Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 537
Filter
1.
Parasit Vectors ; 17(1): 286, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956733

ABSTRACT

The flavivirus West Nile Virus (WNV), which is transmitted by mosquitoes, poses a significant threat to both humans and animals, and its outbreaks often challenge public health in Europe and other continents. In recent years, there is an increasing trend of WNV incidence rates across several European countries. However, whether there is a year-round circulation or seasonal introduction has yet to be elucidated. Real-time polymerase chain reaction (PCR) identified WNV-positive Culex pipiens mosquitos in 6 out of 146 pools examined in winter 2022 that correspond to three out of the 24 study areas, located in two coastal regions units in Attica, Greece. Spatial dispersion of the six positive pools in the same region suggests a clustered circulation of WNV during the winter of 2022. This is the first study that documents the identification of WNV in Cx. pipiens populations, captured in adult traps during winter period. Our findings underscore the need to extend entomological surveillance programs to include the winter period, specifically in temperate climates and historically affected areas by WNV.


Subject(s)
Culex , Mosquito Vectors , Seasons , West Nile Fever , West Nile virus , Animals , Culex/virology , West Nile virus/genetics , West Nile virus/isolation & purification , West Nile virus/physiology , Greece/epidemiology , West Nile Fever/transmission , West Nile Fever/epidemiology , West Nile Fever/virology , Mosquito Vectors/virology , Real-Time Polymerase Chain Reaction
2.
Bioorg Chem ; 150: 107591, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38964147

ABSTRACT

Some heterocycles bearing a benzo[h]quinoline moiety were synthesized through treating a 3-((2-chlorobenzo[h]quinolin-3-yl)methylene)-5-(p-tolyl)furan-2(3H)-one with four nitrogen nucleophiles comprising ammonium acetate, benzylamine, dodecan-1-amine, and 1,2-diaminoethane. Also, thiation reactions of furanone and pyrrolinone derivatives were investigated. The insecticidal activity of these compounds against mosquito larvae (Culex pipiens L.) was evaluated. All tested compounds exhibited significant larvicidal activity, surpassing that of the conventional insecticide chlorpyrifos. In silico docking analysis revealed that these compounds may act as acetyl cholinesterase (AChE) inhibitors, potentially explaining their larvicidal effect. Additionally, interactions with other neuroreceptors, such as nicotinic acetylcholine receptor and sodium channel voltage-gated alpha subunit were also predicted. The results obtained from this study reflected the potential of benzo[h]quinoline derivatives as promising candidates for developing more effective and sustainable mosquito control strategies. The ADME (absorption, distribution, metabolism, and excretion) analyses displayed their desirable drug-likeness and oral bioavailability properties.

3.
Parasit Vectors ; 17(1): 251, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858771

ABSTRACT

BACKGROUND: Salinity, exacerbated by rising sea levels, is a critical environmental cue affecting freshwater ecosystems. Predicting ecosystem structure in response to such changes and their implications for the geographical distribution of arthropod disease vectors requires further insights into the plasticity and adaptability of lower trophic level species in freshwater systems. Our study investigated whether populations of the mosquito Culex pipiens, typically considered sensitive to salt, have adapted due to gradual exposure. METHODS: Mesocosm experiments were conducted to evaluate responses in life history traits to increasing levels of salinity in three populations along a gradient perpendicular to the North Sea coast. Salt concentrations up to the brackish-marine transition zone (8 g/l chloride) were used, upon which no survival was expected. To determine how this process affects oviposition, a colonization experiment was performed by exposing the coastal population to the same concentrations. RESULTS: While concentrations up to the currently described median lethal dose (LD50) (4 g/l) were surprisingly favored during egg laying, even the treatment with the highest salt concentration was incidentally colonized. Differences in development rates among populations were observed, but the influence of salinity was evident only at 4 g/l and higher, resulting in only a 1-day delay. Mortality rates were lower than expected, reaching only 20% for coastal and inland populations and 41% for the intermediate population at the highest salinity. Sex ratios remained unaffected across the tested range. CONCLUSIONS: The high tolerance to salinity for all key life history parameters across populations suggests that Cx. pipiens is unlikely to shift its distribution in the foreseeable future, with potential implications for the disease risk of associated pathogens.


Subject(s)
Culex , Oviposition , Salinity , Animals , Culex/physiology , Culex/drug effects , Culex/growth & development , Female , Male , Ecosystem , Salt Tolerance , Fresh Water , Life History Traits , Mosquito Vectors/physiology , Lethal Dose 50 , Sodium Chloride/pharmacology
4.
Colloids Surf B Biointerfaces ; 241: 114040, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38917668

ABSTRACT

The synthesized pyrazolopyrimidine derivatives conjugated with selenium nanoparticles were prepared via a reaction of pyrazolone 1 with aryl-aldehyde and malononitrile or 3-oxo-3-phenylpropanenitrile in the presence ammonium acetate or pipridine using an ultrasonic bath as a modified method in the organic synthesis for such materials. The structure of the synthesized compounds was elucidated through various techniques. All the synthesized pyrazolopyrimidines were used in the synthesis of selenium nanoparticles (SeNPs). These nanoparticles were confirmed using UV-spectra, Dynamic Light scattering and (TEM) techniques. The larvicidal efficiency;of the synthesized;compounds; was investigated against some strains such as Culex pipiens;and Musca domestica larvae. Bioassay test showed pyrazolopyrimide derivatives to exhibit an acceptable larvicidal;bio-efficacy. The derivative (3) exhibited;the highest;efficiency for more than; lab strains of both species. Moreover, C. pipiens larvae were more sensitive towards the examined compounds than M. domestica. The field;strain displayed lower affinity for the 2 folds compounds. Some biochemical changes were tracked through analysis of insect main metabolites (protein, lipid and carbohydrate), in addition to measuring the changes in seven enzymes after treatment. Generally, there was a reduction in the protein, lipids and carbohydrates after treatment with all tested compounds. Moreover, a decrement was noticed for acetylcholine esterase and glutathione;S-transferase; enzymes. There was an increment in the acid;phosphatase; and alkaline phosphatase. In addition, there was elevation in Phenoloxidase level but it noticed the declination in both Cytochrome P450 and Ascorbate peroxidase activity after treatment both flies with derivatives of selenium-nanoparticles in both lab and field strain. Generally, the experiments carried out indicate that antioxidant and detoxification enzymes may play a significant role in mechanism of action of our novel nanocompounds. The cytotoxicity of the synthesized compounds and conjugated with SeNPs showed enhanced compatibility with human normal fibroblast cell line (BJ1) with no toxic effect.

5.
Article in English | MEDLINE | ID: mdl-38820803

ABSTRACT

The northern house mosquito, Culex pipiens, employs diapause as an essential survival strategy during winter, inducing important phenotypic changes such as enhanced stress tolerance, lipid accumulation, and extended longevity. During diapause, the cessation of reproductive development represents another distinctive phenotypic change, underlining the need for adjusted modulation of gene expressions within the ovary. Although considerable advancements in screening gene expression profiles in diapausing and non-diapausing mosquitoes, there remains a gap in tissue-specific transcriptomic profiling that could elucidate the complicated formation of diverse diapause features in Cx. pipiens. Here, we filled this gap by utilizing RNA sequencing, providing a detailed examination of gene expression patterns in the fat body and ovary during diapause compared to non-diapause conditions. Functional annotation of upregulated genes identified associations with carbohydrate metabolism, stress tolerance, immunity, and epigenetic regulation. The validation of candidate genes using quantitative real-time PCR verified the differentially expressed genes identified in diapausing mosquitoes. Our findings contribute novel insights into potential regulators during diapause in Cx. pipiens, thereby opening possible avenues for developing innovative vector control strategies.


Subject(s)
Culex , Fat Body , Gene Expression Profiling , Ovary , Animals , Culex/genetics , Culex/metabolism , Culex/growth & development , Female , Fat Body/metabolism , Ovary/metabolism , Diapause, Insect , Metabolic Networks and Pathways , Transcriptome , Organ Specificity , Insect Proteins/genetics , Insect Proteins/metabolism
6.
J Wildl Dis ; 60(3): 621-633, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38769632

ABSTRACT

Although wild bird rehabilitation facilities are important for the conservation of wild species, individuals may be kept within the facilities for long periods, consequently posing a risk for the bird to be infected with pathogens to which they are not naturally exposed. In turn, novel pathogens may be introduced through rescued migratory species. Avian malaria and West Nile fever are important avian diseases transmitted by mosquitoes. To understand the transmission dynamics of such diseases at rehabilitation facilities, the ecology of vector mosquitoes, including species composition, seasonality, and feeding behaviors, were explored. Mosquitoes were collected at a wild bird rehabilitation facility and wildlife sanctuary in Japan from 2019 to 2020 using mouth aspirators, sweep nets, and light traps. A total of 2,819 mosquitoes of 6 species were captured, all of which are potential vectors of avian diseases. Culex pipiens pallens and Cx. pipiens form molestus were the dominant species (82.9% of all collected mosquitoes). Density and seasonality differed between sampling locations, presumably because of differences in mosquito behaviors including feeding preferences and responses to climatic factors. Blood-fed Culex mosquitoes fed solely on birds, and many mosquito species are thought to have fed on birds within the facility. Particularly, Cx. pipiens group probably fed on both rescued and free-living birds. The rehabilitation facility may be an important site for the introduction and spread of pathogens because 1) numerous mosquitoes inhabit the hospital and its surroundings; 2) blood-fed mosquitoes are caught within the hospital; 3) there is direct contact between birds and mosquitoes; 4) both birds within the hospital and wild birds are fed upon. Furthermore, blood-fed Cx. pipiens form molestus were observed in the winter, suggesting that pathogens might be transmitted even during the winter when other mosquito species are inactive.


Subject(s)
Animals, Wild , Bird Diseases , Birds , Feeding Behavior , Mosquito Vectors , Animals , Japan/epidemiology , Bird Diseases/epidemiology , Bird Diseases/transmission , Culicidae/physiology , Seasons , West Nile Fever/transmission , West Nile Fever/veterinary , West Nile Fever/epidemiology
7.
mSystems ; 9(6): e0001224, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38742876

ABSTRACT

In arthropod-associated microbial communities, insect-specific viruses (ISVs) are prevalent yet understudied due to limited infectivity outside their natural hosts. However, ISVs might play a crucial role in regulating mosquito populations and influencing arthropod-borne virus transmission. Some studies have indicated a core virome in mosquitoes consisting of mostly ISVs. Employing single mosquito metagenomics, we comprehensively profiled the virome of native and invasive mosquito species in Belgium. This approach allowed for accurate host species determination, prevalence assessment of viruses and Wolbachia, and the identification of novel viruses. Contrary to our expectations, no abundant core virome was observed in Culex mosquitoes from Belgium. In that regard, we caution against rigidly defining mosquito core viromes and encourage nuanced interpretations of other studies. Nonetheless, our study identified 45 viruses of which 28 were novel, enriching our understanding of the mosquito virome and ISVs. We showed that the mosquito virome in this study is species-specific and less dependent on the location where mosquitoes from the same species reside. In addition, because Wolbachia has previously been observed to influence arbovirus transmission, we report the prevalence of Wolbachia in Belgian mosquitoes and the detection of several Wolbachia mobile genetic elements. The observed prevalence ranged from 83% to 92% in members from the Culex pipiens complex.IMPORTANCECulex pipiens mosquitoes are important vectors for arboviruses like West Nile virus and Usutu virus. Virome studies on individual Culex pipiens, and on individual mosquitoes in general, have been lacking. To mitigate this, we sequenced the virome of 190 individual Culex and 8 individual Aedes japonicus mosquitoes. We report the lack of a core virome in these mosquitoes from Belgium and caution the interpretation of other studies in this light. The discovery of new viruses in this study will aid our comprehension of insect-specific viruses and the mosquito virome in general in relation to mosquito physiology and mosquito population dynamics.


Subject(s)
Culex , Virome , Wolbachia , Animals , Culex/virology , Culex/microbiology , Virome/genetics , Wolbachia/genetics , Wolbachia/isolation & purification , Belgium , Species Specificity , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Metagenomics , Insect Viruses/genetics , Insect Viruses/isolation & purification , Climate
8.
J Med Entomol ; 61(4): 948-958, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38747350

ABSTRACT

Culex pipiens pallens Coquillett, 1898 (Diptera: Culicidae) was the dominant health threat to mosquito species in Beijing, and it is important to unravel the spatial distribution and environmental correlations of Cx. pipiens pallens in Beijing. 3S technology methods and spatial statistics were used to clarify the distribution pattern. Subsequently, linear and spatial regression were performed to detect the environmental factors linked with the density of Cx. pipiens pallens. The same "middle peak" spatial distribution pattern was observed for Cx. pipiens pallens density at the community, subdistrict, and loop area levels in our study area. In addition, there were various correlated environmental factors at the community and subdistrict scales. At the community scale, the summary values of the Modified Normalized Difference Water Index (MNDWI) in 2 km buffer zone (MNDWI_2K) were negatively correlated, and the summary values of Normalized Difference Built-up Index (NDBI) in 800 m buffer zone (NDBI_800) was positively correlated to the Cx. pipiens pallens density. However, the summary values of Normalized Difference Vegetation Index and Nighttime Light Index significantly affected Cx. pipiens pallens density at the subdistrict scale. Our findings provide insight into the spatial distribution pattern of Cx. pipiens pallens density and its associated environmental risk factors at different spatial scales in the Haidian district of Beijing for the first time. The results could be used to predict the Cx. pipiens pallens density as well as the risk of lymphatic filariasis (LF) infection, which would help implement prevention and control measures to prevent future risks of biting and LF transmission in Beijing.


Subject(s)
Animal Distribution , Culex , Animals , Culex/physiology , Beijing , Population Density , Environment
9.
Parasit Vectors ; 17(1): 223, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750581

ABSTRACT

BACKGROUND: Batai virus (BATV) is a zoonotic arbovirus of veterinary importance. A high seroprevalence in cows, sheep and goats and infection in different mosquito species has been observed in Central Europe. Therefore, we studied indigenous as well as exotic species of the genera Culex and Aedes for BATV vector competence at different fluctuating temperature profiles. METHODS: Field caught Culex pipiens biotype pipiens, Culex torrentium, Aedes albopictus and Aedes japonicus japonicus from Germany and Aedes aegypti laboratory colony were infected with BATV strain 53.3 using artificial blood meals. Engorged mosquitoes were kept under four (Culex species) or three (Aedes species) fluctuating temperature profiles (18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C) at a humidity of 70% and a dark/light rhythm of 12:12 for 14 days. Transmission was measured by testing the saliva obtained by forced salivation assay for viable BATV particles. Infection rates were analysed by testing whole mosquitoes for BATV RNA by quantitative reverse transcription PCR. RESULTS: No transmission was detected for Ae. aegypti, Ae. albopictus or Ae. japonicus japonicus. Infection was observed for Cx. p. pipiens, but only in the three conditions with the highest temperatures (21 ± 5 °C, 24 ± 5 °C, 27 ± 5 °C). In Cx. torrentium infection was measured at all tested temperatures with higher infection rates compared with Cx. p. pipiens. Transmission was only detected for Cx. torrentium exclusively at the highest temperature of 27 ± 5 °C. CONCLUSIONS: Within the tested mosquito species, only Cx. torrentium seems to be able to transmit BATV if the climatic conditions are feasible.


Subject(s)
Aedes , Bunyamwera virus , Culex , Mosquito Vectors , Temperature , Animals , Aedes/virology , Aedes/physiology , Aedes/classification , Culex/virology , Culex/physiology , Culex/classification , Mosquito Vectors/virology , Mosquito Vectors/physiology , Bunyamwera virus/genetics , Bunyamwera virus/physiology , Bunyamwera virus/isolation & purification , Saliva/virology , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology , Female , Europe , Germany
10.
Parasit Vectors ; 17(1): 200, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704595

ABSTRACT

BACKGROUND: Mayaro virus (MAYV) is an emerging alphavirus, primarily transmitted by the mosquito Haemagogus janthinomys in Central and South America. However, recent studies have shown that Aedes aegypti, Aedes albopictus and various Anopheles mosquitoes can also transmit the virus under laboratory conditions. MAYV causes sporadic outbreaks across the South American region, particularly in areas near forests. Recently, cases have been reported in European and North American travelers returning from endemic areas, raising concerns about potential introductions into new regions. This study aims to assess the vector competence of three potential vectors for MAYV present in Europe. METHODS: Aedes albopictus from Italy, Anopheles atroparvus from Spain and Culex pipiens biotype molestus from Belgium were exposed to MAYV and maintained under controlled environmental conditions. Saliva was collected through a salivation assay at 7 and 14 days post-infection (dpi), followed by vector dissection. Viral titers were determined using focus forming assays, and infection rates, dissemination rates, and transmission efficiency were calculated. RESULTS: Results indicate that Ae. albopictus and An. atroparvus from Italy and Spain, respectively, are competent vectors for MAYV, with transmission possible starting from 7 dpi under laboratory conditions. In contrast, Cx. pipiens bioform molestus was unable to support MAYV infection, indicating its inability to contribute to the transmission cycle. CONCLUSIONS: In the event of accidental MAYV introduction in European territories, autochthonous outbreaks could potentially be sustained by two European species: Ae. albopictus and An. atroparvus. Entomological surveillance should also consider certain Anopheles species when monitoring MAYV transmission.


Subject(s)
Aedes , Alphavirus Infections , Alphavirus , Culex , Mosquito Vectors , Animals , Aedes/virology , Mosquito Vectors/virology , Alphavirus/physiology , Alphavirus/isolation & purification , Culex/virology , Europe , Alphavirus Infections/transmission , Alphavirus Infections/virology , Saliva/virology , Anopheles/virology , Spain , Italy , Female , Belgium
11.
Parasit Vectors ; 17(1): 222, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745242

ABSTRACT

BACKGROUND: Culex pipiens pallens is a well-known mosquito vector for several diseases. Deltamethrin, a commonly used pyrethroid insecticide, has been frequently applied to manage adult Cx. pipiens pallens. However, mosquitoes can develop resistance to these insecticides as a result of insecticide misuse and, therefore, it is crucial to identify novel methods to control insecticide resistance. The relationship between commensal bacteria and vector resistance has been recently recognized. Bacteriophages (= phages) are effective tools by which to control insect commensal bacteria, but there have as yet been no studies using phages on adult mosquitoes. In this study, we isolated an Aeromonas phage vB AhM-LH that specifically targets resistance-associated symbiotic bacteria in mosquitoes. We investigated the impact of Aeromonas phage vB AhM-LH in an abundance of Aeromonas hydrophila in the gut of Cx. pipiens pallens and its effect on the status of deltamethrin resistance. METHODS: Phages were isolated on double-layer agar plates and their biological properties analyzed. Phage morphology was observed by transmission electron microscopy (TEM) after negative staining. The phage was then introduced into the mosquito intestines via oral feeding. The inhibitory effect of Aeromonas phage vB AhM-LH on Aeromonas hydrophila in mosquito intestines was assessed through quantitative real-time PCR analysis. Deltamethrin resistance of mosquitoes was assessed using WHO bottle bioassays. RESULTS: An Aeromonas phage vB AhM-LH was isolated from sewage and identified as belonging to the Myoviridae family in the order Caudovirales using TEM. Based on biological characteristics analysis and in vitro antibacterial experiments, Aeromonas phage vB AhM-LH was observed to exhibit excellent stability and effective bactericidal activity. Sequencing revealed that the Aeromonas phage vB AhM-LH genome comprises 43,663 bp (51.6% CG content) with 81 predicted open reading frames. No integrase-related gene was detected in the vB AH-LH genome, which marked it as a potential biological antibacterial. Finally, we found that Aeromonas phage vB AhM-LH could significantly reduce deltamethrin resistance in Cx. pipiens pallens, in both the laboratory and field settings, by decreasing the abundance of Aeromonas hydrophila in their midgut. CONCLUSIONS: Our findings demonstrate that Aeromonas phage vB AhM-LH could effectively modulate commensal bacteria Aeromonas hydrophila in adult mosquitoes, thus representing a promising strategy to mitigate mosquito vector resistance.


Subject(s)
Aeromonas hydrophila , Bacteriophages , Culex , Insecticide Resistance , Nitriles , Pyrethrins , Animals , Aeromonas hydrophila/virology , Aeromonas hydrophila/drug effects , Culex/virology , Culex/microbiology , Bacteriophages/physiology , Bacteriophages/isolation & purification , Bacteriophages/genetics , Pyrethrins/pharmacology , Nitriles/pharmacology , Insecticides/pharmacology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Female
12.
Med Vet Entomol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747253

ABSTRACT

Accurate knowledge of blood meal hosts of different mosquito species is critical for identifying potential vectors and establishing the risk of pathogen transmission. We compared the performance of Miseq next generation sequencing approach relative to conventional Sanger sequencing approach in identification of mosquito blood meals using genetic markers targeting the 12S rRNA and cytochrome oxidase I (COI) genes. We analysed the blood meals of three mosquito vector species (Aedes aegypti, Aedes simpsoni s.l. and Culex pipiens s.l.) collected outdoors, and compared the frequency of single- versus multiple-blood feeding. Single host blood meals were mostly recovered for Sanger-based sequencing of the mitochondrial 12S rRNA gene, whereas Miseq sequencing employing this marker and the COI marker detected both single and multiple blood meal hosts in individual mosquitoes. Multiple blood meals (two or more hosts) which mostly included humans were detected in 19%-22.7% of Ae. aegypti samples. Most single host blood meals for this mosquito species were from humans (47.7%-57.1%) and dogs (9.1%-19.0%), with livestock, reptile and rodent hosts collectively accounting for 4.7%-28.9% of single host blood meals. The frequency of two or more host blood meals in Ae. simpsoni s.l. was 26.3%-45.5% mostly including humans, while single host blood meals were predominantly from humans (31.8%-47.4%) with representation of rodent, reptile and livestock blood meals (18.2%-68.2%). Single host blood meals from Cx. pipiens s.l. were mostly from humans (27.0%-39.4%) and cows (11.5%-27.36%). Multiple blood meal hosts that mostly included humans occurred in 21.2%-24.4% of Cx. pipiens s.l. samples. Estimated human blood indices ranged from 53%-76% for Ae. aegypti, 32%-82% for Ae. simpsoni s.l. and 26%-61% for Cx. pipiens s.l. and were consistently lower for Sanger-based sequencing approach compared to Miseq-based sequencing approach. These findings demonstrate that Miseq sequencing approach is superior to Sanger sequencing approach as it can reliably identify mixed host blood meals in a single mosquito, improving our ability to understand the transmission dynamics of mosquito-borne pathogens.

13.
Article in Chinese | MEDLINE | ID: mdl-38604685

ABSTRACT

OBJECTIVE: To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens. METHODS: Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe). RESULTS: The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05). CONCLUSIONS: There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.


Subject(s)
Culex , Culicidae , Microbiota , Humans , Animals , RNA, Ribosomal, 16S/genetics , Culex/genetics , Culicidae/genetics , Microbiota/genetics
14.
Front Vet Sci ; 11: 1352236, 2024.
Article in English | MEDLINE | ID: mdl-38634104

ABSTRACT

Animal and human dirofilariosis is a vector-borne zoonotic disease, being one of the most important diseases in Europe. In Serbia, there are extensive studies reporting the presence of Dirofilaria immitis and D. repens, mainly in the north of the country, where the human population is concentrated and where there is a presence of culicid mosquitoes that transmit the disease. Ecological niche modeling (ENM) has proven to be a very good tool to predict the appearance of parasitosis in very diverse areas, with distant orography and climatologies at a local, continental, and global level. Taking these factors into account, the objective of this study was to develop an environmental model for Serbia that reflects the suitability of the ecological niche for the risk of infection with Dirofilaria spp. with which the predictive power of existing studies is improved. A wide set of variables related to the transmission of the parasite were used. The potential number of generations of D. immitis and the ecological niche modeling method (ENM) were used to estimate the potential distribution of suitable habitats for Culex pipiens. The highest probability of infection risk was located in the north of the country, and the lowest in the southern regions, where there is more orographic relief and less human activity. The model was corroborated with the location of D. immitis-infected dogs, with 89.28% of the country having a high probability of infection. In addition, it was observed that the percentage of territory with optimal habitat for Culex spp. will increase significantly between now and 2080. This new model can be used as a tool in the control and prevention of heartworm disease in Serbia, due to its high predictive power, and will serve to alert veterinary and health personnel of the presence of the disease in the animal and human population, respectively.

15.
Infect Dis Poverty ; 13(1): 29, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622750

ABSTRACT

BACKGROUND: Culex pipiens pallens and Culex pipiens quinquefasciatus are the dominant species of Culex mosquitoes in China and important disease vectors. Long-term use of insecticides can cause mutations in the voltage-gated sodium channel (vgsc) gene of mosquitoes, but little is known about the current status and evolutionary origins of vgsc gene in different geographic populations. Therefore, this study aimed to determine the current status of vgsc genes in Cx. p. pallens and Cx. p. quinquefasciatus in China and to investigate the evolutionary inheritance of neighboring downstream introns of the vgsc gene to determine the impact of insecticides on long-term evolution. METHODS: Sampling was conducted from July to September 2021 in representative habitats of 22 provincial-level administrative divisions in China. Genomic DNA was extracted from 1308 mosquitoes, the IIS6 fragment of the vgsc gene on the nerve cell membrane was amplified using polymerase chain reaction, and the sequence was used to evaluate allele frequency and knockdown resistance (kdr) frequency. MEGA 11 was used to construct neighbor-joining (NJ) tree. PopART was used to build a TCS network. RESULTS: There were 6 alleles and 6 genotypes at the L1014 locus, which included the wild-type alleles TTA/L and CTA/L and the mutant alleles TTT/F, TTC/F, TCT/S and TCA/S. The geographic populations with a kdr frequency less than 20.00% were mainly concentrated in the regions north of 38° N, and the geographic populations with a kdr frequency greater than 80.00% were concentrated in the regions south of 30° N. kdr frequency increased with decreasing latitude. And within the same latitude, the frequency of kdr in large cities is relatively high. Mutations were correlated with the number of introns. The mutant allele TCA/S has only one intron, the mutant allele TTT/F has three introns, and the wild-type allele TTA/L has 17 introns. CONCLUSIONS: Cx. p. pallens and Cx. p. quinquefasciatus have developed resistance to insecticides in most regions of China. The neighboring downstream introns of the vgsc gene gradually decreased to one intron with the mutation of the vgsc gene. Mutations may originate from multiple mutation events rather than from a single origin, and populations lacking mutations may be genetically isolated.


Subject(s)
Culex , Culicidae , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Insecticides/pharmacology , Introns/genetics , Mosquito Vectors/genetics , Culex/genetics , Mutation , Voltage-Gated Sodium Channels/genetics , Insecticide Resistance/genetics
16.
Parasit Vectors ; 17(1): 168, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566167

ABSTRACT

BACKGROUND: Mosquitoes inhabiting urban green spaces and cemeteries in Europe represent a crucial facet of public health concern and contribute to the ecological balance. As urbanization intensifies, these areas increasingly serve as vital habitats for various mosquito species, fostering breeding grounds and increasing the risk of disease transmission. METHODS: A study was conducted in the three main cities (inland, coastal, and estuarine) of the Basque Country, northern Spain, to investigate the species composition, abundance, dynamic populations, larval habitats, and host preferences of mosquitoes in urban green spaces and cemeteries. CDC traps and dipping were used to collect mosquitoes for 2 years (2019-2020). RESULTS: A total of 21 mosquito species were identified, with Culex pipiens s.l. being the most abundant and widespread. The three ecological forms of Cx. pipiens were found, and Cx. pipiens pipiens was the most common in both green areas and cemeteries. Morphological identification together with molecular tools identified 65 COI sequences with high homology. The highest species richness was found in the inland city, followed by the coastal city and the estuarine city. Mosquito abundance was significantly higher in green areas compared to cemeteries and in the coastal and estuarine cities compared to the inland city. The investigation of larval breeding sites highlighted the dominance of Cx. pipiens s.l., particularly in semi-artificial ponds, diverse water-holding containers (tyres and buckets) and drainage systems in green areas; in cemeteries, most of the larvae were found in flowerpots and funerary urns. Seasonal activity exhibited variable peaks in mosquito abundance in the different cities, with a notable increase in July or August. Additionally, blood meal analysis revealed that Cx. pipiens s.l. fed on several common urban avian species. CONCLUSIONS: Studies on mosquitoes are essential to understand their role in disease transmission and to design targeted and sustainable management strategies to mitigate the associated risks.


Subject(s)
Culex , Culicidae , Animals , Spain , Parks, Recreational , Cemeteries , Culex/anatomy & histology , Larva
17.
FEMS Microbes ; 5: xtae002, 2024.
Article in English | MEDLINE | ID: mdl-38450098

ABSTRACT

Container aquatic habitats host a community of aquatic insects, primarily mosquito larvae that browse on container surface microbial biofilm and filter-feed on microorganisms in the water column. We examined how the bacterial communities in these habitats respond to feeding by larvae of two container-dwelling mosquito species, Culex pipiens and Cx. restuans. We also investigated how the microbiota of these larvae is impacted by intra- and interspecific interactions. Microbial diversity and richness were significantly higher in water samples when mosquito larvae were present, and in Cx. restuans compared to Cx. pipiens larvae. Microbial communities of water samples clustered based on the presence or absence of mosquito larvae and were distinct from those of mosquito larvae. Culex pipiens and Cx. restuans larvae harbored distinct microbial communities when reared under intraspecific conditions and similar microbial communities when reared under interspecific conditions. These findings demonstrate that mosquito larvae play a major role in structuring the microbial communities in container habitats and that intra- and interspecific interactions in mosquito larvae may shape their microbiota. This has important ecological and public health implications since larvae of the two mosquito species are major occupants of container habitats while the adults are vectors of West Nile virus.

18.
Parasitol Res ; 123(3): 151, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441704

ABSTRACT

Culicids in Argentinean Patagonia are characterized by low species diversity and adaptation to extreme environmental conditions, yet few studies have been conducted in the region. To further assess the occurrence of Culicidae in Western Patagonia, and in particular the presence of Culex pipiens bioforms at the southernmost extent of their distribution, immature and adult specimens were collected aboveground across various land uses located in shrubland, steppe, and deciduous forest between 38.96 and 46.55°S. Mosquitoes were reported at 35 of the 105 inspected sites. Five species from the genus Culex were identified, all of which were present in the steppe and the forest, while only Cx. apicinus and members of the Cx. pipiens complex were collected in the shrubland. Within the latter, a total of 150 specimens were molecularly identified by PCR amplification of Ace-2 and CQ11 loci. The first-to-date occurrence of bioform pipiens in South America is reported, along with the first records of Cx. quinquefasciatus signatures in Patagonia. In addition, the distribution of Cx. acharistus and Cx. dolosus as south as Santa Cruz province is expanded, and the first record of Cx. eduardoi in Río Negro province is provided. Immature specimens of Cx. pipiens were conspicuous in human-made aquatic habitats (both containers and in the ground), while Cx. acharistus was more prominent in artificial containers and Cx. eduardoi was mainly in ground habitats, either natural or human-made. These findings provide valuable insights into the distribution and ecological roles of these mosquito species in a region of extreme environmental conditions.


Subject(s)
Culex , Culicidae , Adult , Humans , Animals , South America
19.
Insects ; 15(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535388

ABSTRACT

Mosquitoes transmit a range of pathogens, causing devastating effects on human health. Population genetic control strategies have been developed and successfully used for several mosquito species. The most important step in identifying potential targets for mosquito control is the understanding of gene function. RNA interference (RNAi) is a powerful tool for gene silencing which has been widely used to study gene function in insects via knockdown of expression. The success of RNAi in insects depends on the efficient delivery of dsRNA into the cells, with microinjections being the most commonly used to study mosquito gene function. However, microinjections in the pupal stage lead to significant mortality in Aedes and Culex species, and few studies have performed microinjections in Culicinae pupae. Advanced techniques, such as CRISPR/Cas9 knockout, require establishing individual mosquito lines for each gene studied, and maintaining such lines may be limited by the insect-rearing capacity of a laboratory. Moreover, at times gene knockout during early development (embryo stage) has a deleterious effect on mosquito development, precluding the analysis of gene function in the pupal and adult stages and its potential for mosquito control. There is a need for a simple procedure that can be used for the fast and reliable examination of adult gene function via RNAi knockdown. Here, we focus on the aquatic stages of the mosquito life cycle and suggest a quick and easy assay for screening the functional role of genes in Culex pipiens mosquitoes without using microinjections. By dehydration of early stage pupae and subsequent rehydration in highly concentrated dsRNA, we achieved a moderate knockdown of laccase 2, a gene that turns on in the pupal stage and is responsible for melanization and sclerotization of the adult cuticle.

20.
Parasit Vectors ; 17(1): 156, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532512

ABSTRACT

BACKGROUND: Mosquito-borne diseases are on the rise. While climatic factors have been linked to disease occurrences, they do not explain the non-random spatial distribution in disease outbreaks. Landscape-related factors, such as vegetation structure, likely play a crucial but hitherto unquantified role. METHODS: We explored how three critically important factors that are associated with mosquito-borne disease outbreaks: microclimate, mosquito abundance and bird communities, vary at the landscape scale. We compared the co-occurrence of these three factors in two contrasting habitat types (forest versus grassland) across five rural locations in the central part of the Netherlands between June and September 2021. RESULTS: Our results show that forest patches provide a more sheltered microclimate, and a higher overall abundance of birds. When accounting for differences in landscape characteristics, we also observed that the number of mosquitoes was higher in isolated forest patches. CONCLUSIONS: Our findings indicate that, at the landscape scale, variation in tree cover coincides with suitable microclimate and high Culex pipiens and bird abundance. Overall, these factors can help understand the non-random spatial distribution of mosquito-borne disease outbreaks.


Subject(s)
Culex , Culicidae , West Nile Fever , West Nile virus , Animals , Microclimate , Birds , Mosquito Vectors
SELECTION OF CITATIONS
SEARCH DETAIL
...