabrics were impregnated with the selected formulations and the antiviral properties of such textiles were examined before and after 5 to 10 washing cycles. Herpes simplex virus type 1 was selected to analyze the antiviral activities of the functionalized cotton fabrics. The resulting impregnated textiles exhibited integrated properties of good adhesion without substantially modifying their appearance and antiviral efficacy (~ 100%), which enabling to serve as a scalable biocidal layer in protective equipment's by providing contact killing against pathogens. Thus, the results revealed a viable contribution to the design of functional-active materials based on a natural polymer such as chitosan. This proposal may be considered as a potential tool to inhibit the propagation and dissemination of enveloped viruses, including SARS-CoV-2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10904-021-02192-x.

2.
Small ; 18(7): e2106583, 2022 02.
Article in English | MEDLINE | ID: mdl-35018723

ABSTRACT

The interaction between metal and metal oxides at the nanoscale is of uttermost importance in several fields, thus its enhancement is highly desirable. In catalysis, the performance of the nanoparticles is dependent on a wide range of properties, including its shape that is commonly considered stable during the catalytic reaction. In this study, highly reducible CeO2-x nanoparticles are synthesized aiming to provide Cu/CeO2-x nanoparticles, which are classically active catalysts for the CO oxidation reaction. It is observed that the Cu nanoparticles shape changes during reduction treatment (prior to the CO oxidation reaction) from a nearly spherical 3D to a planar 2D shape, then enhances the Cu-CeO2-x interaction. The spread of the Cu nanoparticles over the CeO2-x surface during the reduction treatment occurs due to the minimization of the total system energy. The shape change is accompanied by migration of O atoms from CeO2 surface to the border of the Cu nanoparticles and the change from the Cu0 to Cu+1 state. The spreading of the Cu nanoparticles influences on the reactivity results toward the CO oxidation reaction since it changes the local atomic order around Cu atoms. The results show a timely contribution for enhancing the interaction between metal and metal oxide.


Subject(s)
Cerium , Nanoparticles , Catalysis , Oxidation-Reduction , Oxides
3.
J Hazard Mater ; 416: 125801, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34492778

ABSTRACT

Herein, we demonstrate a single-step synthesis of simple copper-doped borophosphate glasses and their unusual use for catalytic reduction of nitro groups from the aromatic nitro compounds. The copper-doped glasses were evaluated as an affordable heterogeneous catalytic glass-based material for the reduction of 4-nitrophenol by sodium borohydride. The glass matrix acts as a host and support material for in situ self-growth of zero-valent copper (Cu) nanoparticles (NPs) on the glass surface. Thus, zero-valent CuNPs are produced in situ on the glass surface that is accomplished by the interaction of copper ions with hydride ions. Using an intrinsic reaction kinetic constant, we find a catalytic activity of 0.144 L s-1 g-1 for a glass-based catalyst doped with a non-noble metal, which is an order of magnitude higher when compared to the values observed elsewhere. Furthermore, the reuse of glass catalyst after six successive cycles demonstrates an outstanding performance compared to that of the parent material. A mathematical model based on the Langmuir-Hinshelwood mechanism related to an empirical growth rate of the zero-valent CuNPs was proposed to describe the kinetic of the 4-nitrophenol catalytic hydrogenation.

4.
Polymers (Basel) ; 13(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201135

ABSTRACT

Copper nanoparticles (CuNP) were obtained by a green synthesis method using cotton textile fibers and water as solvent, avoiding the use of toxic reducing agents. The new synthesis method is environmentally friendly, inexpensive, and can be implemented on a larger scale. This method showed the cellulose capacity as a reducing and stabilizing agent for synthetizing Cellulose-Copper nanoparticles (CCuNP). Nanocomposites based on CCuNP were characterized by XRD, TGA, FTIR and DSC. Functional groups present in the CCuNP were identified by FTIR analysis, and XRD patterns disclosed that nanoparticles correspond to pure metallic Cu°, and their sizes are at a range of 13-35 nm. Results demonstrated that CuNPs produced by the new method were homogeneously distributed on the entire surface of the textile fiber, obtaining CCuNP nanocomposites with different copper wt%. Thus, CuNPs obtained by this method are very stable to oxidation and can be stored for months. Characterization studies disclose that the cellulose crystallinity index (CI) is modified in relation to the reaction conditions, and its chemical structure is destroyed when nanocomposites with high copper contents are synthesized. The formation of CuO nanoparticles was confirmed as a by-product, through UV spectroscopy, in the absorbance range of 300-350 nm.

5.
Front Microbiol ; 12: 622600, 2021.
Article in English | MEDLINE | ID: mdl-33746918

ABSTRACT

The increase of industrial discharges is the first cause of the contamination of water bodies. The bacterial survival strategies contribute to the equilibrium restoration of ecosystems being useful tools for the development of innovative environmental biotechnologies. The aim of this work was to study the Cu(II) and Cd(II) biosensing, removal and recovery, mediated by whole cells, exopolymeric substances (EPS) and biosurfactants of the indigenous and non-pathogenic Pseudomonas veronii 2E to be applied in the development of wastewater biotreatments. An electrochemical biosensor was developed using P. veronii 2E biosorption mechanism mediated by the cell surface associated to bound exopolymeric substances. A Carbon Paste Electrode modified with P. veronii 2E (CPEM) was built using mineral oil, pre-washed graphite power and 24 h-dried cells. For Cd(II) quantification the CPEM was immersed in Cd(II) (1-25 µM), detected by Square Wave Voltammetry. A similar procedure was used for 1-50 µM Cu(II). Regarding Cd(II), removal mediated by immobilized EPS was tested in a 50 ml bioreactor with 0.13 mM Cd(II), pH 7.5. A 54% metal retention by EPS was achieved after 7 h of continuous operation, while a 40% was removed by a control resin. In addition, surfactants produced by P. veronii 2E were studied for recovery of Cd(II) adsorbed on diatomite, obtaining a 36% desorption efficiency at pH 6.5. Cu(II) adsorption from a 1 mM solution was tested using P. veronii 2E purified soluble EPS in 50 mL- batch reactors (pH = 5.5, 32°C). An 80% of the initial Cu(II) was retained using 1.04 g immobilized EPS. Focusing on metal recovery, Cu nanoparticles (NPs) biosynthesis by P. veronii 2E was carried out in Cu(II)-PYG Broth at 25°C for 5 days. Extracellular CuNPs were characterized by UV-Vis spectral analysis while both extracellular and intracellular NPs were analyzed by SEM and TEM techniques. Responses of P. veronii 2E and its products as biosurfactants, bound and soluble EPS allowed Cu(II) and Cd(II) removal, recovery and biosensing resulting in a multiple and versatile tool for sustainable wastewater biotreatments.

6.
Sci Total Environ ; 757: 143794, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33272603

ABSTRACT

Viticulture plays an important role in generating income for small farms globally. Historically, vineyards use large quantities of phytosanitary products, such as Bordeaux mixture [Ca(OH)2 + CuSO4], to control plant diseases. These products result in the accumulation of copper (Cu) in the soil and increases the risk of transfer to water bodies. Thus, it is important to evaluate whether the presence of Cu-bearing particles in water is toxic to aquatic fauna. This study conducted chemical, mineralogical, and particle size evaluations on water samples and sediments collected from a watershed predominantly cultivated with old vineyards. The proportion of Cu-rich nanoparticles (<10 nm) in the sediment was ~27%. We exposed zebrafish to different dilutions of water and sediment samples that collected directly from the study site (downstream river) under laboratory conditions. Then, we evaluated their exploratory behavior and the stress-related endocrine parameter, whole-body cortisol. We also carried out two experiments in which zebrafish were exposed to Cu. First, we determined the median lethal concentration (LC50-96 h) of Cu and then assessed whether Cu exposure results in effects similar to those associated with exposure to the water and sediment samples collected from the study site. The water and sediment samples directly impacted the exploratory behavior of zebrafish, showing clear anxiety-like behavioral phenotype and stress in terms of cortisol increase (during the second rain event). The Cu exposure did not mimic the same behavioral changes triggered by the water and sediment samples, although it had caused similar stress in the fish. Our results highlight that even at low concentrations, the water and sediment samples from vineyard watershed runoff were able to induce behavioral and endocrine changes that may harm the ecological balance of an aquatic environment.


Subject(s)
Water Pollutants, Chemical , Water , Animals , Farms , Geologic Sediments , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Zebrafish
7.
Materials (Basel) ; 12(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261628

ABSTRACT

The anti-biofouling and desalination properties of thin film composite reverse osmosis membranes (TFC-RO), modified by the incorporation of copper and iron nanoparticles, were compared. Nanoparticles of metallic copper (CuNPs) and an iron crystalline phase mix (Fe and Fe2O3, FeNPs) were obtained by oxide-reduction-precipitation and reduction reactions, respectively, and characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Modified membranes (PA+0.25Cu-PSL and PA+0.25Fe-PSL) were obtained by incorporating these nanoparticles during the interfacial polymerization process (PI). These membranes were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and contact angle measurements. Bactericidal tests by a Colony Forming Unit (CFU) were performed using Escherichia coli, and anti-adhesion properties were confirmed by fluorescence microscopy estimating the percentage of live/dead cells. The permeate flow and rejection of salts was evaluated using a crossflow cell. An increase of the membrane's roughness on the modified membrane was observed, influencing the desalination performance more strongly in the presence of the FeNPs with respect to the CuNPs. Moreover, a significant bactericidal and anti-adhesion effect was obtained in presence of both modifications with respect to the pristine membrane. An important decrease in CFU in the presence of modified membranes of around 98% in both modifications was observed. However, the anti-adhesion percentage and reduction of live/dead cells were higher in the presence of the copper-modified membrane in comparison to the iron-modified membrane. These facts were attributed to the differences in antimicrobial action mechanism of these types of nanoparticles. In conclusion, TFC-RO membranes modified by the incorporation of CuNPs during PI represent one alternative material to attend to the biofouling impact in the desalination process.

8.
Environ Sci Pollut Res Int ; 25(7): 6414-6428, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29249029

ABSTRACT

A SSW/Al-Cu formed from an industrial solid waste and Al-Cu Nps are utilized for the removal of fluoride from aqueous solutions. The SSW/Al-Cu was obtained by a chemical reduction method. The SSW/Al-Cu was characterized by TEM, SEM, FT-IR, XRD, BET, and pHzpc techniques. The Nps were formed as bimetallic oxides and deposited in the form of spheroidal particles forming agglomerations. The sizes of these particles range from 1 to 3 nm. The surface area and average pore width of SSW/Al-Cu were 2.99 m2/g and 17.09 nm, respectively. The adsorption kinetics were better described using the second-order model, pointing to chemical adsorption with an equilibrium time of 540 min. The thermodynamic parameters obtained here confirm the spontaneous and endothermic nature of the process. The percentage of fluoride removal was 89.5% using the four-bladed disk turbine, and computational fluid dynamics (CFD) modeling demonstrated that using the four-bladed disk turbine helped improve the fluoride removal process. The maximum adsorption capacity was 3.99 mg/g. The Langmuir-Freundlich model best describes the adsorption process, which occurred by a combination of mechanisms, such as electrostatic interactions between the ions involved in the process. This study proves that the chemical modification of this waste solid created an efficient bimetallic nanomaterial for fluoride removal. Furthermore, the method of preparation of these nanocomposites is quite scalable.


Subject(s)
Aluminum , Copper , Fluorides/analysis , Industrial Waste/analysis , Nanocomposites/chemistry , Oxides , Solid Waste/analysis , Steel/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Particle Size , Surface Properties , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL